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detectors are very close to the optimum and more complicated
DMEF.
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Calculating Time-Dependent Performance Measures for
the M/M/1 Queue

JOSEPH ABATE AND WARD WHITT

Abstract—This correspondence discusses methods for computing tran-
sient performance measures for the M/M/1 queue. These performance
measures are often expressed in terms of modified Bessel functions
without any disc about comp In fact, a common expression
for the probability transition function of the M/M/I queue length
process has an infinite sum of modified Bessel functions. For actually
generating numbers, however, it is convenient to use numerical integra-
tion with associated integral representations, as was first pointed out by
Morse in 1955 {17].

I. INTRODUCTION

In the IEEE TRANSACTIONS ON COMMUNICATIONS, several
papers have proposed numerical procedures for calculating
time-dependent performance measures for the M/M/1 queue,
such as the mean, the variance, and the probability mass
function of the queue length at time f for any given initial state.
The proposed procedures include finite-state approximations
[21], the discrete Fourier transform [4], Q functions [13], and
generalized Q functions [7], [8]. These new procedures seem
to be effective, but we wish to point out that the need for new
procedures is less than it might appear because integral
representations for the M/M/1 time-dependent performance
measures exist that make numerical calculation relatively
straightforward by numerical integration, e.g., by Simpson’s
rule; see [3, Sect. 25.4]. It is also possible to numerically
invert Laplace transforms, but numerical integration usually
gives much better accuracy (with bounds on the error) with
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very little effort (using readily available programs). Integral
representations for M/M/1 transient quantities were first
proposed by Ledermann and Reuter [16] and Morse [17] and
appear in the 1962 textbooks by Riordan [18] and Takacs [22].
New and old integral representations (some remarkably
simple) are also discussed in [2]. For example, the busy-period
density, the probability that the server is busy at time ¢ starting
in zero, the mean queue length at time 7 starting in zero, and
the autocorrelation function of the stationary queue-length
process can all be represented as mixtures of exponentials with
a probabilistic mixing density that is a simple modification of a
beta density.
II. GUIDANCE IN THE TEXTBOOKS

Unfortunately, numerical procedures have not been given
enough emphasis in the queueing textbooks. Most textbooks
present only representations of M/M/1 transient quantities in
terms of modified Bessel functions, without any discussion
about how these expressions are to be used for generating
numbers, e.g., Gross and Harris [11, p. 129] and Kleinrock
{15, p. 77). Indeed Kleinrock [15, p. 78] concludes

“‘This last expression [the standard representation of the
probability transition function in terms of modified Bessel
functions] is most disheartening. What it has to say is that an
appropriate model for the simplest interesting queueing
system...leads to an ugly expression for the time-dependent
behavior of its state probabilities. As a consequence, we can
only hope for greater complexity and obscurity in attempting to
find time dependent behavior of more general queueing
systems.”’

The expression displayed in [15, p.77, eq. (2.163)] is
somewhat daunting. With A\ denoting the arrival rate, p the
service rate, and p = N/pu the traffic intensity, the expression
is

Py(t)=e- Ot [p<f~")/21,_,-(2x/>\ut)

+P(j-i_ 1)/21j+i+1(2 VAut)

+a-p)p! 3 p*kﬂlk(zﬁut)] M
k=j+i+2
where
3 oo (x/2)/(+2m
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is the modified Bessel function of the first kind of order k; see
[3, Sect. 9.6]. Note that (1) not only involves the modified
Bessel functions in (2), but an infinite sum of these modified
Bessel functions. Obviously, there is a gap between (1) and
numerical results.

II1I. FINITE—STATE APPROXIMATIONS

Consistent with Kleinrock’s conclusion, Stern motivates his
development of approximations for M/M/1 transient behavior
in [21] with the remark

*“it is well known that even for the simplest case, the M/M/1
queue, the exact expression for N(¢) [the mean queue length at
time ¢] involves an infinite sum of Bessel functions. Clearly
approximations are necessary.’’

What Stern does then in [21] is approximate the M/M/1
model by a truncated model having a finite waiting room and
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analyze this finite-state model exactly. This procedure works
very well because, first, the time-dependent behavior of a
finite-state birth-and-death process has a relatively simple
exponential from (e.g., see Keilson [14, Sect. 3.2]) and
second, the time-dependent behavior in the two models differs
very little when the waiting room is sufficiently large. Indeed,
for a sufficiently large waiting room, the difference between
the two models is invariably negligible compared to the quality
of the model fit in applications.

Stern’s approximation is somewhat disconcerting, though
because we usually introduce models involving infinite quanti-
ties in order to obtain mathematical simplification, and now
we are proceeding in the reverse direction. Indeed, from most
perspectives, the standard M/M/1 model has a more elemen-
tary description than its finite-waiting room counterpart. In
fact, it is really not so easy to see what the transient behavior is
like from the formulas with the finite waiting room. Recogniz-
ing this, Stern looks for additional structure and approxima-
tions.

In their seminal paper, Ledermann and Reuter [16] previ-
ously pursued this line of reasoning (for general birth-and-
death processes). An improved version of this approach for the
M/M/1 queue is also presented by Takacs [22]. In [22, ch. 1,
Sect. 1], Takécs derives the time-dependent probability mass
function for M/M/1 queue with finite waiting room. In
[22, ch. 1, Sect. 2], Takéacs then uses this result to derive
the corresponding result for the M/M/1 system with unlim-
ited waiting room by taking the limit as the size of the waiting
room tends to infinity. The finite-waiting-room expression
involving a sum of trigonometric terms is a Riemann sum
approximating the limiting integral. Thus, the finite-waiting-
room approximation turns out to be equivalent to a numerical
integration of an integral. In this way, Takdcs obtains a new
proof of the trigonometric integral representation for the
probability transition function due to Morse [17]. The trigono-
metric integrand may look unsightly to the human eye, but the
computer is pleased. Indeed, contrary to Stern’s remark
above, the mean queue length (number in system) at time #
starting in state / with p < 1 has a relatively tractable integral
representation without any Bessel functions, namely,

e o 2% x et
mit, i) = 3 Py =——-Z ("
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fory(¥) =1+ p — 2+p cos y; see [22, p.27]. The integrand
in (3) and its derivatives can easily be bounded to produce
bounds on the error in numerical integration. Greater accuracy
for a given number of points can be obtained by allocating
more points to the region where v () is small. These integrals
are relatively well behaved, e.g., a numerical evaluation of (3)
in the case i = 0 using a simple trapezoidal rule with only 200
points produces an absolute error of about 10~7 for p < 0.85.
For p > 0.85, you need to use more points near the minimum
of v(»).

It is also worth noting that there are other integral
representations besides the trigonometric integral representa-
tions; e.g., two others are given for m(¢, i) in [2, Theorem
4.1 and Corollary 7.2]. The integrands in these other integral
representations are somewhat easier to understand (for some-
one who rarely works with trigonometric functions), but we
found the trigonometric integral representations to be superior
for obtaining numerical results because the intervals of
integration tend to be shorter and the integrands tend to be
much more nearly uniform. In a numerical experiment using
the trapezoidal rule with 25 equally spaced subintervals
(obviously not aiming for high precision), we found that the
trigonometric integral representation in (3) to give an order of
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magnitude better accuracy for the case i = O than the other
two integral representations in [2].

Unfortunately, however, Ledermann and Reuter [16] and
Takdcs [22] do not discuss the importance of the integral
representations for computation, so that readers may not
realize how useful the results are. The importance of the
integral representations for computation is emphasized and
demonstrated by Morse [17], though. Morse’s early contri-
bution is especially impressive in retrospect.

IV. AVOIDING INFINITE SUMS OF BESSEL FUNCTIONS

It appears that (1) was the first expression found for P,
derived by Clarke in an unpublished 1953 report (see [9], [10,
p- 659], and [18, p. 215], but soon there were also other
expressions which do not involve infinite sums of Bessel
functions. The first published results were Ledermann and
Reuter’s [16] and Bailey’s [S] expression for the derivative
P,,’j(t) in terms of six modified Bessel functions. An alternate
closed-form expression for P;;(f) was found by Bailey [6, eq.
(12), p. 328], which is given in (4.31) of Cohen [10, p- 82].
(See Syski [20, p. 335-340] for a good historical account.)
However, the best form from the computational point of view
seems to be the trigonometric integral representation derived
by Morse [17]. (The alternate finite-form representation in
[10, p. 82] involves integrals of Bessel functions, so that it
reduces to a double integral.) The trigonometric form for
P,;(2) is also given by Riordan [18, p. 45] and Takécs [22, p.
23].

Some of the recent papers in these TRANSACTIONS seem to
have been written without the authors being aware that there are
better representations for P;;(¢) than (1). Motivated by Stern
[21], the problem involving the infinite sum of Bessel
functions was directly attacked by Jones et al. [13], who
observe that the term involving the infinite sum of Bessel
functions can be expressed in terms of a function

B [a*+x?]

3 ) I(ax)x dx 4)

Qfa, b)= S: exp (

called the circular coverage function of Marcum’s Q
JSunction, for which computational procedures are known; see
Helstrom [12, Appendix F] and Schwartz ez al. [19, Appendix
Al.

More recently, Cantrell [7] and Cantrell and Beall [8] have
proposed another numerical procedure based on generalized
Q functions Q,(c«, 3) which have expansions

2_R2 o k
1~ Onle, B)=exp (—“ 26 ) > <§) L(@B) (5)

k=m

the case m = 1 being equivalent to Marcum’s Q function. The
algorithms for calculating these Q functions involve power
series or Neumann series, the latter being used in [7] and [8].
In fact, these numerical procedures based on Q functions seem
very effective, yielding very good accuracy using little
computer time. [Indeed, in a personal communication, Can-
trell reports comparisons in which the generalized Q function
approach is two—eight times faster than (3).] However, the
integral representations seem to be attractive alternatives,
yielding good accuracy using little learning or programming
time (because standard methods and standard programs can be
applied). We believe that for most applications, human time
(programming and analysis) is far more important than
computer time, given that the difference in required computer
time is not inordinately great, so that most people will prefer
numerical integration with the integral representations. (This
might not apply to those already familiar with Q functions.) At
any rate, new procedures should certainly be compared to
numerical integration based on integral representations instead
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of numerical integration based on the Chapman-Kolmogorov
differential equations, as is done in [7], [8]. It seems clearly
better to use integral representations than the Chapman-
Kolmogorov equations.

We conclude by noting that integral representations are also
available for related quantities. For infinite sums of Bessel
functions and Q functions, see [1, eq. (7.8)], [3, p. 376, Eq.
(9.6.33), [12, p. 453, eq. (F.19), and [19, p. 588, eq. (A-8-
6)]. Integral representations for all moments of the queue
length (explicit for the first two) are given in [2, Sect. 7].
Thus, [2] offers a simple alternative to the variance calculation
recently proposed in [8].
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