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Abstract

Telephone call centers and their generalizations - customer contact centers - usually handle sev-

eral types of customer service requests (calls). Since customer service representatives (agents)

have different call-handling abilities and are typically cross-trained in multiple skills, contact

centers exploit skill-based routing (SBR) to assign calls to appropriate agents, aiming to re-

spond properly as well as promptly. Established agent-staffing and SBR algorithms ensure

that agents have the required call-handling skills and that call routing is performed so that

constraints are met for standard congestion measures, such as the percentage of calls of each

type that abandon before starting service and the percentage of answered calls of each type

that are delayed more than a specified number of seconds. We propose going beyond tra-

ditional congestion measures to focus on the expected value derived from having particular

agents handle various calls. Expected value might represent expected revenue or the likelihood

of first-call resolution. Value might also reflect agent call-handling preferences. We show how

value-based routing (VBR) and preference-based routing (PBR) can be introduced in the con-

text of an existing SBR framework, based on static-priority routing using a highly-structured

priority matrix, so that constraints are still met for standard congestion measures. Since an

existing SBR framework is used to implement VBR and PBR, it is not necessary to replace the

automatic call distributor (ACD). We show how mathematical programming can be used, with

established staffing requirements, to find a desirable priority matrix. We select the priority

matrix to use during a specified time interval (e.g., 30-minute period) by maximizing the total

expected value over that time interval, subject to staffing constraints.

Keywords: customer contact centers, telephone call centers, skill-based routing, value-based

routing, preference-based routing, indirect value-based routing, priorities, mathematical pro-

gramming, assignment problem, turnover, churn.
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1. Introduction

Many services - from emergency to retail - are largely teleservices, in that the people who

provide the service and the people who receive the service, herein called customers, are remote

from each other, at least when the service is initiated. With a teleservice, the delivery of

service is provided or enabled by a customer contact center; e.g., see Cleveland and Mayben

(1997) and Gans, Koole and Mandelbaum (2003).

A primary resource in a contact center is the group of people who respond to these service

requests - the customer service representatives, herein called agents. The classical contact

center is the (telephone) call center, wherein the interactions are telephone calls, but the tele-

phone is no longer the only means of interaction. Alternative media such as email, fax, web

pages and instant messaging are on the rise. Contact centers are supported by quite elaborate

information-and-communication-technology (ICT) equipment, such as a private branch ex-

change (PBX), an automatic call distributor (ACD), personal computers (PC’s) and assorted

database systems. The ICT equipment and the technology of voice-over-Internet protocol

(VoIP) reduce the requirement of spatial proximity: This technology makes it possible to have

virtual contact centers of various kinds, ranging from a small connected group of large call

centers on different continents to a large number of individual agents working out of their own

homes.

Contact centers usually handle several different kinds of service requests, herein referred

to as calls. For example, telephone callers may speak different languages or may call about

different promotions. Thus, it is rarely possible or cost-effective to have every agent be able

to handle every type of call. Consequently, the agents tend to have different call-handling

skills, in different combinations. Fortunately, contact centers can handle diverse calls with

agents having diverse skill sets, because modern ACD’s have the capability of assigning calls

to appropriate agents.

Contact centers maintain elaborate management-support systems to address important

aspects of contact-center performance. First, there are customer-relationship-management

(CRM) systems, that help ensure that customers are being served appropriately and business

objectives are being met. The CRM systems keep information about customers, including

a history of previous interactions. By analyzing the data (via “business analytics”), CRM

systems enable retail businesses to know the potential sales value of each interaction. Retail

businesses can also ensure that important customer information is immediately available on
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the agent’s computer screen just prior to establishing contact. The CRM systems also provide

reports on how well business objectives are being met, by individual agents as well as by the

contact center as a whole.

There also are elaborate workforce-management (WFM) systems, that aim to ensure that

the right number of agents with the right skills are in the right place at the right time. The

WFM systems have sophisticated algorithms and computer software to perform forecasting,

staffing and scheduling. These three functions aim to determine the required number of agents

with specified skills over different time periods (e.g. weeks, days, and half-hours). The WFM

systems also help manage agent performance and compensation.

Within this context, contact centers have gone beyond the traditional load-based routing

to perform skill-based routing (SBR). Traditional load-based routing is designed to ensure that

calls are handled promptly; skill-based routing is designed to ensure that calls are not only

handled promptly but are also resolved properly. Promptness is typically defined in terms of

constraints upon standard congestions measures. For example, the percentage of type-j calls

abandoning before starting service should be at most aj%; the average delay before starting

service of type-j calls should be at most dj seconds; and xj% of all answered type-j calls should

be answered within yj seconds. Proper call handling typically means that the agent should

possess, a priori, the required call-handling skills. There usually are only two alternatives: the

agent is either judged to have the required skills or is not.

We propose going beyond these traditional congestion measures and zero-one skill require-

ments to focus on the expected value accrued from having the agent handle the call; i.e., we

propose going beyond traditional SBR to obtain value-based routing (VBR). Expected value

might represent expected revenue or the likelihood of first-call resolution. With modern CRM

systems, such information is actually available.

Value might also reflect satisfying agent call-handling preferences. Indeed, we regard the

first main contribution of this paper as being a new paradigm for call routing that responds to

agent call-handling preferences. We propose a new preference-based-routing (PBR) algorithm,

which aims to respond to agent call-handling preferences and thereby help empower the agents,

so as to improve agent jobs satisfaction, thereby reducing agent turnover and absenteeism, and

hopefully improving customer service as well.

We see two major challenges in advancing this idea. First, it remains to show that those

desired benefits of PBR can actually be realized. Second, for both VBR and PBR, it remains

to show that an algorithm can be developed that is workable, in the sense that traditional
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congestion constraints can still be met, efficiently, without excessive staff. In this paper, we

only address the second challenge. In future work we hope to address the first challenge as

well.

The second main contribution of this paper is our response to the second challenge. We

develop VBR and PBR algorithms that can efficiently satisfy traditional congestion constraints.

Our approach relies on previous staffing and routing algorithms developed in Wallace and Whitt

(2005), which have been shown to be effective through extensive simulation experiments. We

construct versions of VBR and PBR in the context studied by Wallace and Whitt (2005).

We use mathematical programming to construct a special VBR algorithm we call indirect

VBR. We then construct our PBR algorithm as a special case of indirect VBR, by expressing

agent preferences in the form of values. Since VBR applies more broadly, we first discuss it.

Afterwards, we discuss PBR.

We assume that the staffing requirements for the contact center have already been deter-

mined. That is commonly done by the WFM system. Because of the time-varying nature of

demand, those staffing requirements typically vary across the day, but are treated as constant

over individual staffing intervals, e.g., often 30 minutes long. There are established procedures

for setting time-varying staffing requirements in response to time-varying demand; see Green

et al. (2005). We will assume that we are considering a single staffing interval, and not discuss

staffing intervals any further.

Thus, in this paper we are concerned with call routing in a specified time interval, such as

a half hour. We assume that there are m call types and n agents. We assume that a value

vi,j (a real number) has been assigned for agent i handling a type-j call for each i and j for

which an assignment is allowed. In a sales environment, the value vi,j might be the expected

dollar value of having agent i handle the type-j call. On the other hand, these values vi,j

might represent quantitative expressions of the strategic “value” management attributes to

having agent i handle a call of type j. For example, those value scores might be based on

management estimation of agent skill levels. It is natural to go beyond recognizing whether

or not an agent has the skill to speak French; we might try to assess how well the agent can

handle French-speaking calls.

Unlike expected revenue, values apply in any contact-center environment, e.g., in emergency

services as well as in retail. We believe that “value” is good terminology, because it encompasses

many different dimensions of performance we might want to consider. The important point is

to go beyond the traditional congestion measures. But whatever definition of value is used, we
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need an algorithm that ensures that traditional congestion constraints are met while achieving

high value.

To meet that goal, we introduce indirect VBR, which uses static routing based on highly-

structured priority matrices, as in Wallace and Whitt (2005), which in turn is patterned after

algorithms in current ACD’s. We apply mathematical programming to construct a priority

matrix that maximizes the total value subject to constraints on the priority matrix obtained

from the staffing algorithm. Since we are able to apply an existing SBR framework, we can

work with current ACD’s.

To appreciate our proposal, it is good to consider the call-routing problem we are facing.

We have multiple types of calls with uncertain call-handling requirements arriving randomly

over time. With call routing, we are thus faced with with a very complex dynamic stochastic

control problem. Full optimality is beyond the state of the art of current analysis techniques.

Moreover, the call routing is intimately linked to the agent staffing.

However, Wallace and Whitt (2005) found that there exists a reasonable approach to this

complex problem. They found that, with adequate agent cross-training, it is possible to staff

in a relatively simple way, acting as if all agents had all skills, so that the full complexities of

SBR need not be directly addressed. And, with an appropriate staffing algorithm, they found

that it suffices to use a suboptimal static-priority routing algorithm. They used simulation to

verify that the congestion constraints are met without excessive staff, and to make adjustments

if that is not initially the case. Our idea is to exploit those results for VBR and PBR.

Here is how the rest of this paper is organized: In Section 2 we formulate a performance

target, based on values, which we can use to evaluate alternative routing algorithms. In Section

3 we specify the assumed existing SBR algorithm, which is a static-priority routing algorithm

based on a priority matrix P . That is intended to illustrate what is done today in most ACD’s.

Next, in Section 4 we discuss a direct VBR algorithm, in which the priorities are simply

set equal to the values. If such a simple procedure were effective, then there would be no need

to do what we propose. To see the shortcomings of direct VBR, we present a simple two-class

example. We show that the performance of direct VBR can be arbitrarily bad (compared to

our proposed indirect VBR and to what is commonly done in practice).

In Section 5 we introduce our proposed indirect VBR algorithm, in which mathematical

programming is employed to convert the values into a priority matrix of the required form.

We impose additional structure on the priority matrix. With that additional structure, the

constraints in the mathematical program ensure, first, that traditional congestion constraints
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are still met and, second, that the new indirect VBR algorithm is put in the framework of the

SBR algorithm in Section 3.

In Section 6 we consider ways to incorporate agent preferences in the routing. We do so

by expressing agent preferences in the form of values, and then applying the indirect VBR

algorithm. We also propose several extra measures to ensure that management can maintain

control, if it is deemed necessary. We describe a specific implementation of the PBR algorithm

in Excel Solver to study its performance on small examples. We briefly state conclusions in

Section 7.

2. A Performance Target

Before defining any specific routing algorithm, it is appropriate to consider the contact-

center goals. Thus we start by formulating a performance target that can be used to judge

candidate routing algorithms, including the one we present.

Given that we are starting with values, it is natural to base the target directly on the values

vi,j , but we are also interested in traditional congestion measures. We still want relatively few

calls to abandon and most calls to be answered promptly. Thus, we ascribe a cost (negative

value) cL,j to each type-j call that is lost due to customer abandonment and a cost cD,j to each

served type-j call that has to wait more than yj seconds. (This is only meant to be illustrative.

We might pay attention to exactly how long abandoning calls waited before they abandoned

and exactly how long served calls had to wait.)

We now define a specific total-value function. To do so, we specify a time interval over

which performance is to be judged, e.g., a typical half hour. Let Ni,j be the number of type-

j calls answered by agent i within yj seconds during the specified time period. Let Lj be

the number of type-j calls lost because of customer abandonment within the designated time

period, and let Dj be the number of answered type-j calls delayed beyond yj seconds within

the designated time period. Clearly, the quantities Ni,j , Lj and Dj should be regarded as

random variables, which depend on the unknown pattern of arrivals and service times as well

as the routing policy used.

For each routing algorithm, let the total value gained from the routing algorithm under

consideration be the expected total value, i.e.,

V ≡
n∑

i=1

m∑

j=1

(E[Ni,j ] · vi,j)−
m∑

j=1

([E[Lj ] · cL,j ] + [E[Dj ] · cD,j ]) . (2.1)

We may then take as our overall goal the maximization of the total value expressed in
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(2.1). We can estimate the expected values of the three random variables in (2.1) by first

specifying a stochastic model for the arrivals of call types and their service-time distributions,

and then applying computer simulation. For any given stochastic model, we can use computer

simulation to evaluate the performance of each alternative routing algorithm, e.g., as in Anton

et al. (1999), Brigandi et al. (1994) or Leamon (2004).

However, we may want to go beyond (2.1) to ensure that traditional constraints on con-

gestion measures are satisfied. We might well judge it difficult to properly balance the costs

and benefits via (2.1). Indeed, that is our position. Hence, we may wish to consider familiar

performance constraints. For that purpose, let Nj ≡
∑n

i=1 Ni,j be the total number of type-j

calls in the time period. In addition to (2.1), we may want to impose the traditional constraints

E[Lj ]
E[Nj ]

≤ aj and
E[Dj ]
E[Nj ]

≤ (1− xj) for all j , (2.2)

for appropriate constants aj and xj .

We present a candidate routing algorithm below, but we should hasten to say that we do not

attempt to find the optimal routing algorithm. That seems to be well beyond current analytical

capabilities. Instead, we aim to find a favorable routing policy, which performs relatively well

with respect to the criteria above. We take a conservative approach, trying to achieve high

value, while still guaranteeing that the standard performance constraints in (2.2) are met. We

rely on the (external) staffing algorithm to determine the required numbers of agents with

different combinations of skills. We use a (suboptimal) static-priority routing algorithm based

on a priority matrix. We use a mathematical program to choose the best priority matrix: We

maximize the total value, subject to the staffing and performance constraints.

We optimize, but only over the priority matrices, not nearly over all possible routing

algorithms. We design our algorithm not to allow traditional constraints to be violated. Thus,

our algorithm can be viewed as assigning agent names, with specified values, to pre-determined

positions with specified call-handling behavior (skills and priorities).

And we do this in the context of an existing SBR algorithm. We believe it is very important

to develop the new VBR algorithm in the framework of an existing SBR algorithm, so that

it will be unnecessary to change the routing algorithm in existing ACD’s. We do this for a

specific SBR algorithm, but we believe our approach can also be adapted to other existing

SBR algorithms as well. We specify a specific SBR algorithm framework next.
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3. A Priority-Based SBR Algorithm

In this section we introduce a specific SBR algorithm, which we regard as illustrative

of current SBR algorithms. Indeed, the SBR algorithm here is a minor modification of the

routing algorithm in Wallace and Whitt (2005), which in turn is a variant of SBR algorithms

commonly in practice. In various ways, the SBR algorithm here can be made more elaborate,

with additional controls, e.g., see Section 2 of Sisselman and Whitt (2005a), but we deliberately

keep things simple here in order to focus on the main ideas. The SBR algorithm here is intended

to provide a framework for our indirect VBR algorithm, which we introduce in Section 5.

3.1. The Priority-Matrix Framework

We consider a contact center with n agents, who respond to m types of inbound calls.

Routing decisions are based on an n×m priority matrix P . The matrix element Pi,j gives the

priority level for agent i to handle call type j. The ith row of the matrix P determines the

routing for agent i, while the jth column of the matrix P determines the routing for any call

of type j. We assume that Pi,j is a nonnegative real number for each call type j that agent i

has the required skill to handle. We do not assign numerical values to Pi,j for all call types j,

if any, that agent i cannot respond to under any condition.

Here we take the individual values Pi,j as given. At this point we are concerned with

routing for given staffing and given priority matrix P .

3.2. The Routing Algorithm

Given the priority matrix P , we can specify the routing algorithm. There are two situations

in which action should be taken: First, we must decide what to do when a new call arrives;

second, we must decide what to do when an agent becomes free after completing a call.

1. When a new type-j call arrives, route (assign) the call to the available agent i with

the highest positive priority level Pi,j . Break ties with the longest-idle-agent-routing (LIAR)

policy: route the call to that agent, among all those available agents with that best priority

number, that has been idle the longest. If there is no available agent i, then put the arriving

call at the end of a queue of waiting calls of type j. Let there be a separate queue for each of

the m call types, with each queue served in the FIFO order.
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2. When agent i becomes free, after completing a call, look for waiting calls to assign

to agent i. Let the candidate calls to assign to agent i be from the front of the m call-type

queues (the calls of each type that have been waiting the longest). Assign the waiting call of

type j (in the front of its queue) with the highest priority. Break ties by assigning the call

that has been waiting the longest.

Unfortunately, the algorithm as specified so far may not be effective, but we can make it

effective by imposing additional structure, which we do in Section 5.1.

4. Direct VBR and Its Limitations

We can obtain a direct VBR algorithm by simply identifying the required priorities with

the given values, i.e., by letting Pi,j = vi,j for all i and j, where vi,j are the given values.

Unfortunately, however, such a simple procedure does not perform well consistently.

In this section we present a simple example to show why we need to go beyond direct

VBR. We have chosen the example so that system performance and its deficiencies are easy to

understand, without having to do any detailed simulation or involved mathematical analysis.

It should be evident that similar difficulties can occur in more realistic systems. For additional

discussion about the complexities of SBR, see Garnett and Mandelbaum (2000) and Gans et

al. (2003).

In our example there are two call types and two agent pools, as depicted in Figure 1. To

reduce the importance of stochastic fluctuations, we make the model large. The large size

makes it possible to apply deterministic fluid approximations, as in Whitt (2004, 2006a,b),

which ignore all stochastic fluctuations. The fluid approximations justify the approximate

performance descriptions given below, but the approximations should be convincing directly.

There are 2000 agents in each agent pool. All call service times are independent and

identically distributed (i.i.d.) exponential random variables with mean 1. (We think of the

mean service time being about 10 minutes, but we measure time in units of mean service

times. That makes the arrival rate coincide with the offered load.) Calls of the two types

arrive according to independent Poisson processes with arrival rates λ1 = λ2 = 1800 (calls

per mean service time). Thus type-i calls have offered load Ri = λi = 1800, so that the total

offered load is R = 3600. We also assume that waiting customers may abandon. Let the times

to abandon be i.i.d. exponential random variables with mean 1.

Thus the total system is an Erlang-A model (M/M/s+M); e.g., see Garnett et al. (2002).

Since the individual customer abandonment rate equals the individual service rate, the stochas-
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routing with two call types and two agent pools

arriving calls agent poolsvalues

1800
1

1800
2

s1=2000

s2=2000

v21=10v12=1

v11=9

v22=9

Figure 1: A customer contact center with two call types served by two agent pools.

tic process representing the number of customers in the system, either waiting or being served,

in the M/M/s + M model has the same probability law (finite-dimensional distributions) as

the stochastic process representing the number of busy servers in the associated infinite-server

(M/M/∞) model (with same arrival process and service-time distribution). The steady-state

number of customers in the system, either waiting or being served, thus has a Poisson distribu-

tion with mean 3600; p. 304 of Ross (2003). Since a Poisson distribution with a large mean is

approximately normally distributed, the steady-state number of customers in the M/M/s+M

system is approximately normally distributed with mean 3600. Since the variance of a Poisson

distribution equals its mean, the standard deviation is 60. Since 4000 is more than 6 standard

deviations above the mean, the steady-state probability a customer is delayed is negligible. We

deliberately construct the example in this way to ensure that congestion is not a factor. Thus,

for the performance target in (2.1), only the first value term is relevant.

Now let us consider possible values. Recall that vi,j is the value (or expected value) accrued

from agent i serving call-type j. For simplicity, suppose that all agents in the same pool have

the same values. We can then simplify notation. Here let vi,j be the value accrued from an
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agent in service pool i serving a type-j call. All values are thus specified by a 2 × 2 matrix

v ≡ (vi,j). For this example, let the 2× 2 value matrix be

v =
(

9 1
10 9

)
. (4.1)

Note that the value matrix v in (4.1) is a great simplification. In general, for this example,

we should have a 4000× 2 value matrix, with a separate row for each agent. We also observe

that the value matrix in (4.1) is realistic. From (4.1), we see that higher value is accrued for all

agents from handling type-1 calls than type-2 calls, but the difference is greater for the agents

in pool 1. Such values are representative of a bilingual call center, as in Green (1985) and

Stanford and Grassman (1993, 2000). In that setting, all agents might do better with type-1

calls, because it is the dominant language, but the agents from pool 1, who speak only one

language, do much worse when serving type-2 calls. The higher value 10 for agents in pool 2

serving type-1 calls might arise because the bilingual agents tend to be more skilled overall.

Service skill might be correlated with language ability.

So, what happens in this example? Since calls are only delayed very rarely, the vast majority

of all calls are answered immediately upon arrival. With direct VBR using the value matrix in

(4.1), calls of both types first attempt to find an agent from agent pool 2. They take a pool-2

agent if one is available; otherwise they go to pool 1. Since the total number of agents is 4000,

while the total offered load is 3600, there typically will be 300− 500 free agents at pool 1.

From time to time, working agents will complete their service and become free. However,

at such moments, it is extremely unlikely that there will be any customers waiting, so they

will have to wait in agent-pool queues. Since the arrival rate at pool 2 is so high, those agents

will be snapped up quickly. Thus agent pool 2 is nearly fully busy all the time, processing

calls at nearly the maximum possible rate of 2000 (per mean service time). Since the type-1

and type-2 call arrival rates are the same, and since Poisson arrival processes see time averages

(PASTA) - see p. 293 of Wolff (1989) - the two classes tend to be using equal number of agents

from pool 2. (That is evident as well from symmetry.)

Let λD
i,j be the rate (again per mean service time) that agents from pool i are processing

type-j calls. Then in this example we have approximately the processing rate matrix λD (D

for direct), where

λD =
(

800 800
1000 1000

)
, (4.2)
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which yields an approximate total value of

V D =
2∑

i=1

2∑

j=1

λD
i,jvi,j = 27, 000 (rate per mean service time) . (4.3)

So, what might we do instead of that? Following common practice, as a first step, we might

create an agent pool dedicated to each call type. Then we would assign highest priority to

having agents from agent pool j serve calls of type j, for each j. (Of course, that leaves open

the question of which agents are assigned to each agent pool, which is precisely the problem we

address in this paper.) As we do in the next section, we assume that the staffing has already

been specified. Consistent with Figure 1, we might stipulate that the total number of agents is

4000, the number of agents handling type-1 calls with high priority and type-2 calls with low

priority is n1,2 = 2000, and the number of agents handling type-2 calls with high priority and

type-1 calls with low priority is n2,1 = 2000. We would then assign the agents to the agent

pools to maximize the value. In this case, instead of using the value matrix v in (4.1) as our

priority matrix, we are led to assign calls to agents according to the priority matrix

P =
(

2 1
1 2

)
, (4.4)

where again the priorities Pi,j in this 2 × 2 priority matrix apply to all agents in agent pool

i serving a type-j call. Indeed, our indirect VBR algorithm in the next section will produce

exactly this priority matrix, given the specified staffing. In this example, since there is excess

service capacity, the priority matrix P in (4.4) just means that each call of type j would be

handled by an agent in pool j. Of course, that is commonly done in contact centers, but direct

VBR often fails to do it.

As indicated above, in this context it remains to assign the agents to the agent pools.

The notation for the value matrix in (4.1) suggests a direct match, but that is nor required.

However, given the value matrix in (4.1), that direct match is preferred, because 9+9 > 10+1.

If we use the priority matrix P in (4.4) for routing, then we instead have approximately

the processing rare matrix λI (I for indirect, as explained above, and to be explained more

fully in the next section), where

λI =
(

1800 0
0 1800

)
, (4.5)

which yields an approximate total value of

V I =
2∑

i=1

2∑

j=1

λI
i,jvi,j = 32, 400 (rate per mean service time) . (4.6)
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Note that V I is 20% greater than V D.

On the other hand, it is easy to see that we can do even better than the indirect routing

algorithm in this example by serving 200 type-1 offered load by agent pool 2, but that requires

we deviate from the specified staffing. (That is, we take the agent pool sizes as given, but we

do not specify n1,2 and n2,1.) We obtain the improved total expected value without assigning

any agents from pool-1 to customer class 2, and accruing any of the low value 1. In this way

we obtain the optimal (approximate) processing rate matrix λopt (opt for optimal), where

λopt =
(

1600 0
200 1800

)
, (4.7)

which yields an approximate total value of V opt = 32, 600 (rate per mean service time).

However, the main point of this example is to show the weakness of direct VBR. As a

byproduct, this example also demonstrates that our proposed indirect VBR routing algorithm

is not optimal, if we allow deviations in the staffing, because V I < V opt, but it is close. The

primary reason that V I < V opt is that we have over-staffed. Proper staffing would reduce the

total number of agents down much closer to 3600, and we would lose the opportunity to do

better than V I .

There is a further problem with direct VBR. Both the direct VBR and the optimal routing

in this example have the disadvantage that one class is under-utilized, while the other is over-

utilized, potentially causing agent stress. In contrast, the utilization of all servers with indirect

VBR is 90%. With direct VBR, we would need to increase the staffing level at service pool

2 to 3600 before we would see any slack there. The over-staffing is prevented if we rely on

previously (properly) determined staff levels.

To further demonstrate the deficiencies of direct VBR, we construct a variant of the example

above in which direct VBR performs even worse. Indeed, in this example the ratio V I/V D can

be made arbitrarily large by a proper choice of the parameter ε. This example is somewhat

contrived, but it shows that direct VBR can perform very poorly by allowing too much sharing.

Example 4.1. (a more extreme example.) We close this section by giving an example in which

the ratio of the value rate received from indirect VBR (assigning all type-j calls to server group

j) to the value rate received from direct VBR can be made arbitrarily large. To achieve that

bad performance of direct VBR, we let (1) the differences in the relative values be greater, and

(2) we make the arrival rates (and offered loads) of the two call types unbalanced. Let the

service times and times to abandon be i.i.d exponential random variables with mean 1, just as

before. Overall, we thus have the same M/M/s + M model.
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Let the arrival rate (and offered load) for call-type 1 be λ/ε, and for class 2 be λ. Let the

server-pool capacity exactly match the offered loads, as shown in Figure 2.

a more extreme example

arriving calls values agent pools

/
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11
v

1
22

v
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Figure 2: A more extreme example, in which V I/V D becomes arbitrarily large as ε ↓ 0.

We assume that the parameter λ is large, so that the simple deterministic approximations

are again appropriate. Let the value matrix be

v =
(

ε2 ε3

ε 1

)
, (4.8)

where ε is a small number. With the value matrix (4.8), all calls initially try to go to agent

pool 2, just as before.

Let λD
i,j be the processing rate of type-j calls by agents from pool i with direct VBR. Then

we have approximately the processing rate matrix λD (D for direct), where

λD =

(
λ

ε(1+ε)
λ

1+ε
λ

1+ε
λε

1+ε

)
, (4.9)

which yields an approximate total value of V D = ε(3 + ε2)/(1 + ε) per mean service time.

In contrast, if we use the priority matrix P in (4.4), and simply serve each call type by

its own agent pool, we would instead have approximately the processing rate matrix λI (I for
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indirect, to be explained in the next section), where

λI =
(

λ
ε 0
0 λ

)
, (4.10)

which yields an approximate total value of V I = λ(1 + ε) per mean service time. The ratio

V I/V D goes to infinity as ε ↓ 0; indeed,

εV I

V D
→ λ

3
as ε ↓ 0 . (4.11)

5. Indirect VBR

In this section we introduce our proposed indirect VBR algorithm. We start with general

values, just as in Section 4, but now we convert those values into a priority matrix P with

special structure. We first specify the additional structure for the priority matrix.

5.1. Additional Structure for the Priority Matrix

To ensure that we produce an effective priority matrix and thus an effective SBR algorithm,

we follow Wallace and Whitt (2005). In doing so, we are being conservative, adding more

restrictions than necessary, to be on the safe side.

First, we assume that there is an agent pool for each call type, where call-type j has highest

priority for all agents in agent pool j. We assume that the system has been designed so that

type-j calls are primarily served by agents in agent pool j. (Of course, it remains to determine

which agents are in each agent pool.) Beyond this, the priority matrix is used to determine

appropriate sharing, where agents from one pool handle calls of another type. This design is

consistent with common practice.

We now go even further to severely limit the structure of the priority matrix. We find that

the loss in flexibility is compensated for by the gain in control. We will here assume that there

are only two priority levels: the possible values of Pi,j are 1 and 2, with 1 being low priority

and 2 high priority. We assume that each agent has one and only one call type at priority

2. We assume that each agent has at most two active skills, necessarily with at most one at

each priority level. Here we will go further and assign each agent two skills, but that is not

necessary, and may not be possible in some contact centers. Again, this is illustrative, but

it follows Wallace and Whitt (2005). And it is consistent with the priority matrix P in (4.4)

used in the examples in Section 4. Given that each agent has at most two skills, we can refer

to them as the primary skill (high priority) and the secondary skill (low priority).
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However, in practice agents may be allowed additional active skills. Such extra flexibility

is especially important if the system needs to be able to respond to loads very different than

were anticipated. However, adding extra skills is not automatically beneficial, because routing

anomalies such as in Example 4.1 can result.

A key strategy in this paper is to rely on the staffing algorithm to determine the constraints

on the numbers of required agents with different combinations of skills. With the structure

above, the staffing algorithm needs to specify the numbers nj,k of agents that have primary

skill j and secondary skill k, where 1 ≤ j ≤ m, 1 ≤ k ≤ m and j 6= k.

To describe one feasible way to obtain those required staffing levels, we review the staffing

algorithm in Wallace and Whitt (2005). In doing so, we assume that there is sufficient cross

training, so that we can approximately size the contact center by acting as if all agents had

all skills. Wallace and Whitt (2005) found that a little flexibility goes a long way: Assuming

that the service-time distributions do not differ greatly, they found that it suffices for each

agent to have at most two skills, provided there is appropriate sharing across the agent pools,

to ensure economies of scale. Surprisingly, perhaps, they found that the required number of

agents when each agent has two skills is within a single agent of the required number when all

agents have all skills. Moreover, it suffices to use a suboptimal routing algorithm, such as our

indirect VBR. Supporting theoretical results have been established by Armony et al. (2006)

and Chevalier et al. (2004).

We do not insist on precisely this staffing method, but it produces an appropriate total

staffing level plus an appropriate staffing level for each server pool j. When the total offered

load is relatively large, but not extremely large (e.g., about 100), so that the total number of

agents is of that magnitude, and none of the individual agent pools is too small, then most

type-j calls will be served by agents in agent pool j, but the sharing plays a critical role to

provide good performance without excess staff. The simulation experiments in Wallace and

Whitt (2005) provide good illustrations.

To define the staffing algorithm from Wallace and Whitt (2005), we introduce additional

notation: Let λj be the arrival rate for call-type j, let µ−1
j be the mean service time for call-

type j (assumed not to depend on the agent), and let Rj ≡ λj/µj be the offered load for type

j. (We assume that the mean service times 1/µj do not vary greatly.) Let R ≡ R1 + · · ·+ Rm

be the total offered load.

Given the total offered load R, then we can let the total number n of agents be the least

integer greater than or equal to R + γ
√

R for some positive γ. The parameter γ broadly

15



characterizes the quality of service, with higher values yielding higher quality of service, but

at the expense of additional staff. We then assign nj agents to agent pool j (who will assign

highest priority to call type j), where nj is the least integer greater than or equal to xj , with

xj = Rj +
γ
√

RRj∑m
j=1

√
Rj

. (5.1)

Let nj,k denote the number of agents in agent pool j (having primary skill j) that will be

assigned secondary skill k, i.e., the number of agents that will be assigned skill-pair (j, k). Let

xj,k be an initial estimate of nj,k, which may not be integer. For any j and k with k 6= j, we

let

xj,k =
njnk

n− nj
. (5.2)

The sum of xj,k over k is nj . Finally, we round to obtain the desired numbers nj,k. Aside from

the rounding, this rule lets the number nj,k of agents in agent pool j having secondary skill k

be directly proportional to both nj and nk. The nj,k agents with primary skill j and secondary

skill k have identical rows in the priority matrix P : Those rows have a 2 in column j and a 1

in column k.

However, agent skills may not allow sharing with all other call types, as dictated by (5.2).

It is significant that full sharing via (5.2) is not actually required. Indirect sharing will suffice,

provided that there is appropriate chaining throughout the agent pools, as in Jordan and

Graves (1995) and Jordan et al. (2003). For example, with four agent pools, we might have

n1,2 > 0, n2,3 > 0, n3,4 > 0 and n4,1 > 0, but nj,k = 0 for all other pairs (j, k). Wallace and

Whitt (2005) found that sharing with chaining suffices when agents have only two skills.

Since each agent is given two skills, we have fully specified the priority matrix in our

framework by this procedure. We then apply simulation to test for feasibility with regard to

the constraints in (2.2) and then iteratively refine the numbers nj,k as needed to make the staff

as small as possible, subject to the performance constraints being met. See Wallace and Whitt

(2005) for further discussion, including simulation examples. As stated before, we assume

that this staffing step is complete when we consider routing. But Wallace and Whitt (2005)

provides an effective staffing algorithm.

5.2. Using the Values to Construct the Priority Matrix

We now consider how to use the values to construct a priority matrix P with the structure

specified above. We make no special assumptions about the values, but it is natural to require

that they be approximately in the same scale, because we are going to maximize the total

16



value over all assignments, as in the objective function (2.1). So we will implicitly be making

an interpersonal comparison of utilities.

Our goal here, then, is to develop an algorithm to create the priority matrix P , aiming to

determine the highest two call-handling priorities for each agent. For the single staffing interval

we are considering, we assume that the staffing requirements have already been specified,

perhaps by drawing upon Wallace and Whitt (2005). Hence we assume that the required

number of agents with each priority pair has been determined. Let nj,k be the number of

agents needed for priority pair (j, k), where j is the high-priority call type and k is the low-

priority call type. We may have nj,k = 0 for some pairs (j, k).

What is not yet determined is which agents will be assigned each priority pair. We are

assuming that there is further choice to be made. Clearly, contact centers will differ in their

ability to take advantage of VBR. We are assuming that agents have a range of skills, so that

there is flexibility in how the priority pairs can be assigned. That flexibility is crucial to allow

us to pay attention to values, while still meeting the constraints on traditional performance

measures, as in (2.2).

To allocate priority pairs to agents, we will use values vi,j,k for agent i handling priority-pair

(j, k) for all i and (j, k), 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ m, again with j 6= k. (There are

n agents and m(m − 1) distinct call-type pairs.) However, we are initially given only values

vi,j for agent i handling a call of type j. We could of course plan to start by assigning values

directly to priority pairs, which would give us vi,j,k.

However, we think it is natural to start with values in the form vi,j , as we have done so far.

So we next convert initial values vi,j for agent i handling call-type j into corresponding values

vi,j,k for agent i being assigned priority-pair (j, k). We propose taking a weighted average of

the values assigned to individual call types, but placing less weight on the lower-priority call

types. Specifically, we propose letting

vi,j,k = (1− pi,j,k)vi,j + pi,j,kvi,k , (5.3)

where pi,j,k in (5.3) is a weight satisfying 0 < pi,j,k < 0.5.

Of course it remains to specify the weights pi,j,k in (5.3); we discuss that now. It is natural

to think of the weight pi,j,k being defined such that pi,j,k is approximately the proportion of

type-k calls handled by agent i when agent i is assigned priority pair (j, k), while 1− pi,j,k is

approximately the proportion of type-j calls handled by agent i. That goal is hard to achieve

directly, because the proportions of calls of different types handled by the agents depends on all
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the priority-pair assignments and the random traffic that appears during that staffing period,

but it should suffice to use rough estimates. A simple approach is to assume that pi,j,k = p

for all i, j and k; e.g., we might let p = 0.3, and then later make adjustments to make the

weights correspond approximately to the proportion of calls of call-type k handled by agent i.

A rough estimate should suffice.

It is natural to consider an iterative simulation-optimization algorithm. We set pi,j,k at

some initial reasonable value for each triple (i, j, k), and then (i) optimize in the manner of

the next section to determine the priority-pair assignments and the full priority matrix P ,

and then (ii) simulate the contact center with that priority matrix P and the forecasted call

traffic. In the simulation, we observe the actual proportions of low-priority calls handled by

the agents. We then update the weights pi,j,k and repeat the steps above. We anticipate that

only a few iterations should be required to obtain reasonable weights pi,j,k, but that needs to

be verified.

As we go forward to consider the optimization to determine the priority-pair assignments

and the priority matrix P , we assume that the values vi,j,k have been determined.

5.3. Mathematical Programs

Given the specified staffing needs - the numbers nj,k of priority pair (j, k) needed - and the

values - vi,j,k for agent i being assigned priority pair (j, k), we can determine the agent priority-

pair assignments by solving a mathematical program, which in this case is an assignment

problem; e.g., see Chapter 7 of Bertsimas and Tsitsiklis (1997) or Chapter 8 of Hillier and

Lieberman (2001). An assignment problem can be solved by a special highly efficient linear

programming algorithm, such as the Hungarian algorithm. Fortunately, it automatically has

integer solutions.

Our approach to routing is similar to commonly applied applications of linear programs to

schedule agents in contact centers; see Segal (1974). The optimization problem here is actually

far easier, because we are concerned with a single staffing interval, not shifts throughout the

day, with constraints on breaks, etc.

We can specify the priority pairs the agents are assigned with decision variables xi,j,k. We

let xi,j,k = 1 if agent i is assigned priority-pair (j, k); we let xi,j,k = 0 if agent i is not assigned

priority-pair (j, k), where we understand that j 6= k. We will obtain decision variables with

xi,j,k = 1 for precisely one pair (j, k). Given the 0 − 1 decision variables xi,j,k, we can define

the priority matrix P by letting Pi,j = 2 and Pi,k = 1 if xi,j,k = 1.
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Here is the assignment problem:

Maximize Total Value =
n∑

i=1

m∑

j=1

m∑

k=1,k 6=j

vi,j,kxi,j,k (5.4)

over real-valued decision variables xi,j,k, subject to the constraints

m∑

j=1

m∑

k=1,k 6=j

xi,j,k = 1 for all i

n∑

i=1

xi,j,k = nj,k for all (j, k) with j 6= k .

xi,j,k ≥ 0 for all i, j and k . (5.5)

The linear program in (5.4) and (5.5) is not written directly in the form of an assignment

problem, but it is equivalent to an assignment problem. We can think of n agents and n

possible assignments, with the n assignments being an enumeration of the n specified priority

pairs (j, k), with the value of assigning agent i to job (agent pair) (j, k) being vi,j,k. We do not

need to constrain the decision variables xi,j,k in advance to be one of the integers 0 or 1. That

is implied by the first and third constraints, because this is an assignment problem.

However, we might want to consider alternative more complicated mathematical programs

with more flexibility. In particular, it might be advantageous to relax the equality constraints

and replace them by lower and upper bounds. For that purpose, we may introduce lower

and upper bounds nL
j and nU

j on the number of agents having primary skill j, and nL
j,k and

nU
j,k lower and upper bounds nL

j,k and nU
j,k on the number of agents having priority-pair (j, k).

The resulting mathematical program becomes an integer program, because the decision vari-

ables xi,j,k now must be forced to be integers. For background on integer programs, see the

mathematical programming books cited before and Wolsey (1998). Integer programs are sub-

stantially more difficult to solve than linear programs, which in turn tend to more difficult

than assignment problems. Fortunately, however, some modified mathematical programs can

still be solved by the network simplex method.

6. Preference-Based Routing

In this section we show how PBR can be implemented within the framework of indirect

VBR, but first we discuss the motivation for considering PBR. For additional discussion, see

Sisselman and Whitt (2005a, b) and Whitt (2005, 2006c).
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6.1. Performance Problems

Unfortunately, despite the complex systems supporting contact centers, and perhaps partly

because of those complex systems, the performance of contact centers frequently falls far short

of expectations. Contact centers often are not able to meet business objectives; e.g., see

Cleveland and Hash (2004). First and foremost, customers are often dissatisfied with their

contact-center experience. Even though there are elaborate WFM systems, contact centers

often are not staffed efficiently. Even though there is the capability of performing skill-based

routing, often the routing does not achieve the desired results. There often are too many agents

with some skills, but not enough agents with other skills, so that some agents are unproductive,

while others are overworked. Despite all the management-support systems, service levels and

other performance targets often are not met. As a consequence, some service requests are

handled adequately, but too many others are not. Moreover, costs often are higher than

expected, while revenues are lower. Despite all the sophistication, contact-center performance

frequently does not nearly reach its potential.

There are clear signs that contact centers are not achieving their desired goals. There is also

strong evidence that it is currently difficult to maintain an energized, effective workforce; e.g.,

see Deery and Kinnie (2004) and Holtgrewe et al. (2002). Indeed, there is strong evidence of

agent job dissatisfaction, based on frequent reports of four telling conditions: (i) high turnover

or churn, (ii) chronic absenteeism, (iii) frequent deviation from work schedules, and (iv) agent

fatigue toward the end of the day.

Indeed, many contact centers report agent-retention problems, expressed as high churn;

see Gans et al. (2003) and Batt et al. (2005). There are significant costs associated with

high turnover, which are often not fully appreciated; see Bliss (2004). When considering the

costs of employee turnover, it is natural to classify the costs, dividing them into two types: (i)

transition costs and (ii) productivity costs.

Transition costs account for the per-agent cost of terminating the departing agent, recruit-

ing and training the new agent to replace the departing one, and disruption costs associated

with the change, such as the cost of hiring a temporary employee, and the costs of managers

coping with the change, such as the cost of performing exit interviews, the administrative cost

of stopping benefit deductions and starting benefit enrollments, and so forth.

Since new agents typically must undergo a significant start-up learning period in order to

perform effectively, high turnover also tends to produce significant productivity costs. High
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turnover implies that too many agents are in the start-up learning period. More importantly,

however, high turnover strongly indicates that many agents are dissatisfied with their job, and

that job dissatisfaction is likely to make the agent a less effective worker; see Batt (2002).

(Whitt (2006c) develops models to help analyze the productivity benefits of increased reten-

tion.)

6.2. Root Causes

When these agent-performance problems are discussed by contact-center management, we

often hear direct or indirect criticism of the agents. The agents are criticized for their poor work

ethic. We hear management express their frustration. They complain that their employees

are not motivated and do not work efficiently. Frequently, the management response is to put

even greater pressure on the agents. For example, in an attempt to achieve better adherence to

work schedules, contact-center management might adopt a pervasive call monitoring system,

recording every call.

However, we believe that such responses may be a mistake. To put the issue in perspective,

it is helpful to recall the long history of the quality movement in manufacturing, led by such

pioneers as W. Edwards Deming and Joseph M. Juran; see Deming (2000) and Juran and

Godfrey (1999). Similar failures in manufacturing were blamed on inadequacies of the workers,

but experience and statistical evidence showed that the key to improved performance is usually

improved processes. That is highlighted by the 85/15 rule of Deming and Juran, which says

that at least 85% of the problems are system problems, while less than 15% of the problems

are due to the workers.

It is important to recognize that the fundamental problem in contact centers may be

with contact-center processes, not the agents themselves. The easily measurable quantities

- turnover, absenteeism, schedule deviation and fatigue - are all indications that agents are

dissatisfied with their job. Indeed, research studies show that contact-center agents frequently

do not have a sense of wellbeing in the workplace; see Holman (2002, 2003) and Witt et al.

(2004). When agents are required to respond to telephone calls by carefully following prepared

scripts, the agents inevitably feel a loss of control, a lack of autonomy. When contact-center

management adopts a pervasive monitoring system, recording every call, the agents inevitably

experience anxiety and stress; see Witt et al. (2004).
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6.3. Empowering the Agents

Indeed, it is widely recognized that agent job dissatisfaction is a serious contact-center

problem. The importance of agent motivation and compensation is frequently emphasized; see

Cleveland and Hash (2004). Others have said that contact-center managers need to empower

the agents; e.g., see Spraetz (2004). However, the traditional responses may not be enough.

Radical changes may be needed.

In this paper we aim to contribute to significant work redesign in contact centers. Our the-

sis is that, in many circumstances, contact-center performance can be improved by enhancing

agent participation. That follows the general management principle that employee participa-

tion in decision making and problem solving usually improves the quality of work; again see

Deming (2000) and Juran and Godfrey (1999); also see Hackman and Oldham (1976) and

Karasek and Theorell (1990)

Thus we seek to empower the agents. We suggest considering structural changes in the

way contact centers operate. Clearly, call routing is a major decision process in contact cen-

ters. We aim to improve agent participation by dynamically soliciting and responding to agent

preferences about call handling. We thus propose going beyond skill-based routing to achieve

preference-based routing. In addition to responding to calls promptly and properly, we in-

crease agent satisfaction from the contact experience, and hopefully thereby increase customer

satisfaction as well.

However, in this paper we do not attempt to prove our hypothesis about PBR; we do not

try to demonstrate that PBR can actually empower contact center agents. And we do not

claim that other factors may empower contact center agents even more than PBR. We leave

that for future work and actual implementation. Instead, here we confine ourselves to showing

how PBR can be deployed within existing routing algorithms in ACD’s, without sacrificing

traditional contact center performance. We do that by expressing PBR as a form of Indirect

VBR, for which we have already made the case.

6.4. Expressing PBR as a Form of Indirect VBR

Following current practice, it is natural to assume that management assigns both the

values and the additional constraining parameters (the staffing constraints in the mathematical

programs). However, we obtain PBR instead if we let the agents participate in assigning the

values vi,j , leaving management to assign the additional constraining parameters. We might

even let the values be assigned entirely by the agents.
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We envision the agents expressing their call-handling preferences in real time through tool-

bars on their computer screens. The call routing would then be updated every half hour, in

the manner described above, but it might be possible to allow even more rapid management

response (which we do not discuss here). The agent values might simply represent their prefer-

ences for handling different call types, but agent values could also be generated in other ways.

Expressed agent values might represent their personal assessment of their ability to handle

different types of calls. Alternatively, agent values might be determined indirectly via agent

bids in an interactive game, allowing dynamic interactions with management. A routing game

would allow management to offer incentives, and agents to win rewards such as “loyalty points”

for their bids and call handling.

Here we assume that agent values have been expressed, and we are concerned with how

to make those values affect call routing. We first propose possible methods for modifying

the values before applying the mathematical program. We propose value-determination using

input from both management and the agents. We could let the values be directly specified

by the agents, but in many cases it will be desirable to compromise between management

priorities and agent preferences, as expressed via their separate value functions. It may not be

enough to let management specify the additional constraining parameters.

Thus we show how we can combine management-specified values vm
i,j with associated agent-

specified values va
i,j in order to obtain composite values vc

i,j . To do so, we define a function

mapping the pair of functions (vm, va) into the single function vc. A simple specific way to do

that is via the product mapping, yielding the value product:

vc
i,j = va

i,j · vm
i,j for all i, j . (6.1)

In addition, we provide management with controls to continually adjust between these

three kinds of values. Management can choose weights wm
i,j , wa

i,j and wc
i,j , which in generally

we allow to depend on the agent i and the call type j, with the property that, for each pair

(i, j), wm
i,j ≥ 0, wa

i,j ≥ 0, wc
i,j ≥ 0 and wm

i,j + wa
i,j + wc

i,j = 1. Then the final weighted values are

vw
i,j = wm

i,j · vm
i,j + wa

i,j · va
i,j + wc

i,j · vc
i,j . (6.2)

Clearly, PBR does not guarantee that management is able to respond to all agent work

preferences. Some agents will have their preferences met by the assignments much better

than others. That should be acknowledged to agents. Further measures should be provided

to ensure fairness over time. Furthermore, if management exercises control with too much
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force, then the priority assignment may not reflect agent preferences well. To benefit from

this scheme, we need strong agent preferences, with adequate variation in preferences among

all available agents, and the flexibility to respond to those preferences. It would be better

if management did not have conflicting values, but we provided a framework to cope with

possible value conflicts. The flexible controls allow management to place more weight on agent

values over time as the agent demonstrates good performance. In that way, the agent can

acquire earned empowerment, as is being investigated by Bamberger and Borin (2005).

6.5. Additional Value Structure

For implementation, we still need additional structure. We show one that might be pro-

vided. As before, we start with n agents responding to m types of calls. We assume that

management determines its values vm
i,j for all nm pairs (i, j), assuming that they each take

one of the four values in the set {0, 1, 2, 3}. Management then communicates these values

along with appropriate incentives to the agents. In response, agent i for each i individually

determines his values va
i,j for each call type j, again assuming that they take one of the four

values in the same set {0, 1, 2, 3}. By design, we use a symmetric structure. We then use the

product function in (6.1) to form composite values vc
i,j , which necessarily take one of the seven

values in the set {0, 1, 2, 3, 4, 6, 9}. For the weighted value function in (6.2), we assume that

wc = 1, so that vw = vc; i.e., we work directly with the composite value function.

6.6. A Small Example

We implemented a prototype of PBR, using Excel Solver to solve the linear program; see

Whitt (2005d). We describe a typical small example that we considered. For that example,

there are n = 10 agents and m = 8 call types.

We classify calls by considering two variables: language and purpose. For each of these

variables, we consider two variable types: (E)nglish and (F)rench for language, and (T)echnical

and (S)ervice for purpose. That leads to 2 × 2 = 4 call types: ET , ES, FT and FS. That

in turn leads to 4 × 3 = 12 possible priority pairs, of which we considered 8, as depicted in

Table 1. In Table 1 we also display assumed numbers nj,k of required agent assignments for

priority-pair (j, k).

We then assigned real-valued values ranging from 1 to 3 for each agent handling each

call type. We then applied (5.3) with pi,j,k = 0.3 to obtain corresponding values for the

priority pairs. Finally, we applied Solver to determine the optimal assignment satisfying all
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Table 1: The eight priority pairs with the required numbers of each.

Priority Pair j Primary skill Secondary skill Required Number
1 = (1, 2) ET ES 2
2 = (1, 3) ET FT 1
3 = (2, 1) ES ET 1
4 = (2, 4) ES FS 1
5 = (3, 1) FT ET 1
6 = (3, 4) FT FS 1
7 = (4, 2) FS ES 2
8 = (4, 3) FS FT 1

the constraints. This small linear programming problem has 98 decision variables xi,j . For this

small example, Excel Solver found an optimal (all-integer) solution in 80 iterations, virtually

instantaneously, in less than a second. By comparing the optimal solutions with minimum and

maximum objective functions, we can see the range of possible total values that we can achieve.

Clearly, depending on the way values are assigned, the optimization may provide more or less

value benefit. In favorable circumstances, there is significant benefit.

6.7. Alternative Constraints

In this section we discuss alternative constraints for the linear program. It is significant

that, even though we lose the structure of the assignment problem, many of these revised

formulations are linear programs solvable by the network-simplex algorithm; see Chapter 7 of

Bertsimas and Tsitsiklis (1997) and Chapter 9 of Hillier and Lieberman (2003).

We first modified the simple example in Section 6.6 to set equality constraints only for

the numbers of agents with each primary skill. This linear program is easily solved too,

but sometimes the solutions are inappropriate, having insufficient sharing. To do better, we

imposed lower-bound constraints on the priority-pair assignments. In particular, we imposed

four lower bounds to enforce a minimum amount of chaining, as discussed at the end of Section

5.1. We want to establish the sharing chain:

ET → ES → FS → FT → ET ; (6.3)

i.e., some agents with primary skill ET will have secondary skill ES; some agents with primary

skill ES will have secondary skill FS; some agents with primary skill FS will have secondary

skill FT ; and some agents with primary skill FT will have secondary skill ET . That will

establish a full sharing chain throughout the four primary-skill agent pools.

The chaining structure ensures that there is sharing across the entire contact center, even
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if indirectly. To appreciate the benefit of chaining, it is useful to consider a non-chaining

alternative. Instead of the sharing graph in (6.3), we might have the sharing graph

ET ↔ ES FS ↔ FT . (6.4)

In (6.4), ES is the only secondary skill for an agent with primary skill ET , while ET is the

only secondary skill for an agent with primary skill ES. Similarly, FS is the only secondary

skill for an agent with primary skill FT , while FT is the only secondary skill for an agent

with primary skill FS. It is as if all agents could only speak a single language. With the

sharing structure in (6.4), the English-speaking agents and the French-speaking agents act as

two separate contact centers, and the overall efficiency is reduced. There is sharing within

each of these two groups, but not between them. This sharing scheme without full chaining

is less efficient. For a given number of agents, the performance will be worse. For specified

performance targets, more agents will be required.

To guarantee sufficient chaining, we place lower bounds b1, b2, b3, and b4, respectively, on the

priority pairs (ET,ES), (ES, FS), (FS, FT ), and (FT, ET ). Of course, these lower bounds

must be less than the numbers of agents with that primary skill; otherwise the constraints

would be infeasible. But we do not insist that all agents necessarily share according to this

scheme; otherwise there would be only 4 allowed priority-pair assignments. We use the bounds

to ensure that there is sufficient sharing in a chaining structure, but we allow some slack to

achieve a higher reward (and thereby better respond to agent preferences).

For the example in Section 6.6, we assumed that the numbers of agents with primary skills

ET , ES, FS and FT are, respectively, 3, 2, 3 and 2. With those numbers, we let the 4 lower

bounds be b1 = 2, b2 = 1, b3 = 2 and b4 = 1. That allows one agent with each primary skill to

have a different secondary skill.

Having made this generalization, linear programming still applies. For larger problems, it is

important that the network simplex method applies to networks with lower bound constraints

added to the arcs. That is the case, as discussed on p. 432 of Hillier and Lieberman (2001).

7. Conclusions

We have shown how to go beyond traditional skill-based routing (SBR) in contact centers to

obtain value-based routing (VBR), which aims to assign calls to agents to achieve the maximum

expected value, subject to constraints ensuring that traditional congestion constraints are still

met. Expected value might represent expected revenue or the likelihood of first-call resolution.
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Value might also reflect satisfying agent call-handling preferences. Indeed, there might be

some composite value that reflects all these factors, but the main focus here is on ensuring

that traditional congestion constraints are still met.

To accomplish that goal, we proposed indirect VBR. In Sections 3 and 5 we developed

indirect VBR in the context of an existing SBR algorithm – a static-priority routing algo-

rithm based on highly-structured priority matrices, as in Wallace and Whitt (2005). We used

mathematical programming to convert the values into an appropriate priority matrix to use

for call routing over a single staffing interval. Relatively large mathematical programs can be

solved efficiently, because they they often have the structure of an assignment problem or a

network flow problem. We took a conservative approach, guaranteeing that traditional con-

straints constraints are still met, provided that staffing has been determined appropriately. For

a specific staffing algorithm, we drew upon Wallace and Whitt (2005). With this approach, we

can apply existing SBR algorithms, without having to alter the ACD. To provide motivation

for our mathematical-programming approach, in Section 4 we showed that a naive direct VBR

algorithm can perform poorly.

In Section 6 we advocated a new strategy to empower contact-center agents via preference-

based routing (PBR). We want agents to be able to participate more fully in contact-center

decisions, and thereby experience more job satisfaction, which is intended to reduce agent

turnover and absenteeism. Our intention is that PBR be used in conjunction with other

management actions, such as providing better compensation and better career paths.

While we have not proven that PBR actually will improve agent job satisfaction, we have

demonstrated that PBR can be implemented without sacrificing traditional contact center

performance. It remains to explore the benefits of PBR. We are encouraged by preliminary

laboratory experiments conducted by industrial psychologists Bamberger and Borin (2005), in

which subjects act as agents responding to email service requests, indicating that PBR can

indeed improve agent job satisfaction, but clearly more research and field testing are needed.
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