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Abstract. Queueing applications are often complicated by dependence among interar-
rival times and service times. Such dependence is common in networks of queues, where
arrivals are departures from other queues or superpositions of such complicated pro-
cesses, especially when there are multiple customer classes with class-dependent service-
time distributions. We show that the robust queueing approach for single-server queues
proposed in the literature can be extended to yield improved steady-state performance
approximations in the standard stochastic setting that includes dependence among inter-
arrival times and service times.We propose a new functional robust queueing formulation
for the steady-state workload that is exact for the steady-state mean in the M/GI/1 model
and is asymptotically correct in both heavy traffic and light traffic. Simulation experiments
show that it is effective more generally.
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1. Introduction
Robust optimization is proving to be a useful approach
to complex optimization problems involving signifi-
cant uncertainty; e.g., see Bandi and Bertsimas (2012),
Bertsimas et al. (2011), and references therein. In that
context, the primary goal is to create an efficient algo-
rithm to produce useful, practical solutions that appro-
priately capture the essential features of the uncer-
tainty. Bandi et al. (2015) have applied this approach
to create a robust queueing (RQ) theory, which can
be used to generate performance predictions in com-
plex queueing systems, including networks of queues
as well as single queues. Indeed, they construct a full
robust queueing analyzer (RQNA) to develop rela-
tively simple performance descriptions such as those in
the queueing network analyzer (QNA) in Whitt (1983).
Our goal in this paper is to make further progress

in the same direction. We do so by introducing new
RQ formulations and evaluating their performance.We
too want to obtain useful performance descriptions for
complex queueing networks, but here we only con-
sider a single queue. We judge our RQ formulations by
their ability to efficiently generate useful performance
approximations for the given stochastic model, which
so far has been mostly intractable.

As emphasized in Bandi and Bertsimas (2012), the
intractability is usually due to high dimension, but
high dimensionality can occur in many different ways.

The RQ in Bandi et al. (2015) emphasizes the high
dimension arising when we consider a network of
queues instead of a single queue. Instead, in this paper
we focus on the high dimension that occurs in a sin-
gle queue when there is complex stochastic depen-
dence over time in the arrival and service processes.
In a sequel, Whitt and You (2016), we focus on the
high dimension that occurs in a single queue when the
deterministic arrival-rate function is time varying. For
both problems, we find that the robust optimization
approach is remarkably effective. Here, we show that,
with an appropriate choice of parameters, all our new
RQ solutions are asymptotically correct in the heavy-
traffic limit. Our most promising new RQ solutions
in (18) and (28) are asymptotically correct in both light
traffic and heavy traffic. Our simulation experiments
show that the newRQ solutions provide useful approx-
imations more generally.

1.1. Dependence Among Interarrival Times and
Service Times

Even thoughwe only focus on one single-server queue,
ultimately we also want to develop methods that apply
to complex networks of queues. We view the present
paper as an important step in that direction, because
experience from applications of QNA has shown that a
major shortcoming is its inability to adequately capture
the dependence among interarrival times and service
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Figure 1. Common Queueing Network Structure That Can Induce Dependence Among Interarrival Times: Superpositions of
Arrival Processes (Top) and Flow Through a Series of Queues (Bottom)
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times at the individual queues in the network. That
was dramatically illustrated by comparisons of QNA to
model simulations in Sriram andWhitt (1986), Fendick
et al. (1989), and Suresh and Whitt (1990).
Dependence among successive interarrival times at

a queue is a common phenomenon, usually because
that queue is actually part of a network of queues.
For example, arrival processes in queueing networks
are often superpositions of other arrival processes or
departure processes from other queues, as depicted in
Figure 1.

In most manufacturing production lines, an exter-
nal (or initial) arrival process is often far less variable
than a Poisson process by design, while complicated
processing operations, such as those involving batch-
ing, often produce complicated dependence among the
interarrival times at subsequent queues; e.g., see the
example in section 3 of Segal and Whitt (1989). In both
manufacturing and communication systems, depen-
dence among successive interarrival times and among
successive interdeparture times at a queue often occurs
because there are multiple classes of customers with
different characteristics (e.g., Bitran and Tirupati 1988).
Multiple classes can even cause significant dependence
(i) among interarrival times, (ii) among service times,
and (iii) between interarrival times and service times,
which all can contribute to a major impact on perfor-
mance, as shown by Fendick et al. (1989) and reviewed
in section 9.6 of Whitt (2002).

In service systems, an external customer arrival
process often is well modeled by a Poisson process,
because it is generated by many separate people mak-
ing decisions independently, at least approximately,
but dependence may be induced by overdispersion;
e.g., see Kim and Whitt (2014) and references there. By
contrast, internal arrivals within a network of queues
are less likely to be well approximated by a Poisson
process, because the flow through queues disrupts the
statistical regularity of a Poisson process. In particular,
service-time distributions are often not nearly expo-
nential, while the interdeparture times in steady state
from an M/GI/1 queue, with GI meaning that the ser-
vice times are independent and identically distributed
(i.i.d.), are themselves i.i.d. only if the service-time dis-
tribution is exponential, in which case the departure

process is again Poisson. In other words, there are no
nondeterministic non-Poisson renewal departure pro-
cesses from an M/GI/1 queue; e.g., see Disney and
Konig (1985).

The dependence among interarrival times and ser-
vice times has long been recognized as a major
difficulty in developing effective approximations for
open queueing networks, such as in QNA in Whitt
(1983); e.g., see Whitt (1995) and references therein.
Refined performance approximations have been pro-
posed using second-order partial characterizations of
dependence, using indices of dispersion (variance-time
functions), which involve correlations among interar-
rival times as well as means and variances; e.g., see Cox
and Lewis (1966), Heffes (1980), Heffes and Luantoni
(1986), Sriram and Whitt (1986), Fendick et al. (1989,
1991), and Fendick and Whitt (1989). Our new RQ for-
mulations will exploit these same partial characteriza-
tions of the dependence among interarrival times and
service times; see Sections 3.3 and 4. Even though we
only consider a single queue here, in Section 6we intro-
duce a new framework in which we hope to develop a
full RQNA based on the results in this paper.

1.2. Main Contributions
1. In this paper, we introduce several new RQ for-

mulations for the steady-state waiting time and work-
load in a single-server queue, and we make useful
connections to the general stationary G/G/1 stochas-
tic model and the GI/GI/1 special case. In particular,
we show how to choose the RQ parameters so that
these RQ solutions all are asymptotically exact for the
steady-state mean in the heavy-traffic limit.

2. In addition to new parametric versions of RQ as in
Bandi et al. (2015), we introduce new functional formu-
lations that capture the impact of dependence among
the interarrival times and service times over time upon
the steady-state performance of the queue as a function
of the traffic intensity ρ. (See the uncertainty sets in (9)
and (15).)

3. We evidently introduce the first RQ formulations
for the continuous-time workload process and show
that it is advantageous to do so. We show how to
choose the RQ parameters so that the solution of the
functional RQ for the workload coincides with the
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steady-state mean in the M/GI/1 model for all traffic
intensities and is simultaneously asymptotically cor-
rect in both heavy traffic and light traffic for the general
G/G/1 model, including the dependence.
4. We conduct simulation experiments showing that

the new functional RQ for the workload is effective
in exposing the impact of the dependence among the
interarrival times and service times over time upon the
mean steady-state workload as a function of the traffic
intensity.

5. We provide a road map for the application to net-
works of queues by introducing a new framework for
an RQNAbased on indices of dispersion.We show that
such an RQNA is feasible and provide support with a
simulation comparison for a series queue network.

1.3. More Related Literature
Mamani et al. (2016) also incorporated dependence
within a robust optimization formulation for a problem
in inventory management (which we might call RI),
but otherwise, there is relatively little overlap with
this paper; we discuss the connection in Remark 4.
Mamani et al. (2016) point to early RI work by Scarf
(1958) and thenMoon and Gallego (1994). The new RQ
work is also related to Whitt (1984a), which used opti-
mization to study performance approximations used
in QNA. In particular, Whitt (1984a) studied the range
of possible values for the mean steady-state num-
ber in a GI/M/1 queue subject to specified first and
second moments of the interarrival-time distribution.
Klincewicz and Whitt (1984) and Whitt (1984b) con-
struct tighter bounds based on additional constraints to
enforce a realistic shape on the underlying interarrival-
time distribution. This work showed that we can hope
to obtain useful accuracy such as 20% relative error,
but that we cannot hope to obtain extraordinarily high
accuracy, such as an only 5% error, given the usual par-
tial information based on the first two moments. And
that is not yet considering the dependence. Ignoring
the dependence can lead to much bigger errors, as in
Fendick et al. (1989) and section 9.6 of Whitt (2002).

1.4. Organization of the Paper
In Section 2, after reviewing RQ for the steady-state
waiting time in the single-server queue from sections 2
and 3.1 of Bandi et al. (2015), we develop an alter-
native formulation whose solution coincides with the
Kingman (1962) bound and is asymptotically correct in
heavy traffic. In Section 3 we introduce new parametric
and functional RQ formulations for the continuous-
timeworkload process and characterize their solutions.
In Section 4 we introduce the index of dispersion for
work (IDW) and incorporate it in the RQ. We develop
closed-form RQ solutions and show that the func-
tional RQ is asymptotically correct in both heavy and
light traffic. In Section 5 we conduct simulation exper-
iments for the two network structures in Figure 1.

These experiments demonstrate (i) the strong impact
of dependence upon performance and (ii) the value
of the new RQ in capturing the impact of that depen-
dence. Finally, in Section 6 we introduce a new frame-
work for applying the results in this paper to develop a
new RQNA that better captures the dependence. Addi-
tional supporting material appears in the e-companion
(EC)—in particular, (i) a short summary of the main
paper; (ii) additional discussion; (iii) additional theo-
retical support, including central limit theorems and
heavy-traffic limit theorems; (iv) more results for the
discrete-time waiting time and indices of dispersion;
and (v) more simulation examples.

2. Robust Queueing for the Steady-State
Waiting Time

We start by reviewing the RQ developed in sections 2
and 3.1 of Bandi et al. (2015), which involves sepa-
rate uncertainty sets for the arrival times and service
times. We then construct an alternative formulation
with a single uncertainty set and show, for the GI/GI/1
queue, that a natural version of the RQ solution coin-
cides with the Kingman (1962) bound and so is asymp-
totically correct in the heavy-traffic limit. We show that
both formulations provide insight into the relaxation
time for the GI/GI/1 queue, the approximate time
required to reach steady state.

We use the representation of thewaiting time (before
receiving service) in a general single-server queue
with unlimited waiting space and the first-come first-
served (FCFS) service discipline, without imposing any
stochastic assumptions. The waiting time of arrival n
satisfies the Lindley (1952) recursion

Wn � (Wn−1 +Vn−1 −Un−1)+

≡max{Wn−1 +Vn−1 −Un−1 , 0}, (1)

where Vn−1 is the service time of arrival n − 1, Un−1
is the interarrival time between arrivals n − 1 and n,
and ≡ denotes equality by definition. If we initialize
the system by having an arrival 0 finding an empty
system, then Wn can be represented as the maximum
of a sequence of partial sums, using the Loynes (1962)
reverse-time construction; i.e.,

Wn � Mn ≡max
06k6n

{Sk}, n > 1, (2)

using reverse-time indexing with Sk ≡X1 + · · ·+Xk and
Xk ≡ Vn−k − Un−k , 1 6 k 6 n, and S0 ≡ 0. (Bandi et al.
2015 actually look at the system time, which is the sum
of an arrival’s waiting time and service time. These
representations are essentially equivalent.)

If we extend the reverse-time construction indefi-
nitely into the past from a fixed present state, then Wn ↑
W ≡ supk>0 {Sk} with probability 1 as n→∞, allowing
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for the possibility that W might be infinite. For the sta-
ble stationary G/G/1 stochastic model with E[Uk]<∞,
E[Vk] <∞ and ρ ≡ E[Vk]/E[Uk] < 1, P(W <∞)� 1; e.g.,
see Loynes (1962) or section 6.2 of Sigman (1995).
Bandi et al. (2015) propose an RQ approximation

for the steady-state waiting time W by performing a
deterministic optimization in (2) subject to determinis-
tic constraints, where we can ignore the time reversal.
Treating the partial sums Sa

k of the interarrival times
Uk and the partial sums Ss

k of the service times Vk sep-
arately leads to the two uncertainty sets (for W):

Ua ≡ {Ũ ∈ �∞: Sa
k > kma − ba

√
k , k > 0} and

Us
� {Ṽ ∈ �∞: Ss

k 6 kms + bs

√
k , k > 0},

(3)

where Ũ ≡ {Uk : k > 1} and Ṽ ≡ {Vk : k > 1} are arbitrary
sequences of real numbers in �∞; Sa

k ≡U1 + · · ·+Uk and
Ss

k ≡ V1 + · · · + Vk , k > 1; S0 ≡ 0; and ma , ms , ba , and bs
are parameters to be specified. The constraints in (3)
are one-sided because that is what is required to bound
the waiting times above, as we can see from (1) and (2).
Thus, the RQ optimization can be expressed as

W ∗ ≡ sup
Ũ∈Ua

sup
Ṽ∈Us

sup
k>0
{Ss

k − Sa
k}, (4)

where Sa
k (Ss

k) is a function of Ũ (Ṽ) specified above.
Versions of this formulation in (4) and others in this
paper also apply to the transient waiting time Wn , but
we will focus on the steady-state waiting time.
Thinking of the general stationary G/G/1 stochas-

tic model, where the distributions of Uk and Vk are
independent of k (but stochastic independence is not
assumed), Bandi et al. (2015) assume that ma ≡ E[Uk]
and ms ≡ E[Vk] and assume that ma > ms , so that ρ ≡
ms/ma < 1. The square-root terms in the constraints
in (3) are motivated by the central limit theorem (CLT).
Thinking of the GI/GI/1 model in which the interar-
rival timesUk and service timesVk come from indepen-
dent sequences of i.i.d. random variables with finite
variances σ2

a and σ2
s , the CLT suggests that ba � βaσa and

bs � βsσs for some positive constants βa and βs , perhaps
with β� βa � βs .With this choice, these newparameters
measure the number of standard deviations away from
the mean in a Gaussian approximation. Bandi et al.
(2015) also provide an extension to cover the heavy-
tailed case, where finite variances might not exist; then√

k in (3) is replaced by k1/α for 0 < α 6 2, as we would
expect from sections 4.5, 8.5, and 9.7 of Whitt (2002),
but we will not discuss that extension here.
From (1), it is evident that the waiting times depend

on the service times and interarrival times only
through their difference Xn . Thus, instead of the two
uncertainty sets in (3), we propose the single uncer-
tainty set (for each n)

Ux ≡ {X̃ ∈ �∞: Sx
k 6 −mk + bx

√
k , k > 0}, (5)

where X̃ ≡ {Xk : k > 1} ∈ �∞, Sx
k ≡ X1 + · · · + Xk , k > 1,

and S0 ≡ 0, while m and bx are constant parameters to
be specified. To avoid excessively strong constraints for
small values of k, not justified by the CLT, we could
replace k in the constraint bounds on the right in (5) by
max {k , kL}, but that lower bound kL has no impact if
chosen appropriately. Combining (2) and (5), we obtain
the alternative RQ optimization

W ∗ ≡ sup
X̃∈Ux

sup
k>0
{Sx

k }, (6)

where Sx
k is the function of X̃ specified above. The RQ

formulations in (4) and (6) are attractive because the
optimization problems have simple solutions in which
all constraints are satisfied as equalities. That follows
easily from the fact that Wn is a nondecreasing (nonin-
creasing) function of Vk (of Uk) for all k and n. The sim-
ple closed-form solution follows from the triangular
structure of the equations; see section 3.1 of Bandi et al.
(2015). The following is a direct extension of theorem 2
of Bandi et al. (2015) to include the new RQ formula-
tion in (6). The final statement involves an interchange
of suprema, which is justified by Lemma EC.1.

Theorem 1 (RQ Solutions for the Steady-State Waiting
Time). The RQ optimizations (4) with ma > ms > 0 and (6)
with m > 0 have the solution

W ∗
� sup

k>0
{−mk + b

√
k} 6 sup

x>0
{−mx + b

√
x}

�−mx∗ + b
√

x∗ �
b2

4m
for x∗ �

b2

4m2 , (7)

where m � ma −ms > 0. For (4), b ≡ bs + ba; for (6), b ≡ bx .
In (7), W ∗ is maximized at one of the integers immediately
above or below x∗.

We now establish implications for the GI/GI/1 and
general stationary G/G/1 models. To discuss heavy-
traffic limits, it is convenient to introduce the traffic
intensity ρ as a scaling factor applied to the interar-
rival times. Hence, we start with a sequence {(Uk ,Vk)}
where E[Uk] � E[Vk] � 1 for all k. Then in model ρ we
let the interarrival times be ρ−1Uk , where 0 < ρ < 1.
Thus, ms � 1 and ma � ρ

−1, so that m ≡ (1 − ρ)/ρ and
W ∗ � b2ρ/4(1− ρ) in (7).
Since the CLT underlies the heavy-traffic limit theory

as well as the RQ formulation, it should not be sur-
prising that we can make strong connections to heavy-
traffic approximations. The new formulation in (6) is
attractive because, with a natural choice of the con-
stant bx there, it matches the Kingman (1962) bound
for the mean steady-state wait E[W] in the GI/GI/1
stochastic model and so is asymptotically correct in
heavy traffic, whereas that is not the case for (4) with a
natural choice of b. To quantify the variability indepen-
dent of the scale, let c2

s ≡Var(V1)/(E[V1])2 �Var(V1) and
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c2
a ≡Var(U1)/(E[U1])2 � ρ2Var(U1) be the squared coeffi-
cients of variation (scvs). Let ≈ denote approximately
equal, without any precise asymptotic meaning.

Corollary 1 (RQYields the KingmanBound for GI/GI/1).
In the setting of (6), if we let bx ≡ β

√
Var(X1) and β ≡

√
2,

then bx �
√

2(c2
s + ρ

−2c2
a) for the GI/GI/1 model with traffic

intensity ρ, so that

W ∗ ≡W ∗(ρ)� Var(X1)
2|E[X1]|

�
ρ(c2

s + ρ
−2c2

a)
2(1− ρ) , (8)

which is the upper bound for E[W] in Theorem 2 of King-
man (1962), so that (1 − ρ)W ∗(ρ) → (c2

a + c2
s )/2 as ρ ↑ 1,

which supports the heavy-traffic approximation W ∗(ρ) ≈
ρ(c2

a + c2
s )/2(1−ρ), just as for E[W] in the stochastic model.

On the other hand, in the setting of (4), if we let bs ≡
β
√
Var(V1) and ba ≡ β

√
Var(U1), then we obtain b � bs +

ba � β(cs + ρ
−1ca) instead of b �

√
b2

s + b2
a � β

√
c2

s + ρ
−2c2

a ,
as needed.

Remark 1 (The Significance for Approximations). The dif-
ference between the RQ solutions for (4) and (6) men-
tioned at the end of Corollary 1 can have serious impli-
cations for approximations; e.g., if c2

a � c2
s � x, then

(c2
a + c2

s )/2 � x, while (ca + cs)2/2 � 2x, a factor of 2
larger. Hence, if we apply (4) with ba � bs to the simple
M/M/1 queue, one is forced to have a 100% error in
heavy traffic. These two coincide onlywhen at least one
of ba and bs is 0 (i.e., in D/GI/1 or GI/D/1 models),
and the percentage error is the largest when service
times and arrival times have the same variability. For-
tunately, robust optimization has flexibility that makes
it possible to circumvent the difficulties in the form of
the optimization in (4). For example, Bandi et al. (2015)
use statistical regression in their section 7 to refine their
solution to (4). Of course, such refinements complicate
algorithms.

These RQ formulations provide insight into the rate
of approach to steady state for the GI/GI/1 model, as
captured by the relaxation time; see section III.7.3 of
Cohen (1982) and section XIII.2 of Asmussen (2003).
For RQ, steady state is achieved at a fixed time,whereas
in the stochastic model, steady state is approached
gradually, with the error |E[Wn]−E[W]| typically being
of order O(n−3/2e−n/r) as n→∞, where r ≡ r(ρ) is called
the relaxation time. As usual, we say f (t) is O(g(t)) as
t→∞, where f and g are positive real-valued func-
tions, if f (t)/g(t)→ c as t→∞, where 0 < c <∞.

Corollary 2 (Relaxation Time for the GI/GI/1 Queue).
With both (4) and (6), the place where the RQ supremum is
attained is x∗(ρ) � O((1− ρ)−2) as ρ ↑ 1, which is the same
order as the relaxation time in the GI/GI/1 model.

Remark 2 (A Functional RQ to Expose the Impact of
Dependence in the G/G/1 Model). The RQ problems

in (4) and (6) can be considered instances of a para-
metric RQ, because they depend on the stochastic
model only through a few parameters—in particular,
(ma ,ms , ba , bs) in (4) and (m , bx) in (6). We can expose
the impact of dependence among the interarrival times
and service times on the steady-state waiting time in
the general stationary G/G/1model as a function of the
traffic intensity ρ by introducing a new functional RQ
formulation. (With the G/G/1 model, we assume sta-
tionarity, so that there is awell-defined steady state, but
we allow dependence among the interarrival times and
service times.) To treat the G/G/1 model, we replace
the uncertainty set in (6) by

Ux
f ≡ {X̃: Sx

k 6 E[Sx
k ]+ b′x

√
Var(Sx

k ), k > 0}. (9)

and similarly for the two constraints in (4). For the
GI/GI/1 model, the new uncertainty set (9) is essen-
tially equivalent to the previous one in (5), but they
can be very different with dependence. It is significant
that there are CLTs to motivate the form of the con-
straints in (9), just as there are in the i.i.d. case under-
lying (5). These supporting CLTs are reviewed here in
Section EC.5. The CLT supports the spatial scaling by√
Var(Sk) instead of

√
k, as we show in Section EC.5.3.

Of course, the functional RQ produces a more compli-
cated optimization problem, but it is potentially more
useful, in part because it too can be analyzed. For
brevity, we discuss this functional RQ for the wait-
ing time in the EC because we will next develop such
a functional RQ formulation for the continuous-time
workload. As discovered in Fendick and Whitt (1989),
it is convenient to focus on the steady-state workload
when we want to expose the performance impact of
the dependence among interarrival times and service
times.

Remark 3 (Asymptotically Correct in Heavy Traffic for the
G/G/1 Model). In Section EC.6.2 we observe that Corol-
lary 1 can be extended, with the aid of Sections EC.5
and EC.6, to show that both the new parametric RQ
in (6) and the new functional RQ with uncertainty set
in (9) are asymptotically correct in heavy traffic for
the more general stationary G/G/1 model, where we
regard {(Uk ,Vk)} as a stationary sequence with the
same mean values, including E[Vk] � 1 and E[Uk] �
ρ−1 > 1 for all k. Now we must choose the param-
eter bx appropriately to account for the dependence
among the interarrival times and service times. Just
as before, that can be motivated by the CLT, but now
we need a CLT that accounts for the dependence, as
in theorem 4.4.1 and section 9.6 of Whitt (2002); see
Section EC.5.

Remark 4 (Connection to Mamani et al. 2016). At first
glance, the connection to Mamani et al. (2016) may not
be obvious, because we have introduced no explicit
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covariances, like what appears in uncertainty set (6) in
their section 2.5. The Lindley recursion in (1) here leads
directly to the expression for the steady-state waiting
time in terms of the partial sums Sk in (2), so it is
natural for us to focus on the variances Var(Sk). How-
ever, the variances Var(Sk) in our uncertainty set (9)
are variances of sums of random variables, which in-
cludes covariances of the summands X j when these
summands are not required to be independent. As
indicated above, our uncertainty sets are motivated
by CLTs, but CLTs without the usual independence
assumption. The second paragraph of section 2.5 in
Mamani et al. (2016) also mentions CLTs for depen-
dent random variables but seems to be suggesting that
the conditions are too restrictive to be useful. Unlike
Mamani et al. (2016), the CLT and the heavy-traffic the-
ory play a big role here to expose what properties of
the model have the greatest impact upon the queue
performance; see Section EC.5.

3. Robust Queueing for the
Continuous-Time Workload

We now develop RQ formulations for the continuous-
time workload in the single-server queue. We develop
both a parametric RQ paralleling (6) and a functional
RQ with an uncertainty set paralleling (9) in Remark 2.

The workload at time t is the amount of unfinished
work in the system at time t; it is also called the virtual
waiting time because it represents the waiting time a
hypothetical arrival would experience at time t. The
workload is more general than the virtual waiting time
because it applies to any work-conserving service dis-
cipline. We consider the workload primarily because it
can serve as a convenient, more tractable alternative to
the waiting time.
We start by developing a reverse-time representa-

tion of the workload process paralleling (2). Then we
develop both parametric and functional RQ formula-
tions and give their solutions, which closely parallels
Theorem 1. We then show that natural versions of both
RQ formulations for the workload are exact for the
M/GI/1 model and are asymptotically correct in both
light traffic and heavy traffic for the general stationary
G/G/1 model.

3.1. The Workload Process and Its Reverse-Time
Representation

As before, we start with a sequence {(Uk ,Vk)} of inter-
arrival times and service times. The arrival counting
process can be defined by

A(t) ≡max {k > 1: U1 + · · ·+Uk 6 t} for t >U1 (10)

and A(t) ≡ 0 for 06 t <U1, while the total input of work
over [0, t] and the net-input process are, respectively,

Y(t) ≡
A(t)∑
k�1

Vk and N(t) ≡ Y(t) − t , t > 0, (11)

while the workload (the remainingworkload) at time t,
starting empty at time 0, is the reflection map Ψ
applied to N ; i.e.,

Z(t)�Ψ(N)(t) ≡N(t) − inf
06s6t
{N(s)}, t > 0. (12)

As in section 6.3 of Sigman (1995), we again use a
reverse-time construction to represent the workload in
a single-server queue as a supremum, so that the RQ
optimization problem becomes a maximization over
constraints expressed in an uncertainty set, just as
before, but now it is a continuous optimization prob-
lem. Using the same notation, but with a new mean-
ing, let Z(t) be the workload at time 0 of a system
that started empty at time −t. Then Z(t) can be repre-
sented as

Z(t) ≡ sup
06s6t
{N(s)}, t > 0, (13)

where N is defined in terms of Y as before, but Y is
interpreted as the total work in service time to enter
over the interval [−s , 0]. That is achieved by letting
Vk be the kth service time indexed going backwards
from time 0 and A(s) counting the number of arrivals
in the interval [−s , 0]. Paralleling the waiting time in
Section 2, Z(t) increases monotonically to Z as t→∞.
For the stable stationary G/G/1 stochastic queue, Z
corresponds to the steady-state workload and satisfies
P(Z <∞)� 1; see section 6.3 of Sigman (1995).

3.2. Parametric and Functional RQ for the
Steady-State Workload

Just as in Section 2, to create appropriate RQ formu-
lations for the steady-state workload, it is helpful to
have a reference stochastic model, which can be the sta-
ble stationary G/G/1 model, where such a steady-state
workload is well defined. In discrete time, our formula-
tion can be developed by scaling the interarrival times,
assuming that E[Vk] � E[Uk] � 1 for all k for a base
stationary sequence {(Uk ,Vk)} and introducing ρ by
letting the interarrival times be ρ−1Uk when the traffic
intensity is ρ, 0 < ρ < 1. (That was done in Section 2,
right after Theorem 1.) Now, in continuous time, we do
essentially the same, but now we need to work with
continuous-time stationarity instead of discrete-time
stationarity; e.g., see Sigman (1995). Hence, we assume
that there is a base stationary process {(A(t),Y(t)):
t > 0} with E[A(t)] � E[Y(t)] � t for all t > 0 and intro-
duce ρ by simple scaling via

Aρ(t) ≡A(ρt) and Yρ(t) ≡ Y(ρt),
t > 0 and 0 < ρ < 1, (14)

which implies that E[Aρ(t)]�E[Yρ(t)]� ρt for all t > 0.
Then Nρ(t) ≡ Yρ(t) − t and Zρ(t) �Ψ(Yρ)(t), t > 0, just
as in (11) and (12). With the reverse-time construction,
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Zρ(t) can be expressed as a supremumover the interval
[0, t], just as in (13).
Within that scaling framework, the natural paramet-

ric and functional (see Remark 2) uncertainty sets for
the steady-state workload are, respectively,

U
p
ρ≡{Ñρ: �+→�: Ñρ(s)6−(1−ρ)s+bp

√
s , s>0} and

Uρ≡U
f
ρ≡

{
Ñρ: �+→�: Ñρ(s)6E[Nρ(s)]

+b f

√
Var(Nρ(s)), s>0

}
,

�
{

Ñρ: �+→�: Ñρ(s)6−(1−ρ)s
+b f

√
Var(Nρ(s)), s>0

}
,
(15)

where we regard Ñρ ≡ {Ñρ(s): 0 6 s 6 t} as an arbi-
trary real-valued function on �+ ≡ [0,∞), while we
regard {Nρ(s): s > 0} as the underlying stochastic pro-
cess and {Var(Nρ(s)): s > 0} � {Var(Yρ(s)): s > 0} as its
variance-time function, which can be either calculated
for a stochastic model or estimated from simulation
or system data; see Section 4.3. In (15), bp and b f are
parameters to be specified.

Remark 5 (Choosing the Parameters bp and b f ). The pa-
rameters bp and b f in (15) add a degree of freedom
in the algorithm, but some choices lead to asymptoti-
cally correct values of the steady-state mean workload,
while others do not. On the basis of Corollary 3 below,
we will let b �

√
2 after this section.

Paralleling Section 2, the associated parametric and
functional RQ formulations are ,

Z∗p , ρ ≡ sup
Ñρ∈U

p
ρ

sup
s>0
{Ñρ(t)},

Z∗ρ ≡ Z∗f , ρ ≡ sup
Ñρ∈U

f
ρ

sup
s>0
{Ñρ(t)}.

(16)

As in Section 2, our RQ formulations in (16) are moti-
vated by a CLT but here for Yρ(t) (which implies an
associated CLT for Nρ(t)), which we review in Sec-
tion EC.5; in particular, see (EC.14) and (EC.16). The
same reasoning as before yields the following analog
of Theorem 1. The proof can be found in Section EC.7.

Theorem 2 (RQSolutions for theWorkload).The solutions
of the RQ optimization problems in (16) are

Z∗p , ρ �−(1− ρ)x∗ + bp

√
x∗ �

b2
p

4|1− ρ |

for x∗ ≡ x∗(ρ)�
b2

p

4(1− ρ)2 (17)

and

Z∗ρ ≡ Z∗f , ρ � sup
s>0

{
− (1− ρ)s + b f

√
Var(Yρ(s))

}
. (18)

We immediately obtain the following corollary,
which states that the RQ formulation in (16) yields
the exact mean steady-state workload for the M/GI/1
model.

Corollary 3 (Exact for M/GI/1). For the M/GI/1 model,
the total input process {Yρ(t): t > 0} in (14) is a com-
pound Poisson process with E[Yρ(t)]� ρt and Var(Yρ(t))�
ρt(c2

s + 1), so that Z∗f , ρ � Z∗p , ρ if b2
p � b2

f ρ(c2
s + c2

a). If, in
addition, b f ≡

√
2, then

Z∗p , ρ � Z∗f , ρ �
ρ(c2

s + c2
a)

2(1− ρ) � E[Zρ], (19)

where E[Zρ] is the mean steady-state workload in the
M/GI/1 model with traffic intensity ρ.

This corollary suggests a natural choice of b f in (15).
From now on, we assume that b f �

√
2 unless otherwise

stated.

3.3. The Variance-Time Function for the
Total Input Process

For further progress, we focus on the variance-time
function Var(Yρ(t)) in (18). As regularity conditions for
Y(t), we assume that V(t) ≡ Vρ(t) ≡ Var(Yρ(t)) is dif-
ferentiable with derivative ÛV(t) having finite positive
limits as t→∞ and t→ 0; i.e.,

ÛV(t)→ σ2
Y as t→∞ and

ÛV(t)→ ÛV(0) > 0 as t→ 0
(20)

for an appropriate constant σ2
Y . These assumptions are

known to be reasonable; see section 4.5 of Cox and
Lewis (1966), Fendick andWhitt (1989), and Section 4.3.

A common case in models for applications is to have
positive dependence in the input process Y, which
holds if

Cov(Y(t2) −Y(t1),Y(t4) −Y(t3)) > 0
for all 0 6 t1 < t2 6 t3 < t4. (21)

Negative dependence holds if the inequality is re-
versed. These are strict if the inequality is a strict
inequality. From (17) and (18) of section 4.5 in Cox
and Lewis (1966), which is restated in (48) and (49)
of Fendick and Whitt (1989), with positive (negative)
dependence, under appropriate regularity conditions,
ÛV(t) > 0 and ÜV(t) > (6)0.
Remark 6 (Example of Negative Dependence).Negative
dependence in Y occurs if greater input in one inter-
val tends to imply less input in another interval. Such
negative dependence occurs when there is a specified
number of arrivals in a long time interval, as in the
∆(i)/GI/1 model, where the arrival times (not interar-
rival times) are i.i.d. over an interval; see Honnappa
et al. (2015). This phenomenon can also occur in
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queues with arrivals by appointment, where there
are i.i.d. deviations about deterministic appointment
times; e.g., see Kim et al. (2017).

Theorem 3 (RQ Exposing the Impact of the Depen-
dence). Consider the functional RQ optimization for the
steady-state workload in the general stationary G/G/1 queue
with ρ < 1 formulated in (16) and solved in (18). Assume
that (20) holds for the variance-time function V(t) ≡Vρ(t) ≡
Var(Yρ(t)).
(a) For each ρ, 0 < ρ < 1, there exists (possibly not

unique) x∗ ≡ x∗(ρ), such that a finite maximum is attained
at x∗ for all t > x∗. In addition, 0 < x∗ <∞ and x∗ satisfies
the equation

(1− ρ)� Ûh(x), where h(x) ≡ b′z
√

V(x). (22)

The time x∗ is unique if h(x) is strictly concave or
strictly convex—i.e., if Ûh(x) is strictly increasing or strictly
decreasing.
(b) If there is positive (negative) dependence, as in (21)

(with sign reversed), the variance function V(x) is convex
(concave), so that the function h(x) ≡

√
V(x) is concave.

Moreover, a strict inequality is inherited. Thus, there exists
a unique solution to the RQ if there is strict positive depen-
dence or strict negative dependence. Moreover, the optimal
time x∗(ρ) is strictly increasing in ρ, approaching 1 as ρ ↑1,
so that Z∗ρ→ ÛV(∞)� Iw(∞)� σ2

Y as ρ ↑ 1.

Proof. The inequalities can be satisfied as equalities
just as before. There are finite values s0 such that√

V(s)6
√

2σ2
Y s for all s > s0 by virtue of the limit in (20).

(Also see (EC.1) and (EC.12).) That shows that the opti-
mization can be regarded as being over closed bounded
intervals. The assumed differentiability of V implies
that it is continuous, which implies that the supremum
is attained over the compact interval. Because ÛV(x) →
ÛV(0) > 0, we see that there exists a small s′ such that

−(1− ρ)s + b′z
√

V(s) > −(1− ρ)s + b′z
√

s ÛV(0)/2 > 0
for all s 6 s′.

As a consequence, themaximum in (18)must be strictly
positive andmust be attained at a strictly positive time.
The results for

√
V(x) with positive dependence fol-

low from convexity properties of compositions. First,
with positive dependence, −

√
V(x) is a convex func-

tion of an increasing convex function and thus convex
so that

√
V(x) is concave. Second, with negative depen-

dence, we have V > 0, ÛV(t) > 0 and ÜV(t) 6 (6)0. Thus,
by direct differentiation,

Üh(x)� 1√
V(x)

( ÜV(x)
2 −

ÛV(x)
4V(x)

)
6 0,

with strictness implying a strict inequality. �

4. The Indices of Dispersion for
Counts and Work

The workload process is convenient not only because
it leads to the continuous RQ optimization problem
in (16) with a solution in (18) but also because thework-
load process scales with ρ in a more elementary way
than the waiting times, as indicated in (14). By con-
trast, the scaling of the waiting times (specified in the
first paragraph after Theorem 1) is more complicated
because the interarrival times are scaled with ρ but the
service times are not.

It is also convenient to relate the variances of the
arrival counting process A(s) and the cumulative
work input process Y(s) to associated continuous-time
indices of dispersion, studied in Fendick and Whitt
(1989) and Fendick et al. (1991). We define the index
of dispersion for counts (IDC) associated with the rate-1
arrival process A as in section 4.5 of Cox and Lewis
(1966) by

Ia(t) ≡
Var(A(t))
E[A(t)] �

Var(A(t))
t

, t > 0 (23)

and the index of dispersion for work (IDW) associated
with the rate 1 cumulative input process Y by

Iw(t) ≡
Var(Y(t))

E[V1]E[Y(t)]
�

V(t)
t
, t > 0. (24)

Clearly, these indices of dispersion are just scaled ver-
sions of the associated variance functions, but they are
important for understanding because they expose the
variability over time, independent of the scale. The rea-
son for using these indices of dispersion is just like
the reason for using the scvs (introduced before Corol-
lary 1) instead of the variances. More generally, this
is consistent with the well-established practice of care-
fully focusing on units in physics and engineering.

Fendick and Whitt (1989) show that the IDW Iw is
intimately related to a scaled mean workload c2

Z(ρ),
which can be defined by comparing to what it would
be in the associated M/D/1 model; i.e.,

c2
Z(ρ) ≡

E[Zρ]
E[Zρ; M/D/1] �

2(1− ρ)E[Zρ]
E[V1]ρ

�
2(1− ρ)E[Zρ]

ρ
. (25)

The normalization in (25) exposes the impact of vari-
ability separately from the traffic intensity. Hence, it
should not be surprising that c2

Z(ρ) should be related
to the IDW. Indeed, under regularity conditions (see
Section EC.5.5), the following finite positive limits exist
and are equal:

lim
t→∞
{Iw(t)} ≡ Iw(∞)� σ2

Y � c2
Z(1)≡ lim

ρ→1
{c2

Z(ρ)}, and

lim
t→0
{Iw(t)} ≡ Iw(0)�1+ c2

s � c2
Z(0)≡ lim

ρ→0
{c2

Z(ρ)}
(26)
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for c2
s ≡Var(V1)/E[V1]2 and c2

Y in (20) and (EC.7). The
limits for Iw above and the differentiability of Iw follow
from the assumed differentiability for V(t) and limits
in (20). For t→0 and ρ→0, see section IV.A of Fendick
and Whitt (1989).
The challenge is to relate c2

Z(ρ) to the IDW Iw(t) for
0< ρ < 1 and t > 0. As observed by Fendick and Whitt
(1989), a simple connection would be c2

Z(ρ) ≈ Iw(tρ)
for some increasing function tρ, reflecting that the im-
pact of the dependence among the interarrival times
and service times has impact on the performance of a
queue over some time interval [0, tρ], where tρ should
increase as ρ increases. The extreme cases are sup-
ported by (26), but we want more information about
the cases in between.

4.1. Robust Queueing with the IDW
To obtain more information, RQ can help. As a first
step, we express the solution in (18) as

Z∗ρ � sup
s>0

{
−(1−ρ)s + b f

√
Var(Yρ(s))

}
� sup

s>0

{
−(1−ρ)s + b f

√
ρsIw(ρs)

}
, (27)

using (24). Making the change of variables x ≡ ρs, we
can write

Z∗ρ � sup
x>0

{
−(1−ρ)x/ρ+ b f

√
xIw(x)

}
. (28)

Clearly, from an algorithmic perspective, (28) is essen-
tially the same as (18) and (27), but (28) is helpful
for developing approximations and insights, includ-
ing supporting theory. Our algorithm will exploit the
one-dimensional optimization problem in (28), which
is easy to solve given the IDW Iw(x). We will discuss
methods of estimating and calculating IDW in Sec-
tions 4.3 and 6.
To further relate the RQ solution in (28) to the steady-

state workload in the G/G/1 queue, we define an RQ
analog of the normalized mean workload in (25)—in
particular,

c2
Z∗(ρ)≡

2(1−ρ)Z∗ρ
ρ

. (29)

The RQ approach allows us to establish versions of the
variability fixed-point equation suggested in (9), (15),
and (127) of Fendick and Whitt (1989).

Theorem 4 (Restatement of Theorem 2 in Terms of the
IDW). Any optimal solution of the RQ in (28) is attained at
s∗(ρ)≡ x∗/ρ, where x∗≡ x∗(ρ) satisfies the equation

x∗�
b2

f ρ
2Iw(x∗)

4(1−ρ)2

(
1+

x∗ ÛIw(x∗)
Iw(x∗)

)2

(30)

for b f in (18). The associated RQ optimal workload in (28)
can be expressed as

Z∗ρ �
b2

f ρIw(x∗)
4(1−ρ)

(
1−

(
x∗ ÛIw(x∗)
Iw(x∗)

)2)
, (31)

which is a valid nonnegative solution provided that
x∗ ÛIw(x∗)6 Iw(x∗). If b f �

√
2, then the associated scaled RQ

workload satisfies

c2
Z∗(ρ)� Iw(x∗)

(
1−

(
x∗ ÛIw(x∗)
Iw(x∗)

)2)
. (32)

Proof. Note that xIw(x) � V(x). Because we have
assumed that V(x) is differentiable, so too is Iw . We
obtain (30) by differentiating with respect to x in (28)
and setting the derivative equal to 0. After substitut-
ing (30) into (28), algebra yields (31). The limits in (20)
imply that x∗ ÛIw(x∗)→0 and Iw(x∗)→ Iw(∞) as ρ→1. �

Given that x ÛIw(x)→ 0 as x→∞, if b f �
√

2, then it is
natural to consider the approximation

x∗(ρ)≈
ρ2

2(1−ρ)2 Iw(x∗(ρ)) so that

Z∗ρ ≈
ρIw(x∗(ρ))

2(1−ρ) and c2
Z∗(ρ)� Iw(x∗(ρ)).

(33)

The first equation in (33) is a variability fixed-point
equation of the form in suggested in (15) of Fendick
and Whitt (1989).

4.2. Heavy-Traffic and Light-Traffic Limits
The following result shows the great advantage of
doing RQ with (i) the continuous-time workload and
(ii) the functional version of the RQ in (28). A proof is
given in Section EC.7.

Theorem 5 (Heavy-Traffic and Light-Traffic Limits). Under
the regularity conditions assumed for the IDW Iw(t), if b f ≡√

2, then the functional RQ solution in (28) is an asymptot-
ically correct characterization of steady-state mean workload
both in heavy traffic (as ρ ↑ 1) and light traffic (as ρ ↓ 0).
Specifically, we have the following supplement to (26):

lim
ρ↑1

c2
Z∗(ρ)� Iw(∞)� lim

ρ↑1
c2

Z(ρ) and

lim
ρ↓0

c2
Z∗(ρ)� Iw(0)� lim

ρ↓0
c2

Z(ρ).
(34)

Remark 7. Theorem 5 greatly generalizes results in
Theorem 3(b) with both light and heavy traffic ad-
dressed in the general case beyond positive or negative
correlations. We also note that the parametric RQ solu-
tion can be made correct in heavy traffic or in light
traffic, as above, by choosing the parameter bp appro-
priately, but both cannot be achieved simultaneously
unless Iw(∞)� Iw(0).
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4.3. Estimating and Calculating the IDW
For applications, it is significant that the IDW Iw(t)
used in Section 4 can readily be estimated from data
from system measurements or simulation and calcu-
lated in a wide class of stochastic models. The time-
dependent variance functions can be estimated from
the time-dependent first and second moment func-
tions, as discussed in section III.B of Fendick et al.
(1991). Calculation depends on the specific model
structure.
4.3.1. The G/GI/1 Model. If the service times are i.i.d.
with a general distribution having mean τ and scv c2

s
and are independent of a general stationary arrival pro-
cess, then as indicated in (58) and (59) in section III.E
of Fendick and Whitt (1989),

Iw(t)� c2
s + Ia(t), t > 0, (35)

where c2
s is the scv of a service time and Ia is the IDC

of the general arrival process.
4.3.2. TheMulticlass

∑
i(Gi/Gi)/1 Model. As indicated

in (56) and (57) in section III.E of Fendick and Whitt
(1989), if the input comes from independent sources,
each with their own arrival process and service times,
then the overall IDC and IDW are revealing functions
of the component ones. Let λi be the arrival rate, let
τi be the mean service time of class i, and let ρi ≡
λiτi be the traffic intensity for class i with λ ≡∑

i λi ,
τ ≡ ∑

i(λi/λ)τi � 1 so that ρ � λ. With our scaling
conventions,

Ia(λt)≡Var(A(t))
E[A(t)] �

∑
i Var(Ai(t))

λt
�
∑

i

λi

λ
Ia , i(λi t) (36)

and

Iw(λt)≡ Var(X(t))
τE[X(t)] �

∑
i Vi(t)
ρt

�
∑

i

ρiτi

ρτ
Iw , i(λi t)

for all t > 0. (37)

From (36) and (37), we see that Ia and Iw are convex
combinations of the component Ia , i and Iw , i modified
by additional time scaling.
4.3.3. TheMulticlass

∑
i Gi/GI/1 Model. An important

special case of Section 4.3.2 arising in open queueing
networks is the ∑

i Gi/GI/1 model in which there are
multiple general arrival streams coming to a queue
where all arrivals experience common i.i.d. service
times. We can combine (35) and (36) to get the expres-
sion for the IDW,

Iw(λt)≡ Ia(λt)+ c2
s , t > 0, (38)

where Ia(λt) is given by (36). Of course, if all the
component arrival streams are Poisson processes, then
Ia(λt)�1 for all t > 0, but otherwise, the IDC Ia(λt) can
be quite complicated.

4.3.4. The Balanced
∑

i Gi/GI/1 Model. An important
special case of Section 4.3.3 is the balanced ∑

i Gi/GI/1
model in which the arrival process is the superposi-
tion of n i.i.d. non-Poisson processes each with rate
ρ/n, so that the overall arrival rate is ρ, and asymptotic
variability parameter is c2

a . From the results above, we
obtain

Ia ,n(ρt)� Ia ,1(ρt/n) and Iw ,n(ρt)� Iw ,1(ρt/n),
t > 0, (39)

so that the superposition IDI and IDWdiffer from those
of a single-component process only by the time scaling,
but that time scaling involves both n and ρ.
As discussed in section 9.8 of Whitt (2002), this

model is known to have complex behavior as a func-
tion of n and ρ, so that RQ may be helpful. In partic-
ular, under regularity conditions, (i) the superposition
arrival process is known to be non-Poisson and nonre-
newal, unless the component arrival streams are Pois-
son. (ii) If we let n→∞ but keep the total rate fixed,
then the superposition process approaches a Poisson
process. (iii) However, for any n, no matter how large,
if we let t→∞, then the superposition process obeys
the same CLT as a single component arrival process
and so has asymptotic variability parameter c2

a . Thus,
we have Ia(0)�1 and Ia(∞)� c2

a , but Ia(t) depends on n
and ρ in a complicated way for 0< t <∞.

As shown in Whitt (1985), important insight can be
gained by considering the joint limit as n ↑∞ and ρ↑1.
It turns out the asymptotic behavior depends on the
limit of n(1−ρ)2. The separate limits occur if that limit
is either infinite or zero. A complex interaction occurs
at finite limits. We will show that RQ provides impor-
tant insight when we conduct simulation experiments
for this model in Section 5.1.
4.3.5. The IDCs for Common Arrival Processes. The
two previous subsections show that for a large class of
models the main complicating feature is the IDC of the
arrival process from a single source. The only really
simple case is a Poisson arrival process with rate λ.
Then Ia(t)�1 for all t > 0. A compound (batch) Poisson
process is also elementary because the process Y has
independent increments; then the arrival process itself
is equivalent to M/GI source. However, for a large class
ofmodels, the variance Var(A(t)) and thus the IDC Ia(t)
can either be calculated directly or be characterized via
their Laplace transforms and thus calculated by invert-
ing those transforms and approximated by performing
asymptotic analysis. For all models, we assume that the
processes A and Y have stationary increments.

An important case for A is the renewal process; to
have stationary increments, we assume that it is the
equilibrium renewal process, as in section 3.5 of Ross
(1996). Then Var(A(t)) can be expressed in terms of
the renewal function, which in turn can be related
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to the interarrival-time distribution and its transform.
The explicit formulas for renewal processes appear in
(14), (16), and (18) in section 4.5 of Cox (1962). The
required numerical transform inversion for the renewal
function is discussed in section 13 of Abate and Whitt
(1992). The hyperexponential (H2) and Erlang (E2) spe-
cial cases are described in section III.G of Fendick and
Whitt (1989).
It is also possible to carry out similar analyses for

muchmore complicated arrival processes. Neuts (1989)
applies matrix-analytic methods to give explicit rep-
resentations of the variance Var(A(t)) for the versatile
Markovian point process or Neuts process; see sec-
tion 5.4, especially theorem 5.4.1. Explicit formulas for
the Markov-modulated Poisson process are given on
pages 287–289.
All of these explicit formulas above have the asymp-

totic form

Var(A(t))� σ2
At + ζ+O(e−γt) as t→∞.

5. Simulation Comparisons
We illustrate how the new RQ approach can be used
with system data from queueing networks by apply-
ing simulation to analyze two common but challeng-
ing network structures in Figure 1: (i) a queue with a
superposition arrival process and (ii) several queues
in series. The specific examples are chosen to capture
a known source of difficulty: there is complex depen-
dence in the arrival process to the queue, so that the
relevant variability parameter of the arrival process at
the queue can depend strongly on the traffic inten-
sity of that queue, as discussed in Whitt (1995). Our
RQ approximations are obtained by applying (28) after
estimating the IDC and applying (35).

Figure 2. (Color online) Left: A Comparison Between Simulation Estimates of the Normalized Mean Workload c2
Z(ρ) in (25)

and Its Approximation c2
Z∗ (ρ) in (29) as a Function of ρ for the ∑n

i GIi/H2/1 Model with c2
s �2 and a Superposition of n i.i.d.

Lognormal Renewal Arrival Processes for n �10 and c2
a �10; Right: Graphical RQ Solution Showing h(x)≡

√
2xIw(x) and the

Tangent Line with Slope (1−ρ)/ρ at x∗≈482 for ρ�0.9 and at x∗≈17 for 0.7, as Dictated by (22)
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5.1. A Queue with a Superposition Arrival Process
We start by looking at an example of a balanced∑

i Gi/GI/1 model from Section 4.3.4, where (39) can be
applied. Let the rate 1 arrival process A be the superpo-
sition of n � 10 i.i.d. renewal processes, each with rate
1/n, where the times between renewals have a lognor-
mal distribution with mean n and scv c2

a � 10. Let the
service-time distribution be hyperexponential (H2), a
mixture of two exponential distributions with mean 1,
c2

s � 2, and balanced means as on page 137 of Whitt
(1982). Then (39) and (26) imply that the IDW has lim-
its Iw(0)� 1+ c2

s � 3 and Iw(∞)� c2
a + c2

s � 12, so that the
IDW is not nearly constant.

The left panel of Figure 2 shows a comparison be-
tween the simulation estimate of the normalized work-
load c2

Z(ρ) in (25) and the approximation c2
Z∗(ρ) in (29)

for this example. We make two important observa-
tions: (i) the normalized mean workload c2

Z(ρ) in (25)
as a function of ρ is not nearly constant, and (ii) there
is a close agreement between the RQ approximation
c2

Z∗(ρ) in (29) and the direct simulation estimate; the
close agreement for all traffic intensities is striking. It is
important to note that the parametric RQ approxima-
tions produce constant approximations and so cannot
be simultaneously good for all traffic intensities.

For this example, we see that c2
Z(ρ) ≈ 3 for ρ 6 0.5,

which is consistent with the Poisson approximation for
the arrival process and the associated M/G/1 queue,
where c2

Z(ρ)�3 for all ρ, but the normalized workload
increases steadily to 12 after ρ � 0.5, as explained in
section 9.8 of Whitt (2002).

The estimates for Figure 2 were obtained for ρ over a
grid of 99 values, evenly spaced between 0.01 and 0.99.
Similarly, the RQ optimization was performed using
(28) with a discrete-time estimate of the IDW. By doing
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multiple runs, we ensured that the statistical variation
was not an issue. For the main simulation of the arrival
process and the queuewe used 5×106 replications, dis-
carding a large initial portion of the workload process
to ensure that the system is approximately in steady
state. (The component renewal arrival processes thus
can be regarded as equilibrium renewal processes, as
in section 3.5 of Ross 1996.) We let the run length and
amount discarded be increasing in ρ, as dictated by
Whitt (1989). We provide additional details about our
simulation methodology in the appendix.

5.2. A Series of Ten Queues
This second example is a variant of examples in Suresh
andWhitt (1990), exposing the complex impact of vari-
ability on performance in a series of queues if the
external arrival process and service times at a pre-
vious queue have very different levels of variability.
This example has 10 single-server queues in series.
The external arrival process is a rate 1 renewal pro-
cess with H2 interarrival times having c2

a � 5. The first
nine queues all have Erlang service times with c2

a � 0.5
denoted by E2, i.e., the sum of two i.i.d. exponential
random variables. The first eight queues have mean
service time and thus traffic intensity 0.6, while the
ninth queue has mean service time and thus traffic
intensity 0.95. The last (10th) queue has an exponential
service-time distribution with mean and traffic inten-
sity ρ; we explore the impact of ρ on the performance
of that last queue.
The Erlang services act to smooth the arrival pro-

cess at the last queue. Thus, for sufficiently low traffic
intensities ρ at the last queue, the last queue should
behave essentially the same as a E2/M/1 queue, which
has c2

a �0.5, but as ρ increases, the arrival process at the

Figure 3. (Color online) A Comparison Between Simulation Estimates of the Normalized Mean Workload c2
Z(ρ) in (25) at the

Last Queue of the 10 Queues in Series with Highly Variable External Arrival Process, but Low-Variability Service Times, as a
Function of the Mean Service Time and Traffic Intensity ρ There with the Corresponding Value in the E2/M/1 Queue (Left)
and with the RQ Approximation c2

Z∗ (ρ) in (29) (Right)
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last queue should inherit the variability of the external
arrival process and behave like an H2/M/1 queue with
scv c2

a � 5. This behavior is substantiated by Figure 3,
which compares simulation estimates of the normal-
ized mean workload c2

Z(ρ) in (25) at the last queue of
10 queues in series as a function of the mean service
time and traffic intensity ρ there with the correspond-
ing values in the E2/M/1 queue (left panel) and with
the RQ approximation c2

Z∗(ρ) in (29) (right panel). The
left panel of Figure 3 shows that the last queue behaves
like a E2/M/1 queue for all traffic intensities 6 0.8 but
then starts behavingmore like an H2/M/1 queue as the
traffic intensity approaches the value 0.95 at the ninth
queue. The right panel of Figure 3 shows that RQ suc-
cessfully captures this phenomenon and provides an
accurate approximation for all ρ.

To elaborate on this series-queue example, we show
the IDW for the last queue in Figure 4. The plot
shows the IDW assuming continuous-time stationar-
ity (which we use) together with the plot using the
discrete-time Palm stationarity (see Sigman 1995) over
the long interval [10−2 ,105] in log scale. The good per-
formance in Figure 3 for small values of ρ depends on
using the proper (continuous-time) version.

We conclude this example by illustrating the dis-
crete-time approach for approximating the expected
steady-state waiting time E[W] using the RQ optimiza-
tion in (6) with uncertainty set in (9). Figure 5 is the dis-
crete analog of Figure 3. Figure 5 compares simulation
estimates of the normalized mean waiting time c2

W (ρ),
defined just as in (25), at the last queue of 10 queues in
series as a function of the mean service time and traf-
fic intensity ρ there with the corresponding values in
the E2/M/1 queue (left) and with the RQ approxima-
tion c2

W∗(ρ), defined just as in (29). Figures 5 and 3 look
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Figure 4. (Color online) The IDW at the Last Queue Over
the Interval [10−2 ,105] in Log Scale
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Note. The continuous-time stationary version used for RQ with the
workload is contrasted with the discrete-time Palm version.

similar, except that there is a significant difference for
small values of ρ. In general, we do not expect RQ to
be effective for extremely low ρ because (i) the CLT is
not appropriate for only a few summands, and (ii) the
mean waiting time is known to depend on other fac-
tors when ρ is small. The mean waiting time and mean
workload actually are quite different in light traffic; see
section IV.A of Fendick andWhitt (1989). As explained
there, the mean workload tends to be more robust to
model detail.

Figure 5. (Color online) Contrasting the Discrete-Time and Continuous-Time Views: The Analog of Figure 3 for the Waiting
Time
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Note. Simulation estimates of the normalized mean waiting time c2
W (ρ), defined as in (25), at the last queue of the 10 queues in series with

highly variable external arrival process, but low-variability service times, as a function of the mean service time and traffic intensity ρ there
with the corresponding value in the E2/M/1 queue (left) and with the RQ approximation c2

W∗ (ρ), defined as in (29) (right).

6. An IDC Framework for a New RQNA
A main contribution of Bandi et al. (2015) was to
develop a full RQNA. While we have established good
RQ results for one single-server queue, it still remains
to develop a full RQNA exploiting the indices of dis-
persion and the results in the previous sections. To con-
clude this paper, we propose a candidate framework in
which we hope to develop an initial IDC-based RQNA.

To start, we make several simplifying assumptions:
(i) all queues are single-server queues with unlimited
waiting space and the FCFS discipline; (ii) with m
queues, the service times at these queues come from
m independent sequences of i.i.d. random variables,
independent of all the external arrival processes, where
these service times have finite means and variances;
(iii) each queue has its own external arrival process
(which may be null), assuming that each is a general
stationary point process; (iv) these m external arrival
processes are mutually independent and exogenous,
each having a finite arrival rate, with the arrival pro-
cess satisfying a functional central limit theorem with
a Brownian motion limit; (v) as in the basic form of
QNA in Whitt (1983), we let departures be routed to
other queues or out of the network by Markovian rout-
ing, independent of the rest of the model history; and
(vi) given that the traffic-rate equations are used to
find the net arrival rate at each queue, as in section 4.1
of Whitt (1983), the resulting traffic intensities satisfy
ρi < 1 for all i, so that the final open network produces a
stable general stationary (G/GI/1)m stochastic network
model, which has a proper steady-state distribution.

As discussed in section 2.3 of Whitt (1983) and Segal
and Whitt (1989), practical applications require much
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more complicated models—e.g., including multiserver
queues, non-FCFS disciplines and, as in section 2.3 of
Whitt (1983), input by classes with basic routes that
must be converted into the framework above—but here
we suggest the (G/GI/1)m model above as a candi-
date reference stochastic model in which we want to
develop an initial RQNA.
We propose going beyond QNA by letting the vari-

ability of each arrival process, external or internal, be
partially characterized by its rate and IDC. Let the net
arrival process at queue i have rate λi and IDC Ia , i(t).
We let the service-time cumulative distribution func-
tion (cdf) Gi at queue i be partially characterized by its
mean τi and scv c2

s , but we might use the full cdf Gi .
By (35), the associated IDW is then Iw , i(t) � Ia , i(t) +
c2

s , i , t > 0. Thus, we can approximate the mean steady-
state workload at queue i, E[Zi(ρi)] for each i, by
solving the one-dimensional RQ optimization problem
in (28). We consider that as the initial objective, even
though we want to extend the algorithm to develop a
full performance description. As a first cut to describe
network performance, we would follow section VI of
Whitt (1983).
For the (G/GI/1)m model introduced above, we spec-

ify the service time at queue i by itsmean τi and scv c2
s , i ,

as in QNA, but nowwe specify the external arrival pro-
cess at queue i by its rate λo , i and IDC {Ia , o , i(t):t > 0},
with o designated from outside. Paralleling QNA, the
IDC-based RQNA would apply the familiar traffic-rate
equations to determine the net arrival rate λi at queue i
for each i, just as in section 4.1 ofWhitt (1983), and asso-
ciated traffic variability equations, based on a network
calculus for the three operations—(i) superposition or
merging, (ii) splitting, and (iii) flow through a queue
or departure—to determine the final net IDC Ia , i(t) at
queue i for each i.

With the framework above, it suffices to specify and
apply a network calculus to determine the IDC of the
net arrival process to each queue. The difficult super-
position operation (for component streams assumed to
be mutually independent) is already covered by Sec-
tion 4.3.3 here and has shown to be effective for approx-
imating the mean workload in Section 5.1.

For splitting, as in QNA we assume independent
splitting, with each customer routed in a given direc-
tion according to independent Bernoulli random vari-
ables. For independent splitting, we can express the
split counting process B(t) given the original counting
process A(t) by the random sum

B(t)�
A(t)∑
i�1

Xi , (40)

where {Xi} is i.i.d. and independent of A(t) with
P(Xi �1)� p�1−P(Xi �0). Under those regularity con-
ditions, we can apply the conditional variance formula

to show that the IDC of the split stream can be repre-
sented exactly by

IB(t)� pIA(t)+1− p , t > 0, (41)

which is analogous to (36) in Whitt (1983).
Finally, it remains to treat the flow through a G/GI/1

queue. Of course, the rate out is just the rate in, so
it suffices to calculate the IDC Id(t) for the departure
process. We propose a candidate approximation that
can serve as a basis for a full RQNA, but it remains
to be more thoroughly tested and refined. In particu-
lar, a candidate approximation for the IDC Id(t) of the
departure process from a G/GI/1 queue is

Id , ρ(t)≈wρ(t)Ia(t)+ (1−wρ(t))Is(t), (42)

where Is(t) is the IDC of the equilibrium renewal pro-
cess with specified service-time distribution, wρ(t), 06
wρ(t) 6 1, is a weight function, which depends on the
traffic intensity ρ. Preliminary study indicates that the
weight function might be

wρ(t)≡w(c(1−ρ)2t), t > 0, where w(t)≡1− e−
√

t (43)

and c is a properly chosen scale parameter; here, c is
chosen to be 0.25. The component IDCs Ia(t) and Is(t)
in (42) can readily be estimated from simulations or
calculated, as indicated in Section 4.3.5. The IDC of
the equilibrium renewal process Is(t) can be obtained
from the associated variance function via Is(t)�V(t)/t,
assuming that it has rate 1. In turn, the variance func-
tion of the rate 1 equilibrium renewal process is

V(t)�
∫ t

0
(1+2m(u)−2u)du , (44)

where m(t) is the renewal function (mean function of
the standard renewal process), which can be calculated
by numerical transform inversion, given the Laplace
transform of the service-time distribution, as discussed
in section 13 of Abate and Whitt (1992).

To show that this approach for approximating the
IDC Id(t) has promise, we apply it to the series queue
example in Section 5.2. Recall that the arrival process
is an H2 renewal process, while the service distribution
at the first eight nodes is Erlang E2 with traffic intensity
0.6 and the ninth node has a traffic intensity of 0.95. The
IDCs for H2 and E2 are given in examples 3.1 and 3.2 of
Fendick and Whitt (1989).

From (42), we iteratively obtain the approximation
for the IDC of the departures from the ninth queue

I9, d , ρ(t)≈w8
ρ1
(t)wρ9

(t)Ia(t)+ (1−w8
ρ1
(t)wρ9

(t))Is(t). (45)

This framework decomposes the IDC of the departure
from the ninth queue into combinations of the IDC
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Figure 6. (Color online) Left: Contrasting the IDW of Departure Process from the Ninth Queue from Simulation and the IDW
Approximation Obtained from the Candidate RQNA Framework for the Example in Section 5.2; Right: Simulation Estimation
of the Steady-State Mean Workload, the RQ Approximation in Section 5.2, and the RQNA Approximation
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of the external arrival process and the IDC of the ser-
vice renewal process. Figure 6 reports the approxima-
tion obtained from the RQNA framework for the IDW
at the last queue in contrast with the one obtained
from simulation, as well as the RQNA approximation
of the steady-state mean workload at the last queue
as a function of traffic intensity. Work is under way
to develop and test the approximation for the IDC
of the stationary departure process from a G/GI/1
queue and a full IDC-based RQNA for the (G/GI/1)m
model.
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