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Abstract

A mathematical model is developed to help analyze the benefit in contact-center perfor-

mance obtained from increasing employee (agent) retention, by increasing agent job satisfac-

tion. The contact-center “performance” may be restricted to a traditional productivity measure

such as the number of calls answered per hour or it may include a broader measure of the qual-

ity of service, e.g., revenue earned per hour or the number of problems successfully resolved

per hour. The analysis is based on an idealized model of a contact center, in which the number

of employed agents is constant over time, assuming that a new agent is immediately hired to

replace each departing agent. The agent employment periods are assumed to be independent

and identically distributed random variables with a general agent-retention probability distri-

bution, which depends upon management policy and actions. The steady-state staff-experience

distribution is obtained from the agent-retention distribution by applying renewal theory. An

increasing real-valued function specifies the average performance as a function of agent expe-

rience. Convenient closed-form expressions for the overall performance as a function of model

elements are derived when either the agent-retention distribution or the performance function

has exponential structure. Management actions may cause the agent-retention distribution to

change. The model describes the consequences of such changes upon the long-run average staff

experience and the long-run average performance.

Keywords: contact centers, call centers, retention, employee turnover, churn, agent job satis-

faction, compensation, autonomy, stress, stochastic models, renewal theory, stochastic com-

parisons.





1. Introduction

It is widely recognized that contact-center performance is often hampered by low employee

job satisfaction, as evidenced by high turnover, referred to as churn [11]. There is good reason

to believe that churn can be reduced (retention can be increased) by increasing employee job

satisfaction in various ways [6, 7, 13, 20, 21, 29, 30, 36].

The purpose of this paper is to develop a mathematical model that can provide insight into

the way increased employee retention, achieved via increased employee job satisfaction, can

improve performance. The employees we are thinking of are customer service representatives

in contact centers, herein referred to as agents, but the analysis applies more broadly. For an

overview of contact centers and various mathematical models that have been applied to them,

see Gans et al. [16]. For a different mathematical model studying turnover, see Gans and

Zhou [17]. For stochastic analysis of various behavioral aspects of queues, see Mandelbaum

and Shimkin [23] and Zohar et al. [38].

We recognize that many of the issues surrounding agent job satisfaction and retention

are not easily quantified. Nevertheless, we aim to quantify the performance benefits to be

gained from increased agent retention. Moreover, we propose to take a relatively simple view,

which allows us to focus carefully on a few critical issues. Our main thesis is that actions to

increase agent job satisfaction (increasing autonomy or compensation, reducing stress, or by

any other means) can benefit contact-center performance. Since agent job satisfaction is hard

to measure, we view it through retention, which is directly observable (but subject to several

possible definitions). We thus see increased agent job satisfaction improving performance

in three steps: (i) increased agent job satisfaction increases agent retention; (ii) increased

agent retention increases the staff experience, and (iii) increased staff experience increases

performance.

We focus on productivity, and we focus on an easily measurable driver: experience, by

which we mean simply time in service. (Clearly, there are other aspects of experience [26],

but we do not consider them.) Increasing retention means that agents stay in service longer.

When agents stay in service longer, the contact center tends to have a more experienced staff.

We contend that an agent’s performance, on average, should be an increasing function of

the agent’s experience. Staff experience directly influences performance, because performance

typically improves dramatically through the initial start-up learning period. After that initial

start-up learning period is over, we regard greater staff experience as an indication of greater
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agent job satisfaction, which in turn should improve performance.

However, we recognize that, in general, the relation between turnover and performance is

more complicated. There is evidence that performance can degrade when turnover is too low

[2, 18]. There might be employee stagnation when the turnover is extremely low. Since the

turnover is relatively high in many contact centers, we assume that the insufficient-turnover

effect can be ignored. Hence, we assume that performance is simply an increasing function of

experience (and thus a decreasing function of turnover).

We focus on the performance impact of increased retention. In doing so, we focus on

only part of the story: When considering the many costs of employee turnover, it is natural to

classify the costs, dividing them into two types: (i) transition costs, and (ii) productivity costs.

Transition costs account for the per-agent cost of terminating the departing agent, recruiting

and training a new agent, and disruption costs associated with the change, such as the cost

of hiring a temporary employee, and the cost of managers coping with the change, such as

the cost of performing exit interviews, the administrative costs of stopping benefit deductions

and performing benefit enrollments, and so forth [8]. It has been estimated that the transition

costs alone can be as much as 100% − 200% of an agent’s annual compensation [8]. And yet

we primarily focus on the productivity costs. We develop a mathematical model to describe

the transition costs in Section 8. Clearly, a full analysis should include all costs and benefits

of alternative policies to improve retention.

Our mathematical model will quantify how increased retention does indeed increase per-

formance. As with all mathematical models, the value of its detailed quantitative conclusions

depends on the appropriateness of the model assumptions and the model inputs. However, the

mere process of modelling and analyzing can provide valuable insight.

It is common to discuss retention and churn in terms of a single number. For example,

it may be said that the churn is 40% per year. Even though we take a rather narrow view

of retention, we introduce a much more detailed model of agent retention: We assume that

an agent’s length of service is a random variable with a general agent-retention probability

distribution. A probability distribution is used to account for individual differences among

agents. Thus we characterize retention by a probability distribution, which is a function instead

of a single number. We will also consider intermediate representations, in which the probability

distribution is characterized by only a few parameters. Our approach is in the spirit of the long

tradition of manpower planning models [5, 10, 19]. However, compared to that literature, our

model is relatively elementary. Nevertheless, there are some novels steps here, in particular,

2



in the way we relate the agent retention (probability) distribution to the steady-state contact-

center staff-experience distribution. In a reasonable contact-center scenario, we show how the

agent-retention distribution determines the distribution of staff experience in the long run.

In practice, annual turnover is measured by dividing the number of agent terminations

per year by the average staff size during the year. In the mathematical model, the annual

turnover is the long-run rate of new hires per year divided by the (assumed) fixed number of

agents, which is the reciprocal of the average length of employment for the agents (the mean

of the agent-retention distribution). It is of course important that these different approaches

are consistent, as we show in Section 8. As noted above, the rate of new hires will play a

major role in estimating the important transition costs. The mean of the agent-retention

distribution is a vital statistic, but we will show that the entire agent-retention distribution

plays an important role for productivity. It is important that it is possible to estimate the

agent-retention distribution from employment records. (For more discussion, see Section 7.)

Our characterization of retention, even though somewhat elaborate, can be measured. We can

measure what the agent-retention distribution has been and we can see how it changes.

We do less well in other aspects of the problem: First, here we do not consider specific

management actions to increase agent sense of wellbeing or agent job satisfaction. (However, in

a companion paper [31] we propose preference-based routing for that purpose.) Moreover, here

we do not address how increased agent sense of wellbeing or increased agent job satisfaction

increases agent retention, as measured by the agent-retention probability distribution. Those

are important problems that remain to be investigated. We also do not determine how to

measure agent performance. Instead, we simply assume that agent performance in fact can

be measured and quantified. We could use a traditional productivity measure such as number

of contacts handled per day, but we favor going beyond that to consider how well the agent

helps the contact center meet its business objectives. Thus we think of performance depending

on the revenue generated per day or the number of service requests successfully resolved per

day. A good performance measure might be a weighted combination of several measures each

focusing on a different aspect of performance. We are assuming that agent performance can

be measured and quantified, but we do not address how to do it. That is a second problem

that remains to be investigated.

Here is how the rest of the paper is organized: In Sections 2 and 3 we introduce our

mathematical model. In Section 3 we introduce a probability model that allows us to relate

the agent-retention probability distribution to the long-run distribution of staff experience.
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We establish important properties of the long-run staff-experience distribution in Sections 4

and 6. We introduce tractable parametric models in Section 5. We discuss statistical fitting of

the model elements in Section 7. We develop a mathematical model of the transition costs in

Section 8. Finally, we draw conclusions in Section 9.

2. The Basic Mathematical Model

We assume that agent performance can be quantified and that quantification can be related

to agent experience. In particular, we assume that there is a performance function r mapping

experience (length of service) into average agent performance (appropriately specified), using r

to suggest “revenue,” “reward,” “return,” “rate of return” or “return on investment.” We as-

sume that the performance function is a nondecreasing function that approaches an asymptote

(the maximum possible performance) as t →∞. Thus we can write

r(t) ≡ ρR(t), t ≥ 0, (2.1)

where R(t) → 1 as t → ∞. (We use ≡ to denote equality by definition.) That makes R

a probability cumulative distribution function (cdf); R(t) is the proportion of the maximum

possible expected performance, ρ, expected from an agent of experience t. We call R the

performance cdf associated with the performance function r.

An example of a possible performance function is the exponential performance function

r(t) = ρ(1− e−λt) t ≥ 0 , (2.2)

which has the advantage of having only two parameters: ρ and λ; see p. 36 of [28]. The

exponential performance function for ρ = 10 and λ = 0.2 is depicted in Figure 1. Note that

the “scale” parameter ρ can be set arbitrarily, even if it is monetary, because we have yet to

specify the units. We have chosen ρ = 10, thinking of a monetary reward rate measured in

thousands of dollars per agent per month. Similarly, the parameter λ only acquires meaning

when we specify the units. We have chosen λ = 0.2, thinking of time being measured in

months. With that parameter value, significant progress occurs in the time scale of 1/λ which

is 5 months.

We are interested in the overall long-run performance achieved by the contact center. To

characterize that, we use the performance function r just defined and a staff-experience cdf F .

For x ≥ 0, F (x) represents the long-run average proportion of agents with experience (term

of employment) less than or equal to x months. We emphasize that F (x) is intended to be a

long-run average.
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Figure 1: A possible performance function, mapping t, which measures agent experience in
months (horizontal axis) into the selected performance, r(t), which measures the return in
thousands of dollars per month (vertical axis). Specifically, the exponential performance func-
tion in (2.2) is depicted with ρ = 10 and λ = 0.2.

5



At any given time t, the experience of the staff at that time is characterized by the empirical

staff-experience cdf, denoted by Ft; Ft(x) is the proportion of agents, at time t, who have been

employed for a length of time less than or equal to x. At any given time, we can measure the

empirical cdf Ft that describes the contact center at time t.

We can use the history of the empirical staff-experience cdf Ft to define the desired staff-

experience cdf F : The staff-experience cdf F is the long-run average proportion of agents that

have been in service for time less than or equal to x. For any x, the (long-run) staff-experience

cdf F (x) is the long-run average over time of the empirical staff-experience cdf Ft(x); i.e., for

all x > 0,

F (x) ≡ lim
T→∞

1
T

∫ T

0
Ft(x) dt . (2.3)

In the next section, we will show that the staff-experience cdf F is well defined by (2.3) under

our model assumptions. Moreover, unlike the empirical staff-experience cdf, the (long-run)

staff-experience cdf F will have a probability density function (pdf), i.e., there is a function f

such that

F (x) =
∫ x

0
f(u) du, x ≥ 0 . (2.4)

We call f the staff-experience pdf. Unlike the empirical staff-experience cdf Ft, the staff expe-

rience cdf F and the associated staff-experience pdf f are deterministic functions.

We characterize the overall staff performance, denoted by r, as the expected long-run

average performance, i.e., the expected performance, r, weighted by the staff-experience pdf,

f :

r ≡ r(r, f) ≡
∫ ∞

0
r(t)f(t) dt. (2.5)

There is another equivalent way to characterize this overall performance. Let A be a

random variable with cdf F and pdf f . We think of A as the random experience (age) of a

typical agent in the long-run. (We look at the system at an arbitrary time after the system

has been operating for a long time and we pick an agent at random; A is the length of time

that agent has been employed.) As before, r(t) is the expected performance of an agent with

experience (length of employment) t. Then (2.5) is equivalent to r = E[r(A)].

Paralleling the performance-function example above, an example of a staff-experience cdf

F and associated staff-experience pdf f is the exponential distribution with mean mF = 1/µ,

i.e., the exponential cdf and pdf

F (t) = 1− e−µt and f(t) = µe−µt, t ≥ 0 , (2.6)
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Figure 2: A possible staff-experience probability density function, mapping t, which measures
agent experience in months (horizontal axis) into the probability density f(t) of agents with
experience t. Specifically, the exponential staff-experience pdf in (2.6) is depicted with µ = 0.1
(mean = 10).

which has the single parameter µ. An exponential staff-experience pdf with mean 10 (µ = 0.1)

is depicted in Figure 2.

If we use both the exponential performance function r in (2.2) and the exponential staff-

experience pdf f in (2.6), then we obtain a full model with three parameters: ρ, λ and µ. Then

we can easily compute the overall performance. Then (2.5) becomes

r =
∫ ∞

0
r(t)f(t) dt =

∫ ∞

0
ρ(1− e−λt)µe−µt dt =

ρλ

λ + µ
. (2.7)

From the simple formula in (2.7), we see how performance can be increased by increasing

staff experience. Since the mean of the pdf f is m(f) ≡ mF = 1/µ, we increase staff experience

when we increase the mean mF . Formula (2.7) shows how the overall performance approaches

the limit ρ as mF = 1/µ increases.

For example, the overall long-run average performance r as a function of the mean m(f) ≡
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Figure 3: The overall long-run average performance r as a function of the expected long-run
staff experience, m ≡ m(f) ≡ mF , measured in months, for the totally exponential model with
ρ = 10 and λ = 0.2 as in Figure 1 and m(f) = 1/µ for the exponential staff-experience pdf f .

mF in the totally exponential model is plotted in Figure 3. Note that r ≡ r(mF ) is

r(mF ) =
ρλmF

λmF + 1
. (2.8)

For this example, ρ = 10 and λ = 0.2, so that r(mF ) = 2mF /(0.2mF + 1). From (2.8) or

Figure 3, we see that the overall-performance function r(mF ) is increasing and concave: As we

increase the mean staff-experience level mF , the performance increases but the marginal gain

decreases. Greater benefit from increasing the mean mF occurs when mF is lower.

It remains to relate the agent-retention pdf to the staff-experience pdf. That is the topic of

the Section 3: In Section 3, we give an explicit formula for the staff-experience cdf F in terms of

the agent-retention cdf G; see Theorems 3.1 and 3.2. It turns out that the staff-experience cdf

is the renewal-process stationary-excess cdf associated with the agent-retention cdf. In Section

4 we show that relation enables us to deduce important properties of the staff-experience pdf f .
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It turns out that, under our model assumptions, the two cdf’s coincide if and only if either of

them is exponential. Thus, for the exponential staff-experience pdf in (2.6), the agent-retention

pdf must be exactly of the same form. So, if the agent-retention pdf is exponential, the analysis

above applies. For example, Figure 3 is unchanged if the mean of the staff-experience pdf f

on the horizontal axis is replaced by the mean of the agent-retention pdf.

On the other hand, if the agent-retention pdf is not exponential, then the staff-experience

pdf is neither exponential nor the same as the agent-retention pdf. Nevertheless, as we just

indicated, we derive an explicit formula for the staff-experience pdf in terms of the agent-

retention pdf, so that a corresponding analysis can be carried out.

In Section 5 we introduce tractable parametric models, in which both the performance

function r and the agent-retention pdf g (and thus the staff-experience pdf f) are more general

than exponential, and yet the overall long-run average performance r can be represented as an

explicit formula of the model parameters. We believe that a nice compromise between simplicity

and flexibility is achieved when the two cdf’s are each characterized by two parameters: the

mean and the variance. We will show how the parametric models can be characterized in that

way. Under regularity conditions, we show that the overall long-run average performance is an

increasing function of the mean agent-retention time, when other parameters are appropriately

held fixed.

In Section 6 we establish additional stochastic-comparison properties for the agent-retention

cdf G and the staff-experience cdf F based on the relationship established in Section 3. We

show that if the agent-retention cdf increases stochastically, in a sense to be made precise,

then the staff-experience cdf increases stochastically as well, in a related way. However, we

caution that the precise relationship requires careful definitions. We are thus able to give suffi-

cient conditions for the overall performance to increase when the agent-retention cdf increases

stochastically in an appropriate way.

3. The Agent-Retention Probability Model

We now connect the behavior of individual agents to the staff-experience cdf of the entire

contact center. For that purpose, we make further assumptions. We consider an idealized

model of a contact center, assuming that it contains a fixed number, n, of agents. We assume

that a new agent is immediately hired to replace a departing agent whenever an agent departs.

Let Xi,k be the length of time that the kth agent in the ith position is employed. We

assume that the agent employment periods Xi,k for 1 ≤ i ≤ n and k ≥ 1, are independent
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and identically distributed (IID) random variables distributed as a random variable X having

a general cumulative distribution function (cdf) G – the agent-retention cdf, with probability

density function (pdf) g – the agent-retention pdf – and finite kth moment mk for k = 1, 2, 3;

i.e.,

G(t) ≡ P (X ≤ t) ≡
∫ t

0
g(x) dx, t ≥ 0, and mG,k ≡ E[Xk] ≡

∫ ∞

0
tkg(t) dt . (3.1)

A possible agent-retention pdf g is depicted in Figure 4. It is a gamma pdf, i.e.,

g(t) =
µ(µt)νe−µt

Γ(ν)
, t ≥ 0 , (3.2)

where Γ is the Gamma function; see p. 37 of [28]. If ν is a positive integer, then Γ(ν) = (ν−1)!

A gamma distribution has two parameters: the scale parameter µ and the shape parameter ν.

A gamma distribution has mean ν/µ, variance ν/µ2 and thus squared coefficient of variation

(SCV, variance divided by the square of the mean) c2
G = 1/ν. The SCV is useful to measure

variability independent of the mean. We can increase the mean without changing the SCV

by decreasing the scale parameter µ; we can increase the variability, as measured by the

SCV c2
G, without changing the mean, by decreasing both ν and µ by the same amount. The

particular gamma density shown in Figure 4 has mean ν/µ = 10, variance ν/µ2 = 50 and

SCV c2
G = 1/ν = 0.5. With these parameter values, this gamma distribution coincides with

an Erlang E2 distribution [3, 37].

However, we caution that the gamma probability density function in Figure 4 may not have

the correct shape. Studies have shown that the tendency to leave tends to decrease with time

[14, 24]. Mathematically, that property can be expressed by saying that the agent-retention

distribution should have decreasing failure rate (or hazard rate). If X is a random variable

with cdf G and pdf g, the failure rate of X is

λX(t) ≡ g(t)
Gc(t)

, t ≥ 0 , (3.3)

where Gc(t) ≡ 1−G(t) is the complementary cdf (ccdf) associated with the cdf G. Note that

the hazard rate is the conditional intensity of a termination at t, given that the current length

of service is t; see Chapter 4 of [4], p. 406 of [28] and Section 6 here, especially Definition 6.2,

for more on DFR distributions. The empirical conclusions above mean that the failure-rate

function λX(t) should be a decreasing function of time t. A decreasing-failure-rate (DFR)

distribution necessarily has a strictly decreasing pdf. Hence, agent-retention pdf’s may look

more like the the exponential pdf in Figure 2 (which has constant failure rate) than the gamma

pdf in Figure 4. (Gamma distributions with 0 < ν < 1 are DFR, though.)
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Figure 4: A possible agent-retention probability density function, mapping t, which measures
time in months (horizontal axis) into the probability density g(t) of an agent remaining em-
ployed for a length of time t. Specifically, a gamma agent-retention density in (2.6) is depicted
with mean 10 and variance 50.
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At any time t, the current experience of the center can be described by an n-dimensional

random vector A(t) ≡ (A1(t), . . . , An(t)), where Ai(t) specifies the length of time that the agent

in the ith position has been employed, e.g., in months. We refer to Ai(t) age or experience

of the ith agent at time t. The limiting steady-state distribution of the stochastic process

A ≡ {A(t) : t ≥ 0} describes the experience of the contact-center staff in the long run.

Suppose that we hire n new agents at time t = 0. Then the n age processes Ai ≡ {Ai(t) : t ≥
0} evolve as n IID age processes, also known as backward recurrence-time processes, associated

with the renewal process with inter-renewal times distributed according to the agent-retention

cdf G; see Section V.1 of Asmussen [3], Chapter 3 of Ross [27] and Chapter 7 of Ross [28]

(especially Example 7.22 on p. 430). Thus, the stochastic process A is a Markov process and

it has a proper limiting distribution as t → ∞. The same limit also holds with a large class

of alternative initial conditions. If we condition on particular initial ages, by assuming that

(A1(0), . . . , An(0)) = (y1, . . . , yn), then the n age processes are again independent, but not

identically distributed, age processes associated with delayed renewal processes, for which the

same limit remains valid. See Asmussen [3] and Coffman et al. [12] for additional discussion

and proofs. We formalize these established results in the following theorem. To state the

result, let ⇒ denote convergence in distribution for random vectors, e.g., see Chapters 3 and

11 in [35].

Theorem 3.1. The vector-valued age stochastic process A is a Markov process. If, in addition

to the conditions above, (A1(0), . . . , An(0)) = (y1, . . . , yn) for some vector (y1, . . . , yn), then

A(t) ⇒ Y as t →∞ , (3.4)

where, Y ≡ (Y1, . . . , Yn) is a random vector with IID components (marginals), each distributed

as a random variable Y having the classical stationary-excess distribution (or equilibrium

residual-lifetime distribution) Ge associated with the cdf G, defined by

Ge(t) ≡ 1
mG,1

∫ t

0
Gc(u) du , (3.5)

where Gc(t) ≡ 1 − G(t) is the ccdf associated with G and mG,1 is the mean of G; i.e., for all

vectors of real numbers (x1, . . . , xn),

P (Y1 ≤ x1, Y2 ≤ x2, . . . , Yn ≤ xn) = Ge(x1)Ge(x2) · · ·Ge(xn) . (3.6)

The cdf Ge has kth moment

mGe,k ≡ E[Y k] ≡
∫ ∞

0
tkge(t) dt =

mG,k+1

(k + 1)mG,1
, k ≥ 1 . (3.7)
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It follows from the limit (3.4), the regenerative structure and the strong law of large numbers

that the the time-average of the empirical staff-experience cdf Ft introduced in Section 1

converges with probability one, as desired in (2.3). Moreover, the limiting staff-experience cdf

F is none other than the stationary-excess cdf Ge. To make the connection, note that

Ft(x) =
1
n

n∑

i=1

I[0,x](Ai(t)), t ≥ 0 , (3.8)

where IB is the indicator function of the set B; i.e., IB(x) = 1 if x ∈ B, and IB(x) = 0

otherwise. We formalize this important result as well.

Theorem 3.2. Under the assumptions of this section, for all x > 0,

P

(
lim

T→∞
1
T

∫ T

0
Ft(x) dt = Ge(x)

)
= 1 (3.9)

for Ft in (3.8) and Ge in (3.5).

Thus, for our model, the staff-experience cdf F introduced in Section 1 is well defined

and equals Ge. Theorem 3.2 focuses on the limiting behavior of the time-average of the

empirical staff-experience cdf Ft for any fixed number of agents, n. We can also focus on the

limiting behavior of the steady-state empirical staff-experience cdf, as the number of agents,

n, increases. Since the number of agents in a contact center is often large, it is interesting to

consider that limit. The steady-state empirical distribution is

Dn(x) ≡ 1
n

n∑

i=1

I[0,x](Yi), x ≥ 0 , (3.10)

where Yi is the steady-state limit of the age of the agent in the ith position and IB is again the

indicator function of the set B. The classical strong law of large numbers (SLLN) and central

limit theorem (CLT) imply the following result. Let N(m, v) denote a normally distributed

random variable with mean m and variance v. The SLLN uses convergence with probability

one (w.p.1).

Theorem 3.3. Under the conditions above, for each x > 0,

Dn(x) → Ge(x) w.p.1 as n →∞ (3.11)

for Dn in (3.10) and Ge in (3.5), and

√
n[Dn(x)−Ge(x)] ⇒ N(0, σ2(x)) , (3.12)

where

σ2(x) = Ge(x)(1−Ge(x)) . (3.13)
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Theorem 3.2 says that the time-average of the empirical staff-experience cdf Ft approaches

F = Ge as t →∞, while the SLLN in (3.11) of Theorem 3.3 says that the steady-state empirical

cdf Dn (after t has already become large) approaches F = Ge as n → ∞. Thus we have two

different ways to justify focusing on the staff-experience cdf F = Ge.

We can also extend Theorem 3.3 to describe the limiting behavior uniformly in the argument

x. We can apply the classical Glivenko-Cantelli theorem for that purpose.

Theorem 3.4. Under the conditions above,

P (sup
x≥0

{|Dn(x)−Ge(x)|} → 0) = 1 (3.14)

for Dn in (3.10) and Ge in (3.5).

There are corresponding stochastic generalizations paralleling the CLT in (3.12) related to

the Kolmogorov-Smirnov statistic; e.g., see Section 2.2 of [35].

In summary, this section has presented a model, and analysis of that model based on

renewal theory, showing that the staff-experience cdf F associated with an agent-retention cdf

G should be the stationary-excess cdf Ge associated with the agent-retention cdf G, defined in

(3.5).

4. The Staff-Experience PDF

In the previous section we saw that F = Ge. That enables us to deduce several important

properties of the staff-experience cdf F . In particular, it enables us to deduce that the cdf F

has a monotone (nonincreasing) pdf f .

Corollary 4.1. Under the assumptions of Section 3 (even if G did not have a pdf), the staff-

experience cdf F has a pdf f , i.e.,

F (t) =
∫ t

0
f(u) du , t ≥ 0 , (4.1)

where

f(t) = ge(t) = (1/mG,1)Gc(t), t ≥ 0 . (4.2)

Since the agent-retention cdf G has a pdf, the staff-experience pdf f is a continuous and nonin-

creasing function. Moreover, if Gc(t) = 0 for some t, then also F c(t) = 0. On the other hand,

if Gc(t) > 0 for some t, then f(x) > 0 for all x, 0 ≤ x ≤ t.
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Corollary 4.1 implies that the staff-experience pdf f = ge will be monotone nonincreasing,

even though the agent-retention pdf g may fail to be monotone, as in Figure 4.

Since we have assumed that the agent-retention cdf G has a pdf g, we can describe the

derivative of the staff-experience pdf f .

Corollary 4.2. If the agent-retention cdf G has a pdf g, as assumed above, then the staff-

experience pdf f is differentiable. The pdf f is convex if and only if the pdf g is nonincreasing.

5. Parametric Models

We have given a general expression for the overall long-run average performance r ≡ r(r, f)

as a function of the performance function r and the staff-experience pdf f in (2.5). Since we

are using the model in Section 3, we can replace f by ge = (1/m1)Gc. Hence, we can rewrite

formula (2.5) as

r = ρ

∫ ∞

0
R(t)f(t) dt = ρ

∫ ∞

0
R(t)ge(t) dt =

ρ

mG

∫ ∞

0
R(t)Gc(t) dt

=
ρ

mG

[∫ ∞

0
Gc(t) dt−

∫ ∞

0
Rc(t) dt +

∫ ∞

0
Rc(t)G(t) dt

]

=
ρ

mG

[
mG −mR +

∫ ∞

0
Rc(t)G(t) dt

]
. (5.1)

Below we will use both the final expression and the last expression on the first line.

We have also given a closed-form expression for r in (2.7) for the case in which both r and

f (and thus g) are both exponential functions in (2.7). In this section we give explicit formulas

for more general parametric models. We especially want to characterize the two cdf’s R and

G by two parameters instead of one: the mean and SCV, instead of only the mean.

5.1. Hyperexponential Performance Functions

In this subsection we assume that the performance cdf R is a hyperexponential cdf. A hy-

perexponential (Hk) cdf is a mixture of k exponential cdf’s. In particular, the Hk performance

function is defined to be

r(t) = ρR(t) , (5.2)

where

R(t) = 1−
k∑

i=1

pie
−λit, t ≥ 0 , (5.3)

with pi > 0 and λi > 0 for each i, and p1 + · · ·+ pk = 1.
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For an Hk performance function, there are 2k + 1 parameters, one of which is the scale

factor ρ and one of which is determined by the sum of the probabilities being equal to 1. Of

course, the case k = 1 yields the simple exponential performance function in (2.2). Since we

have represented r in terms of the cdf R, we can use probabilistic methods. For example,

a large class of cdf’s (all completely monotone cdf’s) can be represented as (not necessarily

finite) mixtures of exponentials. Thus these cdf’s can be approximated arbitrarily well by Hk

cdf’s, and an algorithm for doing so has been given by Feldmann and Whitt [15].

In applications, it may be of interest to consider Hk performance functions with k = 2,

because there are fewer parameters than for larger k, thus making it easier to fit. Indeed, there

is a long history of using H2 distributions to approximate probability distributions that are

more variable than the exponential distribution. To reduce the number of remaining parameters

from 3 to 2, it is common to let the H2 distribution have balanced means by assuming that

p1

λ1
=

p2

λ2
. (5.4)

Provided that the SCV satisfies c2
R > 1, we can specify the parameters of the H2 distribution

in terms of the mean mR and SCV c2
R; see p. 137 of [33]:

pi =
[
1±

√
(c2

R − 1)/(c2
R + 1)

]
/2 and λi =

2pi

mR
. (5.5)

It is not difficult to check that the H2 distribution with the parameters in (5.5) has mean mR,

SCV c2
R and balanced means, as in (5.4). When c2

R = 1, we obtain the exponential distribution.

It is also possible to have a more general three-parameter H2 distribution, which is fit to

the first three moments of R: mR,1, mR,2 and mR,3, provided that

mR,2 > 2m2
R,1 and mR,3 ≥

1.5m2
R,2

mR,1
; (5.6)

see p. 136 of [33] and p. 592 of [1]. To obtain the third parameter, we drop the balanced-means

condition in (5.4).

We now give an explicit expression for the overall performance with an Hk performance

function. For that purpose, let ĥ be the Laplace transform of the real-valued function h of a

positive real variable, defined by

ĥ(s) ≡
∫ ∞

0
e−sxh(x) dx , (5.7)

where s is a complex variable with positive real part. We will consider Laplace transforms

with real-variable arguments.
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Theorem 5.1. For an Hk performance function, as in (5.2)–(5.3), the overall performance is

r = ρ

(
1−

k∑

i=1

piĝe(λi)

)
=

ρ

mG

(
mG −mR +

k∑

i=1

piĝ(λi)
λi

)
, (5.8)

where mG ≡ mG,1 is the mean of G and mR is the mean of R, i.e.,

mR ≡ mR,1 =
k∑

i=1

(pi/λi) . (5.9)

Proof. We combine (5.1), (5.2) and (5.3) with well known relationship among ĝe, Ĝ and ĝ:

Ĝ(s) ≡
∫ ∞

0
e−sxG(x) dx =

ĝ(s)
s

and ĝe(s) ≡
∫ ∞

0
e−sx (1−G(x))

mG
dx =

(1− ĝ(s))
smG

.

(5.10)

5.2. Hyperexponential Agent-Retention Distributions

In this subsection we let the performance cdf R be general, but let the agent-retention

cdf G be a hyperexponential cdf. As indicated in Section 3, this seems to be consistent with

empirical research, because all hyperexponential distributions are DFR.

In particular, paralleling (5.3), we assume that

G(t) = 1−
l∑

j=1

qje
−µjt, t ≥ 0 , (5.11)

where qj > 0 and µj > 0 for each j, and q1 + · · ·+ ql = 1.

That implies that the associated stationary-excess cdf Ge is also Hk. in particular,

Ge(t) = 1− 1
mG

l∑

j=1

(qj/µj)e−µjt, t ≥ 0 , (5.12)

where mG ≡ mG,1 is the mean of G; here

mG =
l∑

j=1

(qj/µj). (5.13)

Consequently, closely paralleling the previous subsection, we see that ge has exponential

structure, so that we have the following result.

Theorem 5.2. For a hyperexponential agent-retention cdf G, as in (5.11), the overall perfor-

mance is

r =
ρ

mG

∫ ∞

0
R(t)

l∑

j=1

qje
−µjt dt =

ρ

mG

l∑

j=1

qjR̂(µj) , (5.14)

where R̂(s) is the Laplace transform of the cdf R.
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5.3. The HHRP Model

In this section we combine the two hyperexponential assumptions made in the previous

two subsections: We assume that both the performance cdf R and the agent-ratention cdf G

are hyperexponential distributions; i.e., we assume that (5.2), (5.3) and (5.11) all hold. We

call the resulting model the hyperexponential-hyperexponential retention-performance (HHRP)

model.

From (5.8), we get

r =
ρ

mG


mG −mR +

k∑

i=1

pi

λi

l∑

j=1

qjµj

µj + λi


 . (5.15)

On the other hand, from (5.14), we get

r =
ρ

mG

l∑

j=1

qj

k∑

i=1

piλi

µj(λi + µj)
=

ρ

mG

l∑

j=1

qj

µj

k∑

i=1

piλi

(λi + µj)
. (5.16)

Algebraic manipulations show that these two representations are equivalent.

When we use the three-parameter H2 distributions, we obtain an overall model with 7

parameters: ρ, λ1, λ1, p1, µ1, µ2 and q1. (We know p2 = 1−p1 and q2 = 1− q1.) When we use

the two-parameter H2 fit with balanced means, based on (5.4) and (5.5), we obtain a model

with five parameters: ρ, mG, mR, c2
G and c2

R, where c2 is the SCV. The H2 distributions are

always more variable than an exponential distribution, so that we have the constraint c2 ≥ 1.

The H2 distribution reduces to a single exponential distribution when c2 = 1.

5.4. The GHRP Model

In this section and the next we develop alternative models in which one of the two hyper-

exponential distributions in the HHRP model is replaced by a gamma distribution. We are

motivated to consider the gamma distribution, because it allows all possible positive SCV’s;

we can have 0 < c2 < 1 in addition to c2 ≥ 1. Hence with the three distributions - gamma,

exponential and hyperexponential - we provide distributions that can be fit to all possible

positive means and SCV’s. We could do that with just the gamma distribution, but the

hyperexponential distribution is easier to work with.

In this section we consider a gamma agent-retention distribution, and thus obtain the

gamma-hyperexponential retention-performance (GHRP) model. In addition to the Hk perfor-

mance function introduced in Subsection 5.1, a gamma pdf is used for the agent-retention pdf

g. The gamma pdf is given in (3.2). The key additional fact is that the gamma pdf has a
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convenient explicit Laplace transform. In particular, if g has a gamma pdf with parameters µ

and ν, as in (3.2), then

ĝ(s) =
(

µ

µ + s

)ν

. (5.17)

Hence, for the GHRP model,

r =
ρ

mG

(
mG −mR +

k∑

i=1

piµ
ν

λi(µ + λi)ν

)
. (5.18)

For the gamma agent-retention pdf g in (3.2), we increase the mean mG ≡ mG,1 = ν/µ,

while holding the SCV c2
G = 1/ν fixed, if we decrease µ. It is thus natural to look at r ≡ r(mG)

as a function of the mean mG alone, with the understanding that we increase mG by decreasing

µ, while holding the shape parameter ν fixed.

We illustrate by displaying r(mG) as a function of mG, with the shape parameter ν held

fixed, for a concrete example in Figure 5 below: We use an H2 performance function r with

parameters: ρ = 10, mean mR = 5.0, SCV c2
R = 2.0 and balanced means, as in (5.4); we apply

(5.5) to get the H2 parameters p1, p2, λ1, λ2. We use a gamma agent-retention distribution with

SCV c2
G = 1/ν = 0.5, which corresponds to an Erlang (E2) distribution. We let the mean of

G, mG, vary from 0 to 60 months, and see what happens to the long-run average performance

r(mG); i.e., we are plotting (5.18), letting mG vary (by decreasing µ). We see that the overall

long-run average performance increases towards its maximum value ρ = 10 as mG increases.

Moreover, we see that the function r(mG) is concave, showing that the marginal gain decreases

as mG increases.

The concrete formulas we have derived let us study the impact of the different parameters

on the overall long-run average performance. We illustrate by repeating the GHRP-model

example above, considering three different SCV’s for the gamma agent-retention cdf G: 0.25,

1.00 and 4.00. In Figure 6, we see more rapid convergence to the maximum possible long-run

average performance (ρ = 10) with greater variability (higher c2
G).

5.5. The HGRP Model

In this subsection and we consider the hyperexponential-gamma retention-performance (HGRP)

model, obtained by using a hyperexponential agent-retention pdf g and a gamma performance

cdf R; i.e., we now switch the roles of the two distributions used in the previous subsection.

Thus, let the hyperexponential agent-retention cdf G be as in (5.11). Now that the perfor-

mance function is gamma, let the performance cdf R have Laplace transform

R̂(s) =
1
s

(
λ

λ + s

)ν

. (5.19)
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Figure 5: The overall long-run average performance r ≡ r(m) in the GHRP model as a function
of m ≡ mG, the mean of the agent-retention cdf G, with the gamma agent-retention pdf in
(3.2) having SCV c2

G = 0.5 (corresponding to an Erlang E2 distribution) and H2 performance
function in (5.2)–(5.3) with k = 2, ρ = 10, mean mR = 5.0, SCV c2

R = 2.0 and balanced means,
as in (5.4).
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SCV = 0.25
SCV = 1.00
SCV = 4.00

Figure 6: The overall long-run average performance r ≡ r(m) in the GHRP model as a function
of m ≡ mG, the mean of the agent-retention cdf G, with the gamma agent-retention pdf in
(3.2) for three different agent-retention pdf’s: having SCV c2

G = 0.25, c2
G = 1.00 and c2

G = 4.00.
The H2 performance function is the same as in Figure 5.
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We thus can apply (5.14) to get the final form

r =
ρ

mG

l∑

j=1

qj

µj

(
λ

λ + µj

)ν

. (5.20)

6. Stochastic Comparisons

Our main goal in this section is to show that the overall long-run average performance

r increases if the agent-retention cdf G increases stochastically in an appropriate way. For

this purpose, we review basic stochastic-comparison concepts; see Chapter 9 of Ross [27] and

Müller and Stoyan [25]. As in previous sections, we are drawing on established results.

We write X1 ≤SO X2 or G1 ≤SO G2 if Xi is a real-valued random variable with cdf Gi

for i = 1, 2 and the probability distribution of X1 (characterized by G1) is stochastically less

than or equal to the probability distribution of X2 (characterized by G2) in a sense denoted

by ≤SO, which remains to be defined. We also write X1 ≥SO X2 or G1 ≥SO G2 if X2 ≤SO X1

or G2 ≤SO G1.

To state the definitions we will use, for each i, let Gi(t) ≡ P (Xi ≤ t) be the cdf of Xi; let

gi be the pdf of the cdf Gi, assumed to be well defined and positive on the positive half line

[0,∞); let Gc
i (t) = 1−Gi(t) be the associated ccdf; let Gi,e be the associated stationary-excess

cdf, defined as in (3.5); let Xi,t be a random variable with (conditional) cdf Gi,t(x) ≡ P (Xi ≤
t + x|Xi > t) for x > 0 and t > 0; and let λi be the hazard-rate function (or failure-rate

function), defined as in (3.3) by

λi(t) ≡ gi(t)
Gc

i (t)
, t ≥ 0 , (6.1)

for all t such that Gc
i (t) > 0. We summarize the definitions of several stochastic orderings in

the following definition. For some of the definitions, we state two equivalent characterizations.

Definition 6.1. Five different notions of stochastic order are:

(ordinary) stochastic order:

(a) X1 ≤ST X2 if Gc
1(t) ≤ Gc

2(t) for all t ;

(a′) X1 ≤ST X2 if E[f(X1)] ≤ E[f(X2)]) for all nondecreasing real-valued f ;

increasing-convex (stochastic) order:

(b) X1 ≤IC X2 if
∫∞
x Gc

1(t) dt ≤ ∫∞
x Gc

2(t) dt for all x ≥ 0 ;
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(b′) X1 ≤IC X2 if E[f(X1)] ≤ E[f(X2)]) for all nondecreasing convex real-valued f ;

convex (stochastic) order (or variability order):

(c) X1 ≤C X2 if X1 ≤IC X2 and E[X1] = E[X2] ;

(c′) X1 ≤IC X2 if E[f(X1)] ≤ E[f(X2)]) for all convex real-valued f ;

hazard-rate (stochastic) order:

(d) X1 ≤H X2 if λ1(t) ≥ λ1(t) for all t ;

likelihood-ratio (stochastic) order:

(e) X1 ≤LR X2 if g1(t)
g1(s) ≤

g2(t)
g2(s) for all 0 ≤ s < t .

We now summarize established relations among these different notions of stochastic order.

We write ≤O1→≤O2 if X1 ≤O1 X2 implies that X1 ≤O2 X2. The following represents all

possible implications among these stochastic-order relations:

≤LR→≤ H →≤ST →≤IC and ≤C →≤IC , (6.2)

with the understanding that implications extend by transitivity.

We now define properties of individual probability distributions.

Definition 6.2. The following are definitions of properties of the distribution of a random

variable X with cdf G, pdf g, hazard-rate function λ and conditional residual-lifetime cdt

Gt(x) ≡ P (Xt ≤ x) ≡ P (X ≤ x + t|X > t) for t ≥ 0:

(a) G has increasing failure rate (is IFR) if λ(t) is a nondecreasing function of t;

(a′) G has decreasing failure rate (is DFR) if λ(t) is a nonincreasing function of t;

(b) G has a new-better-than-used (NBU) distribution if Gt ≤ST G for all t;

(b′) G has a new-worse-than-used (NWU) distribution if Gt ≥ST G for all t;

(c) G has a new-better-than-used-in-expectation (NBUE) distribution if E[Xt] ≤ E[X]

for all t;

(c′) G has a new-worse-than-used-in-expectation (NWUE) distribution if E[Xt] ≥
E[X] for all t.
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We now summarize established relations among these different properties. We write Prop1 →
Prop2 if X (G) has property Prop2 whenever it has property Prop1. The following represents

all possible implications among these properties:

IFR → NBU → NBUE and DFR → NWU → NWUE . (6.3)

with the understanding that implications extend by transitivity.

Now we are ready to state established results about the relation between G and Ge. The

following are conditions for stochastic comparisons between the cdf’s Ge and G:

Ge ≤ST (≥ST ) G if and only if G is NBUE (NWUE) ; (6.4)

Ge ≤LR (≥LR) G if and only if G is IFR (DFR) ; (6.5)

G = Ge if and only if G is exponential . (6.6)

For (6.4), see Problem 9.27 of [27].

Now we state established comparison results for the stationary-excess cdf’s G1,e and G2,e

associated with two different agent-retention cdf’s G1 and G2. The following are conditions

for stochastic comparisons between the cdf’s G1,e and G2,e:

G1,e ≤LR G2,e if and only if G1 ≤H G2 , (6.7)

so that we have the implications

G1 ≤LR G2 → G1 ≤H G2 → G1,e ≤LR G2,e → G1,e ≤H G2,e . (6.8)

For (6.7), see Problem 9.18 of [27].

If E[X1] = E[X2], then

G1,e ≤ST G2,e if and only if G1 ≤IC G2 , (6.9)

so that

if G1 ≤C G2, then G1,e ≤ST G2,e . (6.10)

Finally, we have the following result about the way the overall performance depends upon

the agent-retention cdf G.

Theorem 6.1. Suppose that the performance function r is a nondecreasing real-valued func-

tion. If either

G1 ≤H G2 or G1 ≤C G2, (6.11)

then

r1 =
∫ ∞

0
r1(t)g1,e(t) dt ≤

∫ ∞

0
r2(t)g2,e(t) dt = r2 . (6.12)
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Proof. The conclusion (6.12) holds if and only if G1,e ≤ST G2,e by Definition 6.1 (a′).

However, that is implied by each of the conditions in (6.11), by virtue of (6.8) and (6.10),

using Theorem ??.

Since a scalar multiple cX is exponential (Hk) whenever X is exponential (Hk), it is natural

to consider the the distribution of cX as a function of c. We now give sufficient conditions for

the distribution of cX to be increasing in c in the ordering ≤H , which implies that the overall

long-run average performance will increase when we multiply X by a constant c > 1, by virtue

of Theorem 6.1.

Theorem 6.2. Let X be a random variable with the agent-retention cdf G. If G has a failure-

rate function λX satisfying

λX(cx) ≤ cλX(x) for all x > 0 and c > 1 , (6.13)

which is implied by G being DFR, then the distribution of cX is increasing as a function of c

in the ordering ≤H , i.e.,

c1X ≤H c2X if c1 < c2 . (6.14)

Proof. To establish (6.14), it suffices to show that λc1X(t) ≥ λc2X(t) for all t, but that is

equivalent to
λX(t/c1)

c1
≥ λX(t/c2)

c2
for all t , (6.15)

which we see is equivalent to (6.13) if we make the change of variables: x = t/c1 and c =

c2/c1.

For the gamma pdf in (3.2), it is important that the sufficient conditions in Theorem 6.1 are

satisfied when we make direct changes to the parameters, in an appropriate way. In particular,

if we increase the mean mG = ν/µ by either (1) decreasing µ, while holding ν fixed or (2)

increasing ν, while holding µ fixed, then G increases in the ≤LR ordering, which implies that G

increases in the required ≤H ordering; e.g., see Problem 9.21 of [27]. Thus, increasing the mean

m1 of G in that way for the gamma agent-retention cdf causes the overall long-run average

performance r(m1) to increase.

7. Statistical Issues: Fitting the Functions

In this section we briefly discuss statistical issues associated with fitting our proposed

model to data, but we do not analyze any data here. For a recent extensive statistical study

of contact-center data, see Brown et al. [9].
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Our model showing how agent retention affects contact-center performance has three el-

ements: the performance function r ≡ r(t), the agent-retention cdf G ≡ G(t) and the staff-

experience cdf F ≡ F (t). Under our model assumptions, we have F = Ge by Theorems 3.1

and 3.2, where Ge ≡ Ge(t) is the stationary-excess cdf associated with G defined in (3.5).

Hence, under our model assumptions, there are only two model elements to be specified r and

G. However, it may be easier to estimate F directly than estimate G. Our model and the

steady-state conditions for that model (assumed in Section 3) allow us to represent F by Ge.

We should recognize that those assumptions might not be justified, but we proceed assuming

that they are.

In this section we discuss statistical procedures to estimate the model elements from

contact-center data. Our goal is to obtain estimators r̂, Ĝ and F̂ for the three model ele-

ments r, G and F . We should keep in mind that these quantities are all functions of the length

of service t, not simple numbers.

We start by considering the performance function r. First, of course, we must specify how

agent performance is to be measured. A simple measure readily available from the automatic

call distributor (ACD) is the number of calls handled by the agent per (working) hour. With the

aid of the customer relationship management (CRM) system and the ACD, we could instead

use a measure such as revenue generated by the agent per hour. Thus, for each agent, and each

time period (a day, say), we would obtain a data point (y, t), where y represents the observed

performance and t representing the length of time that the agent has been employed. For any

individual agent, say agent j, we can estimate agent j′s performance function rj ≡ rj(t) by

fitting the function rj to the set of (y, t) pairs for that agent. Similarly, for the entire contact

center, we can estimate the performance function r ≡ r(t) by fitting that function to all the

(y, t) pairs. Of course, this is a statistical problem. If there were a perfect fit, then we would

have y = r(t) for all pairs (y, t) and some function r. But we cannot nearly expect that.

Instead, we statistically fit a function r to the data. That fitted function is our estimator r̂.

In the process of doing the function fitting, we should also measure the statistical validity of

the relation.

Next we turn to the agent-retention cdf G. The obvious direct approach is to go into the

employment records and obtain the length of service for each agent that has worked for the

contact center. However, there are difficulties. First, we do not know when to start measuring.

If we go back in time too far, then the data may not be representative of the current conditions

of the contact center. But suppose that we select an appropriate measurement period. We
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would then consider the population of all agents that started work during that interval of time.

We should recognize that we would have statistical problems if we, instead, focus on the agents

who worked any time during that interval (including those that started employment before the

measurement interval), because there would then be a selection bias. So suppose we focus only

on the agents that started work during the designated time period.

Then the natural estimator Ĝ for the agent-retention cdf G is the empirical cdf Gn ≡ Gn(t),

based on the sample of size n: Gn(t) is the proportion of the n sampled agents that were

employed for a total time less than or equal to time t. We might use a statistical smoothing

technique to estimate the agent-retention pdf g from the histogram gn associated with the

empirical cdf Gn. (The histogram is essentially a probability mass function assigning mass

1/n to the retention time of each of the n agents. The histogram goes further by grouping the

values into subintervals.)

Unfortunately, however, there are further difficulties with this direct and natural approach.

In particular, we also have the problem of censored data: We can only accurately measure

the total length of service for those agents that already have terminated employment. There

may well be a significant number of agents in our sample (who started employment during our

measurement interval) who are still currently employed. All we know about these agents is their

current length of employment. For them, that current length of employment underestimates

their ultimate, yet-to-be-determined, total length of employment. On the other hand, if we

take the agents still working out of the sample, then we look only at agents completing service

in the observation window, causing us to bias the estimate the other way, not counting agents

with longer service times. If the number of agents currently employed is a relatively small part

of the whole sample, then this difficulty can be considered minimal.

However, we anticipate that the number of agents currently employed will be a relevant part

of the overall sample, so it is likely that the censored-data problem will have to be addressed.

Fortunately, there are available statistical procedures to cope with censored data, via survival

analysis, and in particular the Kaplan-Meier estimator [22, 32]. See Section 6 of Brown et al.

[9] for applications of this analysis to analyze abandonment and waiting in contact centers.

Given that we can indeed obtain an estimator Ĝ to estimate the agent-retention cdf G,

e.g., by the empirical retention cdf Gn, we can obtain an estimator f̂ for the staff-experience

pdf f by letting

f̂(t) =
1

m̂G
Ĝc(t), t ≥ 0 , (7.1)

where m̂G is an associated estimator for the mean of G (naturally taken to be the mean of Ĝ)
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and Ĝ is the chosen estimator for G. We obtain (7.1) by simply using the chosen estimator Ĝ

and the established relation between f and G in (4.2).

We conclude this section by proposing an alternative approach that avoids two of the

difficulties above: (i) going back in time and (ii) censored data because agents to be considered

are still employed. To avoid these difficulties, we suggest focusing instead on the empirical

staff-experience cdf Ft ≡ Ft(x) defined in Section 1: Ft(x) is the proportion of the agents

working at time (day, say) t that have been employed for a length of time less than or equal

to x (months, say). The obvious advantage of using the empirical cdf Ft is that it is directly

observable. It is itself a directly measurable quantity. Moreover, it too can be obtained by

carefully exploiting the employment records.

Our analysis in Section 3 is important because it shows how to interpret the empirical staff-

experience cdf Ft. In particular, we now understand how to relate Ft to the overall long-run

average staff-experience cdf F and the agent-retention cdf G. Of even greater importance, we

clearly see that Ft, F , G and the estimator Ĝn defined above are four different but related

functions. We would suggest estimating the desired staff-experience cdf F by a finite time-

average of Ft; i.e.,

F̂T,N (x) =
1

N + 1

N∑

i=0

FiT/N (x) for all x > 0 , (7.2)

where [0, T ] is the selected measurement interval, with T representing the current time and 0

representing a time T units in the past, which we have decided to divide into N + 1 evenly

spaced observation times.

We believe that it may be useful to look at the empirical cdf Ft and see how it evolves over

time. We can see the evidence of changes in turnover through the evolution of Ft. Since Ft is

a random variable, it is natural to smooth it by taking time averages. Hence we might look at

the time average

F̂u,T,N (x) =
1

N + 1

N∑

i=0

Fu+(iT/N)(x) for all x > 0 , (7.3)

as a function of u. The estimator F̂u,T,N (x) estimates the time-average of Ft over the time

interval [u, u+T ] as a function of u. If the (random) cdf F̂u,T,N (x) tends to increase stochasti-

cally, in some sense, as u increases we see retention improvements over time, measured in that

way.

It is natural to ask if the contact center can be regarded as being in steady-state at any

given observation time. One indication of that would be that there is no systematic trend
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in the statistic F̂u,T,N (x) as the measurement starting time u changes. Assuming that the

contact center can indeed be regarded as being in steady state, the estimators F̂T,N (x) in (7.2)

and F̂u,T,N (x) are in fact direct estimators of the staff-experience cdf F . Given one of these

estimators, say F̂ , we can apply statistical methods to obtain an associated estimator f̂ for

the staff-experience pdf f . We can then apply formula (4.2) to obtain an estimator Ĝ for the

associated agent-retention G, namely,

Ĝ(x) = 1− f̂(x)

f̂(0)
. (7.4)

This procedure leads us to estimate the mean of G by m̂G = 1/f̂(0).

8. Transition Costs

In this section we supplement our probability model in Section 3 in order to describe the

transition costs discussed in Section 1. As before, we assume that the number of agents working

in the contact center is fixed at n for all time, with a new agent hired whenever a working

agent departs. As before, we assume that the agent employment durations Xi,k are IID random

variables for 1 ≤ i ≤ n and k ≥ 1, with Xi,k representing the length of time that the kth agent

in the ith agent position is employed. As before, we assume that Xi,k is distributed as the

random variable X with cdf G having finite mean mG = E[X].

Let Ni ≡ {Ni(t) : t ≥ 0} be the renewal counting process associated with the ith position,

i.e.,

Ni(t) ≡ max {k : Si,k ≤ t}, t ≥ 0 , (8.1)

where

Si,k ≡ Xi,1 + · · ·+ Xi,k, 1 ≤ i ≤ n, and k ≥ 1 , (8.2)

with Si,0 ≡ 0 for each i.

The total number of transitions in the time interval [0, t] is then

N(t) ≡
n∑

i=1

Ni(t), t ≥ 0 . (8.3)

By Proposition 3.3.1 and Theorem 3.3.4 of Ross [28], we can describe the long-run transition

rate, justifying a claim made in the introduction.

Theorem 8.1. Under the assumptions above,

N(t)
t

→ n

E[X]
with probability 1 as t →∞ (8.4)
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and
E[N(t)]

t
→ n

E[X]
as t →∞ . (8.5)

In other words, for each agent position, the long-run average transition rate is 1/E[X].

Now we consider the costs associated with each transition. In doing so, we do not do a

detailed analysis. Instead, we simply assume that there is an additional set of IID random

variables Zi,k for 1 ≤ i ≤ n and k ≥ 1, with Zi,k representing the random cost associated with

the kth transition at the ith agent position. Let the random variables Zi,k be distributed as a

random variable Z with cdf H having finite mean E[Z].

Then the total transition cost at the ith agent position during the time interval [0, t] is

Ci(t) =
Ni(t)∑

k=1

Zi,k , t ≥ 0 , (8.6)

and the overall total transition cost during the time interval [0, t] is

C(t) =
n∑

i=1

Ni(t)∑

k=1

Zi,k , t ≥ 0 . (8.7)

Under all the IID assumptions made above, for each i, the stochastic process Ci ≡ {Ci(t) :

t ≥ 0} is a renewal-reward process, as in Section 3.6 of Ross [28]. In turn, the stochastic

process, C ≡ {C(t) : t ≥ 0} is the sum of n IID renewal-reward processes. Thus, be Theorem

3.6.1 of [28], we have the following result, describing the long-run average total transition cost.

Theorem 8.2. Under the assumptions above,

C(t)
t

→ nE[Z]
E[X]

with probability 1 as t →∞ (8.8)

and
E[C(t)]

t
→ nE[Z]

E[X]
as t →∞ . (8.9)

In practice (for actual finite times t), the observed average cost C(t)/t will inevitably differ

from the long-run average nE[Z]/E[X]. Under the model assumptions, random fluctuations

about the limit can be described by a central limit theorem. By Theorem 7.4.1 of [35], we obtain

the following characterization. For the statement, let N(m,σ2) denote a random variable with

a normal distribution having mean m and variance σ2. As in (3.4), let ⇒ denote convergence

in distribution.
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Theorem 8.3. If, in addition to the assumptions above, the variances σ2
X ≡ V ar(X) and

σ2
Z ≡ V ar(Z) are finite, then

C(t)− γt√
t

⇒ N(0, nσ2) as t →∞ , (8.10)

where

γ ≡ nE[Z]
E[X]

and σ2 ≡ σ2
Z

E[X]
+

E[Z]2σ2
X

E[X]3
. (8.11)

As a consequence of Theorem 8.3, we see that, for large t, C(t) is approximately normally

distributed with mean γt and variance nσ2t for γ and σ2 in (8.11).

9. Conclusions

In this paper we have presented a mathematical framework to help think about the way

management actions to increase agent job satisfaction (increasing compensation or autonomy,

reducing stress, or by any other means) may increase agent retention and enhance contact-

center performance. We have developed mathematical models to describe both the transition

costs of turnover (Section 8) and the performance benefits of retention (Sections 2, 3 and 5).

We believe that the models and analysis can be useful when combined with empirical analysis

of contact-center data. The models and analysis can even help guide the empirical analysis.

Mathematical models have an automatic precision that requires careful definition. Thus

the act of modelling can help us carefully define the quantities being studied. For example, the

model identifies two quantities that might be confused: the length of time each agent works

(modelled by the agent-retention cdf G) and the experience of the staff at any time (modelled

by the staff-experience cdf F ). The model also determines a precise relation between these two

quantities, under assumptions. Under the model assumptions, we have shown how changes in

the agent-retention cdf G will produce corresponding changes in the staff-experience cdf F . It

is natural to next investigate if these relationships are seen in practice.

Given that management actions may significantly affect agent job satisfaction, with some

actions acting positively, but possibly others acting negatively (e.g., pervasive monitoring), it

is desirable to investigate how these actions actually do affect retention, staff experience and

performance. By measuring all these quantities over time, management can learn about the

costs and benefits of those management actions.

The modelling and analysis raise important empirical issues. For example, we see that

it is natural to ask how performance might best be quantified. Moreover, for an appropriate
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quantification, our model leads us to ask if performance can indeed be regarded as an increasing

function of experience and, if so, what is the shape of the function? And how much performance

benefits are gained by increasing staff experience? More fundamentally, we suggest considering

that actions to increase agent job satisfaction might be cost-effective. It is possible that

such measures can be win-win-win actions; all the parties - the agents, the company and the

customers - might simultaneously benefit. If such win-win-win opportunities exist, it would be

desirable to find them.
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