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Abstract

From the main paper: This paper proposes an approximation for the blocking probability in
a many-server loss model with a non-Poisson time-varying arrival process and flexible staffing
(number of servers) and shows that it can be used to set staffing levels to stabilize the time-
varying blocking probability at a target level. Because the blocking probabilities necessarily
change dramatically after each staffing change, we randomize the time of each staffing change
about the planned time. We apply simulation to show that (i) the blocking probabilities cannot
be stabilized without some form of randomization, (ii) the new staffing algorithm with rando-
miation can stabilize blocking probabilities at target levels and (iii) the required staffing can be
quite different when the Poisson assumption is dropped.
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1 Overview

This appendix contains additional material supplementing the main paper, presented in five more

sections. In §2 we elaborate on the need for extra randomization in order to stabilize blocking

probabilities in time-varying loss models. In §3 we present additional experimental results for

low-variability time-varying arrival processes, in particular, for (E4)t/GI/st/0 models in which the

underlying process N in equation (2.3) of the main paper is an Erlang E4 renewal arrival process. In

§4 we elaborate further on the empirical investigation of the square-root-staffing function, discussed

in §2.7 of the main paper. In §5 we elaborate on §2.9 and §7 of the main paper, which discuss the

two forms of blocking – time congestion and call congestion – and show how time congestion can

be stabilized by the algorithm. Finally, in §6 we elaborate on the heuristic refinements discussed

in §4.6 of the main paper. These heuristic refinements can be used to improve the performance of

the stabilization algorithm in the difficult case of short cycles and low blocking probability target,

i.e., with parameter pair (T,B) = (10, 0.01). §6 shows the iterative process we followed to reach

Figure 14 of the main paper.

2 The Need for Extra Randomization or Averaging

In §1.3 of the main paper we showed that the extra randomization or averaging is needed in order to

stabilize the blocking probabilities over time. We observed that it is not possible to stabilize time-

varying blocking probabilities by only choosing an appropriate deterministic staffing function s(t),

because, unlike delay probabilities in delay models, blocking probabilities in loss models necessarily

change dramatically at the time of each staffing change. First, we can theoretically show that the

blocking probability decreases to 0 immediately after a staffing increase, because there necessarily

is space for another arrival; second, simulations show that the blocking probability also increases

sharply after each staffing decrease. That was illustrated by the plots on the left in Figure 2 of the

main paper for the (H2)t/M/st/0 model.

We now elaborate by comparing the blocking probabilities before and after randomization in the

(H2)t/M/st/0 model to what they are in the corresponding Mt/M/st/0 model. Figure 1 compares

the blocking probabilities before and after randomization for the Mt/M/st/0 model (top) and

(H2)t/M/st/0 model (bottom) with the sinusoidal arrival rate in equation (1.1) of the main paper

having parameters λ̄ = 100, β = 25 and T = 2π/γ = 100 (and the fixed µ = 1), blocking probability

target B = 0.1 and the staffing functions shown in Figure 1 of the main paper.
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Figure 1: Simulation estimates of the blocking probabilities in the nonstationary Mt/M/st/0 model
(top) and (H2)t/M/st/0 model (bottom) for the sinusoidal arrival rate in equation (1.1) of the main
paper having parameters λ̄ = 100, β = 25 and T = 2π/γ = 100 (and the fixed µ = 1), blocking
probability target B = 0.1 and the staffing functions shown in Figure 2 of the main paper (top):
before randomization (left) and after randomization (right).

As in [3], we either (i) randomize the time of each staffing change or (ii) average the blocking

probabilities in a small interval about the time of each fixed staffing change. To interpret the left-

hand plots in Figure 1 without randomization, note that Figure 1 in the main paper shows that the

staffing is nonincreasing in the middle portion, roughly over [22, 78], and is increasing outside that

interval. That explains why we have the jumps up (down) in the middle (outside). Figure 1 shows

a smaller range of blocking probabilities for the more variable (H2)t arrivals than for Mt arrivals,

which is evidently explained by the more frequent short interarrival times allowing a more rapid

response to staffing changes within the sampling intervals (which are taken to be 0.01; see §3.4 of

the main paper.

3 Experiments for the Low-Variability (E4)t Arrival Process

We also considered loss models with time-varying arrival processes less variable than Poisson. For

that purpose, we considered (E4)t arrivals, constructed by letting the base process N in (??) be an

E4 renewal process, where the times between renewals have an Erlang E4 distribution. A mean-1
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E4 random variable can be represented as the sum of 4 i.i.d. exponential random variables each

with mean 0.25. An E4 random variable has scv c2 = 0.25.

Just as for the (H2)t/GI/st/0 model, we conducted simulation experiments for the (E4)t/GI/st/0

model for M and H2 service in the cases (T,B) with T = 100 and 10 and B = 0.1 and 0.01. First,

Figure 2 shows the blocking probabilities in the non-stationary (E4)t/M/st/0 model with parameter

pairs (100, 0.1) (left) and (100, 0.01) (right), using randomization with σ = 0.08.
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Figure 2: Simulation estimates of the blocking probabilities in the non-stationary (E4)t/M/st/0
model with parameter pairs (100, 0.1) (left) and (100, 0.01) (right) using randomization with σ =
0.08

Then Figure 3 shows the blocking probabilities in the non-stationary (E4)t/M/st/0 model with

parameter pairs (10, 0.1) (left) and (10, 0.01) (right), using randomization with σ = 0.08. As in the

main paper, we see that the blocking probabilities are stabilized well when the target is B = 0.1,

but noticeable periodic fluctuations remain for B = 0.01. As before, these fluctuations do not seem

severe from the perspective of engineering applications.
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Figure 3: Simulation estimates of the blocking probabilities in the non-stationary (E4)t/M/st/0
model with parameter pairs (10, 0.1) (left) and (10, 0.01) (right) using randomization with σ = 0.08

Next, we consider cases with (E4)t arrivals and (H2) service times. Figure 4 shows the blocking

probabilities in the non-stationary (E4)t/H2/st/0 model with parameter pairs (100, 0.1) (left) and
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(100, 0.01) (right), using randomization with σ = 0.08. We see that in both plots, the blocking

probabilities are again stabilized with long cycles.
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Figure 4: Simulation estimates of the blocking probabilities in the non-stationary (E4)t/H2/st/0
model with parameter pairs (100, 0.1) (left) and (100, 0.01) (right) using randomization with σ =
0.08

Finally, Figure 5 shows the blocking probabilities in the non-stationary (E4)t/H2/st/0 model

with parameter pairs (10, 0.1) (left) and (10, 0.01) (right), using randomization with σ = 0.08.

Again, we see that the left plot with B = 0.1 is rather well stabilized, while the right plot with

B = 0.01 is only imperfectly stabilized. We see that there is a much longer warmup period in

Figure 5 than in Figure 3, which is consistent with the explanation in §6 of the main paper.
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Figure 5: Simulation estimates of the blocking probabilities in the non-stationary (E4)t/H2/st/0
model with parameter pairs (10, 0.1) (left) and (10, 0.01) (right) using randomization with σ = 0.08

In summary, the experiments with the (E4)t arrival processes present additional evidence that

the conclusions in the main paper hold quite broadly.

4 More on the Square-Root-Staffing Formula

In §2.7 of the main paper we briefly discussed empirically evaluating the square-root-staffing (SRS)

formula. Given the formula for the offered loadm(t) in (2.6) of the main paper, which is independent
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of the peakedness z, and our staffing function s(t), before the randomization is applied, we examined

to what extent our staffing is consistent with the SRS. We did that by calculating the implied

empirical quality of service (eqos)

β̄∗(t) ≡
s(t)−m(t)
√

m(t)
, 0 ≤ t ≤ T, (4.1)

We found that these differed from constant functions by only minor periodicity in the cycle length

T .

We now examine further. First, Figure 6 compares the direct staffing functions with the SRS

staffing function, using the average observed value of the eqos β̄∗(t), in the base (H2)t/M/st/0

model with parameter pairs (T,B) = (10, 0.1) and (10, 0.01) (left) and (100, 0.1) and (100, 0.01)

(right) before randomization is applied. To amplify, Figure 7 plots the differences of the two staffing

functions. Figure 7 shows that the maximum observed difference is 3 servers for T = 100 and 2

servers for T = 10. Of course, we would not know these average eqos values, without first applying

our algorithm.
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Figure 6: A comparison of the direct staffing functions with the SRS staffing function in the base
(H2)t/M/st/0 model with parameter pairs (T,B) = (10, 0.1) and (10, 0.01) (left) and (100, 0.1) and
(100, 0.01) (right) before randomization is applied

Finally, we plot the blocking produced by the SRS staffing method with the average eqos in

these four cases. First Figure 8 shows the blocking for T = 10, while Figure 9 shows the blocking

for T = 100. We see slightly more periodicity in these plots than we saw before, e.g., compared to

Figure 2 of the main paper.
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Figure 7: The difference between the direct staffing function and the associated SRS staffing func-
tion in the base (H2)t/M/st/0 model with parameter pairs (T,B) = (10, 0.1) and (10, 0.01) (left)
and (100, 0.1) and (100, 0.01) (right) before randomization is applied
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Figure 8: Simulation estimates of the blocking probabilities using the SRS formula with the average
eqos in (4.1) in the base (H2)t/M/st/0 model with parameter pairs (10, 0.1) (left) and (10, 0.01)
(right) before randomization is performed.
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Figure 9: Simulation estimates of the blocking probabilities using the SRS formula with the average
eqos in (4.1) in the base (H2)t/M/st/0 model with parameter pairs (100, 0.1) (left) and (100, 0.01)
(right) before randomization is performed.
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5 Approximations for the Time Congestion

As discussed in §2.9 and §7 of the main paper, for the stationary G/GI/s/0 and TV Gt/GI/s/0

models, there actually are two forms of blocking: there is the blocking BC experienced by arriving

customers, often called the call congestion, and there is the proportion of time all servers are

busy, BT , often called the time congestion. By the Poisson Arrivals See Time Averages (PASTA)

property, BC = BT when the arrival process is Poisson, but not more generally. Following common

convention, we have focused on BC , using the notation B, but now we elaborate on our discussion

of BT to some extent.

For the stationary G/G/s/0 model, the time congestion BT is discussed in §6 of [2]. The tables

in [2] show that (i) BC and BT can be quite different and (ii) approximating BT can be challenging.

We remark that the delay probabilities seen at arrival and at an arbitrary time are also dif-

ferent in stationary G/GI/s multi-server delay models, but in [4] it is shown that these two delay

probabilities do not differ much for large-scale G/GI/s multi-server delay models. From [2], it is

evident that the story changes for loss models, where the two probabilities can be very different.

We will see the same here for the more general Gt/GI/st/0 models.

In [2] two approximations were proposed for BT . The first approximation from §6.1 is BT ≈

BC/max {z, 1}, while the second approximation from (28) in §6.2 is BT ≈ BC/Ûs(1), where Ûs(x)

being the Laplace transform of the mean function E[N(t)], where N(t) is the arrival counting

process. Theorem 6 of [2] shows that the second method is exact for the GI/M/s/0 model, whereas

the use of BT ≈ BC/max {z, 1} is just a heuristic, motivated by the numerical results. The

implication of the first method is that we approximate BT by the approximation for BC with a

Poisson arrival process.

With our (H2)t/M/st/0 base model, the simple heuristic BT ≈ BC/max {z, 1} means that

would be acting as if the staffing were the much lower value with an Mt arrival process in Figure

1 of the main paper. Figure 1 of the main paper shows that the staffing could be very different.

Table 3 of [2] shows that the time congestion is indeed much lower for H2 arrival processes, roughly

consistent with the heuristic approximation, at least in some cases. An intuitive explanation is

given there as well.

We now examine our time-varying setting more carefully. To understand what we should expect

in our (H2)t/M/st/0 base case, we should look closely at the results in [2] for the corresponding

stationary H2/M/s/0 model. That can be done by comparing the second H2I/MI section of Table
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3 in [2] to the first MI/GI section of Table 1 in [2]. The parameters here have been chosen to make

comparisons easy; e.g., in both cases the H2 distribution is the same, with c2a = 4 and z = 2.50. In

particular, we should look at the entries for offered load (α there) of 100 and the targets 0.1 and

0.01. We should expect (hope) that our approximation would be effective when the corresponding

approximation is effective for the stationary model, but we should expect that our approximation

would not be effective otherwise.

Thus, it is important to note that the ratio approximation using Ûs(1) is consistently effective

for the stationary model, while the simple heuristic based on BT ≈ BC/max {z, 1} has mixed

results. In particular, the simple heuristic based on BT ≈ BC/max {z, 1} is effective for target

B = 0.1, but ineffective for the lower targets B = 0.01 and B = 0.001.

To explain in detail, observe that for target 0.1, we see a good story: From Table 3 of [2],

we see that simulation shows that the required staffing for BT in the H2I/MI model is 96 (third

column from the right), while the required staffing for the MI/MI model from the corresponding

column of Table 1 of [2] (the heuristic with z = 1) is 97 and the ratio approximation is 98 (final

column). Hence, regarding differences of 1-2 servers as relatively unimportant, we expect that both

approximations should be good for the more general (H2)t/M/st/0 base case for target B = 0.1,

as we found.

On the other hand, for target B = 0.01, From Table 3 of [2], we see that simulation shows

that the required staffing for the H2I/MI model is 126, while the required staffing for the MI/MI

model [2] (the heuristic with z = 1) is 117 and the ratio approximation is 128. We see that the

ratio approximation should again be good, but the simple heuristic based on z = 1 uses 9 too few

servers, and so should lead to higher blocking probabilities. Hence, for the target B = 0.01, we

expect that the ratio approximation BT ≈ BC/Ûs(1) to be good for the more general (H2)t/M/st/0

base model, but we expect that the simple heuristic BT ≈ BC/max {z, 1} will not perform well.

And, indeed, that is what we found.

In particular, Tables 1 and 2 show the performance of the two averaging approaches for each of

the two approximation methods in the base model with parameter λ̄ = 100 and β = 25, as in the

main paper, and for the parameter pair (T,B) = (100, 0.1) with randomization parameter σ = 0.08

and averaging parameter ∆ = 0.2. Table 1 shows the approximations based on setting z = 1 when

z ≥ 1, while Table 2 shows the approximations involving Ûs(1). Tables 1 and 2 show that the

approximate staffing algorithm for BT is remarkably effective, just as for the stationary model in

[2].
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Table 1: Simulation estimates of the time congestion BT with staffing determined by the first
approximation method, letting z = 1, over four unit intervals each containing one staffing change,
for the H2/M/st/0 model with µ = 1 and parameter pair (T,B) = (100, 0.1) (γ = 0.0628) using
the MOL staffing and randomization (left) and averaging (right). The minimum, average and
maximum values over a unit interval are shown.

estimated time congestion over intervals of length 1 using z = 1

staffing change randomization: σ = 0.08 averaging: ∆ = 0.2

time from to min. average max. min. average max.

40.2 111 110 0.084 0.095 0.107 0.091 0.094 0.103

59.7 85 84 0.090 0.098 0.110 0.091 0.097 0.106

89.9 81 82 0.087 0.100 0.112 0.084 0.096 0.103

99.9 94 95 0.087 0.098 0.107 0.084 0.097 0.104

Table 2: Simulation estimates of the time congestion BT with staffing determined by the second
approximation method involving Ûs(1), over four unit intervals each containing one staffing change,
for the H2/M/st/0 model with µ = 1 and parameter pair (T,B) = (100, 0.1) (γ = 0.0628) using
the MOL staffing and randomization (left) and averaging (right). The minimum, average and
maximum values over a unit interval are shown.

estimated time congestion over intervals of length 1 using Ûs(1)

staffing change randomization: σ = 0.08 averaging: ∆ = 0.2

time from to min. average max. min. average max.

39.9 112 111 0.085 0.093 0.106 0.086 0.091 0.101

60.1 86 85 0.080 0.089 0.102 0.082 0.088 0.098

90.1 83 84 0.076 0.088 0.098 0.079 0.090 0.096

99.5 95 96 0.079 0.090 0.102 0.081 0.089 0.096

Figure 10 shows the simulation estimates of the BT blocking probabilities in the non-stationary

(H2)t/M/st/0 model with the difficult parameter pair (10, 0.01) with the staffing algorithm of

adding Ûs(1) using randomization with σ = 0.08. We again see cyclical fluctuations, but the

plot looks very similar to the corresponding BC plot. This suggests that our staffing algorithm

determined by adding Ûs(1) works well.

Table 3, which shows the average BC and BT blocking probabilities in the stationary and non-

stationary models with T = 10 for exponential service times having average arrival rate λ̄ = 100

for targets of both B = 0.1 and B = 0.01 using randomization with σ = 0.08. We also display the

congestion ratios BR ≡ BC/BT discussed in §6.2 of [2]. Table 3 shows that the estimates of BR

for the nonstationary model with the chosen MOL staffing and randomization become essentially

the same as for the stationary model. For these cases, 1.40 ≤ BR ≤ 1.50. Also Table 3 shows that

the average blocking probabilitities are very close to the targets, falling a little below the targets.

The two methods used to determine BT staffing give similar result when B = 0.1, but not when

B = 0.01.

10



Table 3: Average BC and BT blocking probabilities in the stationary and non-stationary
(H2)t/M/st/0 models with exponential service times having average arrival rate λ̄ = 100 for targets
of both B = 0.1 and B = 0.01 using randomization with σ = 0.08

service times B = staffing arrival
process

average
BC

with
BC

staffing

average
BT

with
BT

staffing

average
BC

with
BT

staffing

average
BT

with
BC

staffing

BR = (BC

with BC

staffing)/(BT

with BC

staffing)

BR = (BC

with BT

staffing)/(BT

with BT

staffing)

exponential

0.1

z = 1
stationary 0.0905 0.0983 0.1395 0.0640 1.4141 1.4191

non-
stationary

0.0890 0.0980 0.1384 0.0627 1.4195 1.4122

Ûs(1)
stationary 0.0905 0.0929 0.1328 0.0640 1.4141 1.4295

non-
stationary

0.0890 0.0912 0.1288 0.0627 1.4195 1.4123

0.01

z = 1
stationary 0.0079 0.0246 0.0356 0.0054 1.4630 1.4472

non-
stationary

0.0083 0.0253 0.0365 0.0058 1.4310 1.4427

Ûs(1)
stationary 0.0079 0.0079 0.0115 0.0054 1.4630 1.4557

non-
stationary

0.0083 0.0083 0.0120 0.0058 1.4310 1.4458

Table 4 shows the average BC andBT blocking probabilities in the stationary and non-stationary

models with T = 10 for deterministic service times having average arrival rate λ̄ = 100 for targets

of both B = 0.1 and B = 0.01 using randomization with σ = 0.08. (The case of deterministic

service times was not considered in [2].) We see from the table that letting z = 1 gives much higher

results than adding Ûs(1). Also, the average BC blocking probabilities are somewhat low in all

cases.

One natural way to fix this is to decrease the number of servers. Since the stationary and the

non-stationary cases yield basically the same results, in table 5, we look at the average BC with

BT blocking probabilities in the H2/D/s/0 models having constant arrival rate λ̄ = 100 for targets

of both B = 0.1 and B = 0.01 when we reduce the number of servers by 1, 2, 3 and 4 respectively.
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Figure 10: Simulation estimates of the BT blocking probabilities in the non-stationary
(H2)t/M/st/0 model using for the difficult parameter pair (10, 0.01) using randomization with
σ = 0.08
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Table 4: Average BC and BT blocking probabilities in the stationary and non-stationary models
with (H2)t arrivals and deterministic service times having average arrival rate λ̄ = 100 for targets
of both B = 0.1 and B = 0.01 using randomization with σ = 0.08

service times B = staffing arrival
process

average
BC

with
BC

staffing

average
BT

with
BT

staffing

average
BC

with
BT

staffing

average
BT

with
BC

staffing

BR = (BC

with BC

staffing)/(BT

with BC

staffing)

BR = (BC

with BT

staffing)/(BT

with BT

staffing)

deterministic

0.1

z = 1
stationary 0.0870 0.1297 0.1638 0.0672 1.2946 1.2629

non-
stationary

0.0841 0.1297 0.1638 0.0652 1.2899 1.2629

Ûs(1)
stationary 0.0870 0.0960 0.1220 0.0672 1.2946 1.2708

non-
stationary

0.0841 0.0962 0.1232 0.0652 1.2899 1.2807

0.01

z = 1
stationary 0.0071 0.0441 0.0573 0.0053 1.3396 1.2993

non-
stationary

0.0071 0.0451 0.0586 0.0053 1.3396 1.2993

Ûs(1)
stationary 0.0071 0.0082 0.0109 0.0053 1.3396 1.3293

non-
stationary

0.0071 0.0078 0.0104 0.0053 1.3396 1.3333

From table 5 and, we see that the target blocking probabilities can almost be achieved by using 3

servers less. Figure 18 0f the main paper, which shows the simulation estimates of the BC blocking

probabilities in the stationary H2/D/s/0 model with parameter triple (100, 0, 10) having average

arrival rate λ̄ = 100 with the staffing algorithm for targets B = 0.1 and B = 0.01 using 3 servers

less, also demonstrates this.

Table 5: Average BC with BT blocking probabilities in the H2/D/s/0 models having constant
arrival rate λ̄ = 100 for targets of both B = 0.1 and B = 0.01 with fewer servers

service times B = staffing arrival
process

average
BC

with
BC

staffing

average
BT

with
BT

staffing

average
BC

with
BT

staffing

average
BT

with
BC

staffing

BR = (BC

with BC

staffing)/(BT

with BC

staffing)

BR = (BC

with BT

staffing)/(BT

with BT

staffing)

deterministic 0.1
z = 1 stationary 0.0917 0.1349 0.1702 0.0710 1.2915 1.2617

Ûs(1) stationary 0.0917 0.1005 0.1276 0.0710 1.2915 1.2697

(s− 1) 0.01
z = 1 stationary 0.0079 0.0471 0.0612 0.0059 1.3390 1.2994

Ûs(1) stationary 0.0079 0.0091 0.0122 0.0059 1.3390 1.3407

deterministic 0.1
z = 1 stationary 0.0965 0.1407 0.1765 0.0746 1.2936 1.2544

Ûs(1) stationary 0.0965 0.1051 0.1334 0.0746 1.2936 1.2693

(s− 2) 0.01
z = 1 stationary 0.0089 0.0502 0.0648 0.0066 1.3485 1.2908

Ûs(1) stationary 0.0089 0.0101 0.0135 0.0066 1.3485 1.3366

deterministic 0.1
z = 1 stationary 0.1015 0.1461 0.1832 0.0786 1.2913 1.2539

Ûs(1) stationary 0.1015 0.1104 0.1399 0.0786 1.2913 1.2672

(s− 3) 0.01
z = 1 stationary 0.0099 0.0534 0.0690 0.0074 1.3378 1.2921

Ûs(1) stationary 0.0099 0.0111 0.0148 0.0074 1.3378 1.3333

deterministic
0.01

z = 1 stationary 0.0110 0.0566 0.0731 0.0082 1.3415 1.3147

(s− 4) Ûs(1) stationary 0.0110 0.0123 0.0164 0.0082 1.3415 1.3333

Table 6 shows the average BC andBT blocking probabilities in the stationary and non-stationary

models with T = 10 for hyperexponential service times having average arrival rate λ̄ = 100 for
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targets of both B = 0.1 and B = 0.01 using randomization with σ = 0.08. (This case relates to the

third case of Table 3 in [2].) We can see from it that using z = 1 will give higher results when the

B = 0.01. But the average blocking probabilities are very close to the targets otherwise.

Table 6: Average BC and BT blocking probabilities in the stationary and non-stationary models
with hyperexponential service times having average arrival rate λ̄ = 100 for targets of both B = 0.1
and B = 0.01 using randomization with σ = 0.08

service times B = staffing arrival
process

average
BC

with
BC

staffing

average
BT

with
BT

staffing

average
BC

with
BT

staffing

average
BT

with
BC

staffing

BR = (BC

with BC

staffing)/(BT

with BC

staffing)

BR = (BC

with BT

staffing)/(BT

with BT

staffing)

hyperexponential

0.1

z = 1
stationary 0.0970 0.0949 0.1343 0.0678 1.4307 1.4152

non-
stationary

0.0953 0.0943 0.1326 0.0671 1.4203 1.4062

Ûs(1)
stationary 0.0970 0.0944 0.1348 0.0678 1.4307 1.4280

non-
stationary

0.0953 0.0960 0.1367 0.0671 1.4203 1.4240

0.01

z = 1
stationary 0.0095 0.0210 0.0304 0.0066 1.4394 1.4476

non-
stationary

0.0095 0.0214 0.0309 0.0065 1.4615 1.4439

Ûs(1)
stationary 0.0095 0.0097 0.0140 0.0066 1.4394 1.4433

non-
stationary

0.0095 0.0094 0.0136 0.0065 1.4615 1.4468
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6 Heuristic Refinements for the Parameter Pair (T,B) = (10, 0.01)

The right-hand pllots in Figures 6, 11, 12 and 13 of the main paper show that there cyclical

fluctuations remain with short cycles (T = 10) and light loading (B = 0.01). We saw that problem

was not too serious because the range of values was quite small. Nevertheless, it is natural to

consider if we can make improvements. To do so, we investigate whether it is possible to improve

the performance by applying simulation to iteratively search for improvements, in the spirit of

the simulation-based staffing algorithm in [5] and the iterative staffing algorithm (ISA) in [1].

specifically, we already have a feasible staffing algorithm, so we now perform a local search using

additional simulation experiments to find a better feasible solution. The final Figure 17 here shows

that we can substantially improve the stabilization of the blocking probabilities, even for the difficult

Figures 11-13 in the main paper with H2 and LN service times. The algorithm provides a good

starting point to develop the refinements.

We considered several different alternatives. First, we tried alternative randomization param-

eters σ, such as 0.04 and 0.16 instead of 0.08, but that did not help. We noticed that the peaks

occur at times 20, 30, 40, 50, and 60, at the beginning of the cycles, while the low points occur in

the middle of the cycles, at times 25, 35, 45, and 55. So we considered shifting the intervals that

we average over a little to adjust for that effect, e.g., randomizing with N(−0.02, 0.08) instead of

with N(0.00, 0.08), but that did not help either.

We also considered that our staffing policy is such that when there is to be a staffing decrease

at a time when all servers are busy, we wait until the first server becomes free before removing the

server. This delay in reducing the staffing should cause an impact of less than one server at any

time. Figure 10 of [3] suggests that the impact of 1 server could be about 0.001 or 0.002. That could

make the blocking probabilities slightly too low during times when the staffing is decreasing. One

direct way to fix this is to get balance and lower peaks slightly by raising staffing by 1 during the

beginning of each cycle. Thus, we tried increasing the staffing level by 1 over various subintervals.

We tried several alternatives, settling on what is shown in Figure 11. On the left in Figure 11 is

shown simulation estimates of the BC blocking probabilities in the non-stationary (H2)t/M/st/0

model with parameter pair (T,B) = (10, 0.01) with the MOL staffing algorithm increased by 1

during intervals [9.5, 12.5], [19.5, 22.5], etc. On the right in in Figure 11 is shown simulation

estimates of the BC blocking probabilities in the non-stationary (H2)t/H2/st/0 model with pair

(T,B) = (10, 0.01) with the MOL staffing algorithm increased by 1 during intervals [9.5, 14.0],
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[19.5, 24.0], etc. Fortunately, by comparing to Figure 6 in the main paper (right) and Figure 6
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Figure 11: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/GI/st/0 model with M service (left) and H2 service (right), parameter pair (T,B) =
(10, 0.01) with the MOL staffing algorithm increased by 1 during intervals [9.5, 12.5], [19.5, 22.5],
etc. (left) and [9.5, 14.0], [19.5, 24.0], etc. (right), using randomization with σ = 0.08.

in the main paper (right) , we see that this simple heuristic variation of the main MOL staffing

algorithm staffing with the randomization by N(0.00, 0.08) does provide significant improvement.

6.1 More Details

In this section we elaborate on the heuristic refinements discussed above. Figures 5, 6, 10 and 11

of the main paper show imperfect stabilization for the parameter pair (T,B) = (10, 0.01). Even

though the range of values is quite narrow, there are cyclical fluctuations with the period T = 10.

To address that problem, we now perform a local search using additional simulation experiments

to find a better feasible solution.

We started by changing our randomization parameters. Figure 12 shows the simulation esti-

mates of the BC blocking probabilities in the non-stationary (H2)t/M/st/0 model with parameter

pair (T,B) = (10, 0.01) In the left, the randomization parameter is σ = 0.04, while in the right

it is σ = 0.16. In comparison to the right plot of figure ??, we see that changing the standard

deviation from 0.08 to 0.04 or 0.16 won’t give us better results, and that there are still obvious

cyclical fluctuations.

We notice that the peaks occur at times 20, 30, 40, 50, and 60, at the beginning of the cycles,

while the low points occur in the middle of the cycles, at times 25, 35, 45, and 55. So we would

like to shift the intervals that we average over a little to adjust for that effect. The peaks of the

blocking occur at the beginning of the cycles, and that is where the arrival rate is increasing. From

figure 2 of [3], we see that the staffing is increasing the most at these places too, or at least the

staffing is in the middle of an increasing period. To address this problem, we try to randomize
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Figure 12: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/M/st/0 model with parameter (T,B) = (10, 0.01) using randomization with σ = 0.04 (left)
and σ = 0.16 (right)

the times of the staffing changes by a normal random variable with mean less than 0. Figure 13

shows the simulation estimates of the BC blocking probabilities in the non-stationary (H2)t/M/st/0

model with parameter pair (T,B) = (10, 0.01) using randomization with a normal random variable

N(−0.02, 0.08). However, the plot still shows cyclical fluctuation, and the method is not very

effective.
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Figure 13: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/M/st/0 model with parameter triple (100, 25, 10) having average arrival rate λ̄ = 100 with
the staffing algorithm for target B = 0.01 using randomization with N(−0.02, 0.08)

One possible explanation for the fluctuations is that our staffing policy is such that when there

is to be a staffing decrease at a time when all servers are busy, we wait until the first server becomes

free before removing the server. This should cause an impact of less than one server at any time.

Figure 11 of [3] suggests that the impact of 1 server could be about 0.001 or 0.002. That could

make the blocking probabilities slightly too low during times when the staffing is decreasing. One

direct way to fix this is to get balance and lower peaks slightly by raising staffing by 1 during the

beginning of each cycle. Figure 14 shows the simulation estimates of the BC blocking probabilities
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in the non-stationary (H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) and the staffing

algorithm increased by 1 at the beginning of each cycle, using randomization with σ = 0.08. In the

left plot, staffing is increased by 1 during intervals [9, 11], [19, 21], etc. In the right, it is increased

by 1 during intervals [10, 12], [20, 22], etc. We can see some improvement in the left plot, and in

the right plot, the performance is much better as the peaks are effectively lowered.
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Figure 14: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) for the staffing algorithm increased
by 1 during intervals [9, 11], [19, 21], etc. (left) and during intervals [10, 12], [20, 22], etc. (right)
using randomization with σ = 0.08.

Figure 15 shows the simulation estimates of the BC blocking probabilities in the non-stationary

(H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) for the staffing algorithm increased

by 1 during intervals [9.5, 12.5], [19.5, 22.5], etc. for target B = 0.01 using randomization with

σ = 0.08. The plot shows that our periodic adjustment works rather well at keeping the blocking

probabilities more stabilized.
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Figure 15: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) for the staffing algorithm increased
by 1 during intervals [9.5, 12.5], [19.5, 22.5], etc. using randomization with σ = 0.08.

To make further improvement, it might be a good idea to add servers at some places, but
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subtract at other places. If we do both adding and subtracting, the additions and subtractions

balance out overall. That might help with the average blocking probabilities while smoothing out.

Figure 16 shows the simulation estimates of the BC blocking probabilities in the non-stationary

(H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) for the staffing algorithm increased by

1 during intervals [9.5, 13], [19.5, 23], etc., and decreased by 1 during intervals [15, 16], [17.5, 18.5],

[25, 26], [27.5, 28.5], etc. for target B = 0.01 using randomization with σ = 0.08. However, the plot

shows that if we subtract 1 server, then the blocking probabilities will become too high. Since the

overall performance looks a little worse than the previous one, we prefer the method of only adding

1 at certain intervals in each cycle.
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Figure 16: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) for the staffing algorithm increased by
1 during intervals [9.5, 13], [19.5, 23], etc., and decreased by 1 during intervals [15, 16], [17.5, 18.5],
[25, 26], [27.5, 28.5], etc. using randomization with σ = 0.08.

We might also take a look at the average blocking probabilities in the previous cases. Table

7 shows the average BC blocking probabilities in the non-stationary (H2)t/M/st/0 model with

parameter pair (T,B) = (10, 0.01) for different staffing adjustments for target B = 0.01 using

randomization with σ = 0.08. We see from it that our refinement methods don’t have a big impact

on the average blocking probabilities. In fact, the numbers are very close to the corresponding

value in table 3.

To confirm that our adjustment algorithm performs well, we also look at the cases with non-

Markovian service times. Since we see from Figures 11 and 12 of the main paper that the cases with

non-exponential service times have more variability, we start adding 1 more server in the second

cycle and during longer intervals. Figure 17 shows the simulation estimates of the BC blocking

probabilities in the non-stationary model with hyperexponential arrivals and non-Markovian service

times with parameter pair (T,B) = (10, 0.01) for the staffing algorithm increased by 1 during
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Table 7: Simulation estimates of the average BC blocking probabilities in the non-stationary
(H2)t/M/st/0 model with parameter pair (T,B) = (10, 0.01) for different staffing adjustments
using randomization with σ = 0.08

adjustments to staffing average

increased by 1 during intervals [9, 11], [19, 21], etc. 0.0082

increased by 1 during intervals [10, 12], [20, 22], etc. 0.0082

increased by 1 during intervals [9.5, 12.5], [19.5, 22.5], etc. 0.0081

increased by 1 during intervals [9.5, 13], [19.5, 23], etc., and decreased by 1 during intervals [15, 16], [17.5, 18.5],
[25, 26], [27.5, 28.5], etc.

0.0084

intervals [19.5, 24], [29.5, 34], etc. for target B = 0.01 using randomization with σ = 0.08. In the

left plot, the service times are hyperexponential, while in the right, they are lognormal. The plot

shows that our method works rather well at keeping the blocking probabilities more stabilized even

when the service times are not exponentially distributed.
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Figure 17: Simulation estimates of the BC blocking probabilities in the non-stationary
(H2)t/H2/st/0 model (left) and (H2)t/LN/st/0 model (right) with parameter pair (T,B) =
(10, 0.01) for the staffing algorithm increased by 1 during intervals [19.5, 24], [29.5, 34], etc. us-
ing randomization with σ = 0.08.

In conclusion we see that Figure 17 provides dramatic improvement over Figures 11 and 12 of

the main paper. Thus there is promise for these heuristic refinements.
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