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To help provide a theoretical basis for approximating queues with superposition arrival proces- 
ses, we prove limit theorems for the queue-length process in a ~ GI~/G/s model, in which the 
arrival process is the superposition of n independent and identically distributed stationary renewal 
processes each with rate n -1. The traffic intensity p is allowed to approach the critical value one 
as n increases. If  n(1-p)2-~c, 0 < c < o o ,  then a limit is obtained that depends on c. The two 
iterated limits involving p and n, which do not agree, are obtained as c --> 0 and c --> co. 

queues * heavy traffic * superposition * limit theorems * central limit theorem 

1. Introduction and results 

In order to analyze queues with superposition arrival processes and other complex 
congestion models such as non-Markov networks of  queues, it is important to have 
approximations;  see Albin [1, 2], Whitt [18, 19] and references there. Three limit 
theorems help in developing approximations for queues with superposition arrival 
processes. The first states that under appropriate regularity conditions a superposi- 
tion arrival process approaches a Poisson process as the number  n of  component  
processes increases; see t~inlar [5]. The second states that the queueing model is 
continuous; the queue-length process associated with the superposition arrival 
process also converges to the queue length process associated with the Poisson 
process as n ~ oo; see Chapter  3 of  Franken et al. [8]. The third states that under 
appropriate regularity conditions the queue-length process approaches a reflected 
Brownian motion diffusion process, which has an exponential stationary distribution, 
as the traffic intensity p approaches the critical value one from below with n held 
fixed; see Iglehart and Whitt [ 11, 12]. Moreover, if the n component  processes being 
superposed are i.i.d, renewal processes, then the reflected Brownian motion and the 
mean of  the equilibrium distribution obtained as p--> 1 depend on the individual 
renewal processes only through the first two moments of  the renewal interval and 
are independent of  n. 

Unfortunately, these limit theorems do not tell the whole story even for large n 
and p, because the two iterated limits involving n --> ~ and p --> 1 do not agree. The 
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purpose of  this paper  is to prove limit theorems in which n ~ oo and p ~ 1 simul- 
taneously. These heavy-traffic limit theorems with two parameters changing together 
are in the same spirit as the heavy-traffic limit theorems in Halfin and Whitt [10]; 
there the number  of servers and the traffic intensity are allowed to change together. 
The joint limits are very helpful for determining regions of  validity of  different 
approximation schemes. 

The joint limit considered here arises in many applications in which a queue is 
fed by many  stochastically identical arrival streams. We give an example from 
packet-switched voice communication; see Decina and Vlack [7], Jenq [13] and 
Sriram and Whitt [16]. 

Example 1. We consider a model to describe the delays in a statistical multiplexer 
or concentrator that handles many separate voice lines. Each voice signal is sampled 
and represented digitally in packets of fixed length. With the use of  silence detection, 
a typical voice signal can be viewed as a sequence of alternating talkspurts and 

silence periods. A simple model for the voice signal is an alternating renewal process 
in which the successive talkspurts and silence periods are exponentially distributed 
with different means. When the voice signal in talkspurts is packetized, this leads 
to a geometrically distributed number of  packets of  fixed length in each talk spurt 
and no packets at all during silence periods. As a consequence of the lack of memory 
property associated with the geometric distribution, the arrival process of  packets 
into the multiplexer for each voice line can be modeled as a renewal process in 
which each renewal interval is of length d (the packet length) with probability p 
or of length d + I with probability l - p ,  where I is the exponentially distributed 
silence period. Typical values of  the parameters are d = I6, I = 650 and p = 21/22. 
These parameter  values make the renewal arrival process from each voice source 
highly bursty (variable); e.g. the squared coefficient of  variation (variance divided 
by the square of  the mean) of  a packet interarrival time is c 2 = 18.1. 

Assuming that the packet service times are essentially constant at the multiplexer 
(the packets are the same length and are transmitted from the multiplexer at a fixed 
rate), the delays of packets at the multiplexer from n identical active voice lines 
can be described using the ~7=1 GIi /D/1  queueing model, in which the arrival 
process is the superposition of  n i.i.d, renewal processes of  the kind above, the 
service times are deterministic, the queue discipline is FCFS (first-come first-served) 
and there is unlimited waiting room. In order to engineer the system, we wish to 
determine how the delays depend on the number  of  active voice lines. 

Since n is typically large (about I00), it is tempting to invoke the superposition 
limit theorem in ~inlar  [5] and use the much more tractable M~ D~ 1 model. Indeed, 
from analytical calculations and statistical analysis of  simulation output [16], we 
see that the distribution of an interarrival time in the superposition process is very 
nearly exponential and the correlations between successive interarraival times are 
very small. Moreover, the M / D / 1  model works very well for small and moderate 
values of  n. However, the Poisson approximation does not work well for large values 
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h n of n. Comparisons of the M~ D~ 1 model with simulation of t e ~ i= 1 GIi / D~ 1 model 

show that the M / D / 1  model grossly underestimates the expected delay at the 

multiplexer for large values of n. 
At first glance, this phenomenon may seem to contradict the basic superposition 

limit theorem, but it actually does not. For the superposition limit theorem, the 
component processes should become sparse as n increases so that the total arrival 

rate remains fixed. In contrast, as n increases here, the arrival rate and traffic intensity 

increase too. If  the service rate is multiplied by n too, so that the traffic intensity p 
remains fixed, then the Poisson approximation does indeed become better and better 

as n increases. However, from the point of view of the queue, the quality of the 

Poisson approximation for the superposition arrival process depends critically on 

the traffic intensity p. As p increases, the long-term dependence in the arrival process 

becomes more important, and in this example there are many small positive correla- 
tions that eventually have a significant cumulative impact over a large number of 
interarrival times. As we will prove, if n and p both increase, the limiting behavior 

depends on n(1 _p)2. In order for the Poisson limit to be appropriate, we should 
have n (1 - p) 2 ~ co as n ~ co and p ~ 1. However, here n (1 - p)2 ~ 0 as n ~ co for p < 1. 

When n (1 - p)2 ~ 0 as n ~ co, the heavy-traffic description in [ 11, 12] corresponding 

to/9 ~ 1 with n fixed eventually becomes appropriate (as shown by Theorems 1-3 
here). Since the variance of the renewal interval in each component renewal process 

is much greater than the variance of the exponential distribution, the observed 

behavior of the simulation for large n can be anticipated to differ dramatically from 
the M~ D~ 1 model. Since the squared coefficient of variation of the renewal interval 

in each component process is 18.1, the ratio of the true mean queue length to the 

predicted M / D / 1  value approaches 18.1 as n increases, just as it would if p ~  1 

with n held fixed. 
An approximation for the mean delay, based in part on the analysis in this paper, 

is contained in formulas (33) and (44) of [19]. This approximation describes the 
delays in this example reasonably well over the full range of n and does very well 

for large n; see [13] and [16]. 

This paper is closely related to previous papers by Albin [1] and Newell [14]. 
Albin [1] did other simulation experiments that show how the two limits involving 

n and p are related. She simulated queues with arrival processes that are superposi- 
tions of i.i.d, renewal processes. She considered several values of n (n =2  j for 

j = 1, 2 , . . . ,  10) and p (p = 0.5, 0.8 and 0.9). As expected, the superposition process 
in isolation approaches a Poisson process as n ~ co: The distribution of the interval 
between points rapidly approaches the exponential distribution and the correlation 
between successive intervals rapidly approaches zero. Moreover, the queue soon 
behaves as if the arrival process were Poisson for low values of p. However, it does 
not for high values of p. Newell [14] helped explain these results, showing by 
heuristic arguments that the behavior of the queue as n ~ co and p ~ 1 depends on 
n ( 1 -  p)2. In order for the queue to behave as if the arrival process is Poisson, it is 
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necessary, not only for n to be large, but also for n(1 _p)2 to be large. Newell also 
indicated that the heavy-traffic approximations are appropriate when n(1- tg)  2 is 
small. 

We supplement Newell's analysis by proving limit theorems. When n (1 -p)2__~ ¢, 

0 < C < 00, we show that the queue-length process, appropriately normalized, con- 

verges to a non-degenerate limit, which we can describe, but it is complicated. If, 

afterwards, we let c-~ 0 or c ~ oo, then we obtain the same limiting behavior as the 
iterated limits involving p ~ 1 and n -~ oo separately. 

Here is our model. Let N(t)  be a renewal counting process having renewal 
intervals distributed according to the nonnegative random variable X with cdf F 

where EX = 1. Let Ne(t) be the associated stationary or equilibrium renewal counting 
process, i.e., the delayed renewal counting process in which the first interval has 

density [1 - F( t ) ]  and all subsequent intervals have cdf F. For each n, let the arrival 

process be the superposition of n i.i.d, copies of {Ne(t/n), t/>0}. Notice that the 
component processes have been scaled so that the total arrival rate is 1 for all n. 

This is tantamount to having the renewal interval in each component renewal process 
be distributed as nX for each n. 

There also are s homogeneous servers in parallel with unlimited waiting room 

and the FCFS discipline. (Of course, the queue-length process is the same for many 

other disciplines.) The service times are i.i.d, and independent of the arrival process 
(the ~ GIi /G/s  model). Each service time is distributed as spY where Y is a 

2 Hence, for each nonnegative random variable with E Y  = 1 and finite variance try. 

p < 1 the queue has traffic intensity p. 
Let Qp,(t) be the queue length (number of customers in the system) at time t as 

a function of p and n and let Qp, be the normalized process defined by 

Qpn =- Qpn(t)=(1-p)Qp,( t(1-p)-2) ,  t>~o. (1) 

We use the notion of convergence in distribution (weak convergence) of random 
elements of the function space D[0, co), denoted here by 3 ;  see Billingsley [3], 

Whitt [17] and references there. Our limit process involves the usual reflecting 

barrier function f, defined by 

f(x)(t)=x(t)-inf{x(u):O<~u<~t},  t~>0, (2) 

for any x c D[0, oo). 
We also impose a regularity condition on the basic renewal-interval cdf F. 

Condition F. lira sup,_~0 [F( t )  - F(O)]/t <oo. 

Condition F is satisfied, for example, if F has an atom at 0 but otherwise is 
absolutely continuous in a neighborhood of 0. Condition F is necessary for our 

method of proof; see Theorem 5 in Section 2. 

Theorem 1. Assume Condition F. If  n-~oo, p ~  l and n(1-p)2-~c, 0 < c < o o ,  then 
Q p n ~ f ( A - S + M )  in D[0, oo), where M ( t ) = - t ,  t>~0; S is a Brownian motion 
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independent of  A having 0 drift and diffusion coefficient s-2o-2y; f is the reflecting 
barrier function in (2), and A is a centered Gaussian process with stationary increments, 

continuous paths and covariance function 

K(t ,  u) : EA( t )A (u )  = cENe( t / c )Ne(u /c )  - tu. (3) 

In order to prove Theorem 1, we apply Theorem l(a) of Iglehart and Whitt [12]. 
With this previous result, it suffices to prove a weak consequence theorem for the 
superposition arrival process in isolation. For each n, let 

and 

A , ( t ) =  N , l ( t ) + .  . .+ N, , ( t ) ,  t>~O, (4) 

A , = - A , ( t ) = ( A , ( n t ) - n t ) / n  1/2, t>~O, (5) 

where {N,i(t),  t~>0} are independent for different i and distributed as {Ne( t /n) ,  
t~>0}. 

Theorem 2. I f  condition F holds, then A,  ~ A '  in D[0, oo) as n -> oo, where A' is a 
centered Gaussian process with stationary increments, continuous paths and covariance 
function 

EA'( t )A'(u) = EN~( t ) N e ( u ) -  tu. 

Theorem 2 in turn follows rather directly from Theorem 2 of Hahn [9], which 
establishes a central limit theorem for partial sums of stochastic processes in D[0, oo). 

Example 2. I f  the basic renewal-interval cdf F is the mixture of  an exponential 
random variable and a mass at 0, then the renewal counting process N( t ) ,  the 
stationary version Ne(t) and the superposition process are all batch Poisson pro- 
cesses with geometrically distributed batches. Then A in Theorem 1 and A' in 
Theorem 2 are standard Brownian motions. As a consequence, f ( A - S + M )  in 
Theorem 1 is simply reflected Brownian motion with negative drift. Since the 
superposition arrival process is a renewal process for each n in this case, Theorem 
1 can be deduced directly from Theorem l(a) and Example 3(1) of  [12]. 

Example 3. I f  P ( X  = 1)= 1, then the interval to the first point in the stationary 
renewal counting process Ne(t) is uniform in [0, 1 ]. Then the process A ' ( u ) -  A'( t)  
in Theorem 2 is a Brownian bridge diffusion process on [ t, t + 1] for each t. Moreover, 
the Brownian bridges on [ t + k, t + k + 1 ] for different k are identical (totally depen- 
dent). Since A(t )  is distributed as ~cA ' ( t / c ) ,  A is a Brownian bridge on [t, t +  c-l].  
In this case, Theorem 2 is a minor modification of the functional central limit 
theorem for empirical cdf 's ,  Theorems 13.1 and 16.4 of  Billingsley [3]. 
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In general, the limit process A' in Theorem 2 is complicated, so that the limit 
process f ( A - S + M )  in Theorem 1 is complicated as well. As in Example 2, the 
process f ( A -  S +  M )  is relatively simple when A is Brownian motion. This occurs 
asymptotically as c approaches 0 or ~ .  Let o-~ be the variance of X, which we now 

assume is finite. 

Theorem 3. As c--> 0, the f.d.d.'s (finite-dimensional distributions) of  A converge to 
the f.d.d.'s of  trxB where B is standard Brownian motion with zero drift and unit 

diffusion coefficient. 

Theorem 4. Assume Condition F. As c ~  oo, the fd.d. 's  of  A converge to the fd.d. 's  
of  the standard Brownian motion B. 

Remarks. (1) The heavy-traffic limit in Theorem 4 is the same as if the component  
renewal processes are Poisson. This remains true if the points occur in batches, i.e., 
if F(0) > 0. 

(2) We do not know if Theorems 3 and 4 can be extended to the stronger weak 
convergence in D[0, oo) that was established in Theorems 1 and 2. The stronger 
weak convergence was essential in Theorem 2 to obtain even convergence of the 
f.d.d.'s for Qp, in Theorem 1 via the continuous mapping argument in [12]. 

(3) The general approach in this paper  can be applied to more general arrival 
processes than the superposition of n i.i.d, stationary renewal processes. To extend 
Theorems 1 and 2 to superpositions of  i.i.d, non-renewal point processes, it suffices 
to verify the sufficient conditions for tightness in Theorem 2 of  Hahn [9]. For 
example, these conditions are easily verified for general stationary point processes 
in which the interval between successive points is bounded below by t5 > 0. This 

case covers many generalizations of  Example 1. 
(4) Condit ion F is necessary for Hahn 's  [9] sufficient conditions for Theorem 2; 

see Theorem 5 in Section 2. We do not know if Condition F is necessary for Theorem 

2 itself. 
(5) Theorem 1 characterizes the limit process for the queue, but we do not know 

much about  it. We do not even know the mean of the marginal distribution. We 
have nevertheless been able to apply Theorem 1 to develop approximations for 
networks of  queues in [19]; also see [2], [13] and [16]. We use the fact that the 
congestion for large n and p depends on n(1 _p)2. 

2. Proofs 

Proof of Theorem 1. Apply Theorem l(a) of  [12] together with Theorem 2 here. We 
must also show that the standard ~ , G I i / G / s  system of interest is asymptotically 
equivalent to the modified system treated in [12]. As indicated in [12], this follows 
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by applying the argument of Section 3 in [11]. To apply Theorem 2, we need to put 
Theorem 2 in the same framework as (1). Hence, let 

A p n - A p n ( t ) = ( 1 - p ) [ A ~ ( t ( 1 - p ) - 2 ) - t ( 1 - p ) - 2 ] ,  t~O. (6) 

Note that {Aon(t) , t>~O}={~co~A~(t/cpn), t~>0} for A~ in (5) and cp, = n ( 1 - p )  z. 
By Theorem 2 here and Theorem 5.5 of [3], A p , ~ A  as n~oo ,  p ~ l  and cpn = 
n(1-p )2~c ,  where A(t )=~cA' ( t /c ) ,  t>~O. [] 

We prove Theorem 2 by applying Theorem 2 in Hahn [9]. In order to verify 
Hahn's sufficient conditions for tightness, we apply three elementary lemmas. One 
random variable Y~ is stochastically less than or equal to another Y2, denoted by 
YI ~st Y2, if P( Y~ > t) ~ P( Y2> t) for all t or, equivalently, if Eg(Y1) ~ Eg(Y2) for 
all nondecreasing real-valued functions g for which the expectations are well defined. 

Lemma 1. For all t > 0 ,  Ne(t) ~<~t l + N ( t ) .  

Proof. Make each sample path of  Ne(t) larger by shifting all points to the left the 
distance to the first point to the right of 0. The process so constructed is distributed 
as N(t).  Add 1 to account for the point moved to the origin. [] 

Lemma 2. For 0 < t < u ,  {N(u)-N(t)lN(s),  s<~t} <~stl+ N(u- t )  with prob- 
ability 1. 

Proof. Make each sample path of  { N ( u ) - N ( t )  I N(s),  s <~ t} larger by doing the 
same construction as in Lemma 1. [] 

Lemma 3. For all positive t and k, E(N(t)k}<oo. 

Proof. p. 155 of Prabhu [15]. E3 

Proof of Theorem 2. Since the basic renewal intervals associated with {Am ~(t), t ~> 0} 
in (4) are distributed as nX, the processes {Nn~(nt), t~>0} have the same f.d.d.'s for 
all n. Hence, {An(t), t ~ 0 }  in (5) is distributed the same as {n-~/2~7= 1Xi(t), t ~0 }  
where Xi(t) = N , ( t )  - t. Convergence of the f.d.d.'s thus follows immediately from 
the multivariate central limit theorem. Since the limit distribution is multivariate 
normal in each case, the limit process A' is Gaussian. Since E X -  1, EXi(t)= 
E N ~ ( t ) - t  =0. Since N~(t) has stationary increments, so does A'. 

The stronger weak convergence in D[0, oo) and the sample path continuity follow 
from Theorem 2 of  Hahn [9]. The component processes Xi(t) here are stochastically 
continuous as required by Hahn because N~i(t) is a stationary renewal process: 
The interval forward or backward from t to the next point has the density 1 - F(x). 
It remains to establish two moment inequalities in Hahn's Theorem 2, namely, 

E [ X i ( u ) -  Xi(t)] 2 = Var[ N~(u - t)] ~ K(u - t) (7) 
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and 

E [ ( X i ( u )  - X i ( t ) ) 2 ( X , ( t )  - X i ( s ) )  2] <~ K (u - s) 2 (8) 

for 0<~ s <~ t <~ u ~< x for some x > 0 and K < ee. Hahn ' s  result was stated for D[0, 1], 
but it supplies immediately to D[t ,  t + x ]  for any positive t and x, which in turn 

implies weak convergence in D[0, 00) by Theorem 2.8 of  [17]. 

First, since 

;o Var  N e ( t ) = 2  [ E N ( s ) - s + O . 5 ] d s ,  (9) 

for all t/> 0, by (7) on p. 57 of Cox [6], (7) is satisfied: to obtain the bound,  substitute 

E N ( x )  for E N ( s )  in (9). 
Second, to establish (8) let x be such that x < 1 and F ( t ) -  F(O) < K s t, 0<~ t <~ X, 

for some constant K3, which can be done by Condition F. Then define events 

A o = { N e ( t )  - N e ( s )  = i, N e ( u )  - N e ( t )  =j}  (10) 

and 

Alu = (Aoo u Aol k.) AlO) c. 

Let Z =  ( X i (  t ) - X i (  s ) )2( X i (  u ) - X i (  t ) ) 2 and write 

E Z  <- E(ZI Aoo) + E(zI  Ao,)  + E(ZI A,o)  + E(ZI f i ~ , , ) P ( A , , ) .  

We verify (8) by bounding each term in (12). First, since u - s  < 1, 

E ( Z ]  Aoo) = ( t -  s)2(u - t)2< (u -- S) 4 ~  (U --S) 2. 

Second, 

(11) 

(12) 

E(ZI Ao,) ~ ( t - syE{(  N~(u) - N~(t)Y I Aol} 

~< ( t -  s)2E{(1 + N ( u  - t ) y ]N(u  - t)>~ l} 

<~ (t - s)2E{(2 + N ( u  - t)) 2} ~< K , ( t  - s)2<~ K l ( u  - s)  2 

for some constant g l ,  with lines 2-3 following from Lemmas 1-3, respectively. Also 
E (Z[ Alo ) ~< g 2 ( u  -s) 2 for some constant K2 by the same argument in reverse time. 

Next, 

E(ZI All) ~ E{(N~(t) - N e ( s )  )2( N e ( u )  - Ne(  t) )2],~l,)} 

E { E [ (  N ~ ( t ) -  N ~ ( s ) ) 2 ( N ~ ( u ) -  N~(t))~ I N , ( t )  

-- N e ( s ) ,  A , , ]  [A , , }  

E { ( N e ( t ) -  N e ( S ) ) : E [ ( 2  + N ( u  - t)):] I AI,} 

E{(2+  N ( t -  s)):}E{(2 + N ( u  - 0)  2} 

<~ ( E l ( 2 +  N ( u  - s)):})2 < oo, 
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with Lemmas  1 and 2 being used in both lines 3 and 4 and Lemma 3 being used to 

establish the final inequality. Finally, condi t ioning on the posit ion o f  the last point  
before t, we have 

I7 Io P( . '~ I  1) = ( 1 - F ( x ) ) ( F ( u - t + x ) - F ( x ) ) d x < ~  F ( y - t + x )  dx. • 

Since x has been chosen so that F ( t ) - F ( O ) ~  K3t for 0 ~ t <~ x, 

Io P(,~I1) ~ Ks ( u - t + x )  dx<~2K3(u - s )  2 . 

We have thus bounde d  each term in (12) appropriately,  so that we have established 

(8). []  

We now show that Condi t ion  F is necessary for  Hahn ' s  second momen t  condit ion 

(8). We use the fol lowing lemma. 

Lemma 4. I f  F ( t ) -  F(O) > Kt, then F ( s ) -  F(s/3)>~ 2Ks/3  for some s, 0 < s < ~  t. 

Proof.  Since 

F ( t ) - F ( O ) =  
n = O  

for some n, 

F ( t 3  -n ) - F ( t3  - n - ' )  ~> (2Kt/3)3-".  

F ( t 3 - " ) -  F ( t3  -"-~)/> Kt = (2Kt/3)  ~ 3-", 
n = 0  

[] 

Theorem 5. I f  Condition F fails, then (8)fails .  

Proof.  We show that it is not  possible to bound  the last term in (12) appropriately.  

First, for x < ½, E (ZI .AH) ~ ~6. For  P(,411), it suffices to consider only t - s = u - t = & 
Choose  6 small enough that F(6)  < 1 - e. For  this special case, 

P(~, l l )  = ( 1 - F ( x ) ) ( F ( 6 + x ) - F ( x ) ) d x ~ e  ( F ( 6 + x ) - F ( x ) ) d x  

>I (~ a/2)(F(3a/2) - F ( a / 2 ) ) .  

By Lemma 4 and Condi t ion  F, for any K there is a 8 ' < 3  such that F ( 3 6 ' / 2 ) -  
F ( 6 ' / 2 ) > K 6 ' .  Hence,  for any K and 8, there is a 3' such that 0 < 3 ' < 3  and 
P(,4n) ~ K8 '2, contradict ing (8). []  

Proof  of  Theorem 3. Since t -1Var  Ne(t) ~ o-2 as t-~ oo by (18) on p. 58 o f  Cox [6], 
2 cK(t /c ,  t /c)  -~ ~r x as c ~ 0. As c ~ O, Ne( t /c)  and Ne(u/c)  - Ne(t /  c) are asymptoti-  

cally independent ,  so that they are asymptotical ly uncorrelated.  Hence, 
cCov(Ne(t/e), Ne(u/c)-N~(t/c))- ,O as c - , O .  []  
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Proof of  Theorem 4. We first apply (9) to show that t -~ Var Ne(t)-> 1 as t-> co. For  
this purpose,  it suffices to assume that F(0)  = 0; having F(0)  > 0 only causes EN(t) 
to be multiplied by a scalar. By Condition F, there are t0>0  and K such that 
F ( t ) <~ K t  < 1 for all t ~< to. Hence,  E N ( t ) <~ K t  / (1 - Kto) ,  0 < t < to. With this bound, 
we can apply  (9) to get the desired limit on t -1Var  Ne(t). Hence c K ( t / c ,  t / c ) - )  t 
as c-->cc. It is also easy to see that cE{Ne(t/c)[Ne(u/c)-Ne(t/c)]}-)O as c->cc: 
Use the argument  to treat the last term in (12) when verifying (8) for Theorem 2. 

However ,  here we do not need Condi t ion  F. Using the event ,g,l~ with s -- 0; we have 
t/c 

P(,Z~ll) = ( 1 - F ( x ) ) ( F ( x + ( u - t ) / c ) - F ( x ) ) d x  
do 

r 
tlC 

<~ ( F ( x +  ( u -  t) /c)  - F ( x ) )  dx. 
do 

Since 

f~  F(x+8)-F(x)) d x =  

for all 6, 

f t/c 
lim c (F(x+(u-t)/c)-F(x)) d x = 0 ;  
c~co d 0 

see Exercises 2 on p. 43 and 16 on p. 49 o f  Chung  [4]. [ ]  
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