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We continue to focus on simple exponential approximations for steady-state tail probabilities in queues based on asymptotics. For
the G/Gi/1 model with i.id. service times that are independent of an arbitrary stationary arrival process, we relate the asymptotics
for the steady-state waiting time, sojourn time, and workload. We show that the three asymptotic decay rates coincide and that the
three asymptotic constants are simply related. We evaluate the exponential approximations based on the exact asymptotic parameters
and their approximations by making comparisons with exact numerical results for BMAP/G/1 queues, which have batch Markovian
arrival processes. Numerical examples show that the exponential approximations for the tail probabilities are remarkably accurate at
the 90th percentile and beyond. Thus, these exponential approximations appear very promising for applications.

his paper is a sequel to Part I, Abate et al. (1995), in

which we studied exponential approximations for
steady-state waiting-time tail probabilities in infinite-
capacity queues based on asymptotics. In Part I we pre-
sented numerical examples based on exact numerical
solutions of the BMAP/G/1 queue (having i.i.d. service
times independent of a batch Markovian arrival process)
and the GI/G/s queue to show that the exponential ap-
proximation is remarkably good, lending support to pre-
vious work in the same direction, notably by Tijms
(1986) and Asmussen (1987, 1989). Moreover we devel-
oped simple effective approximations for the asymptotic
parameters.

The primary purpose of this paper is to relate the as-
ymptotic behavior of the steady-state waiting time W to the
asymptotic behavior of the steady-state sojourn time T (re-
sponse time, ie., waiting time plus service time) and the
steady-state workload L (virtual waiting time). In particu-
lar, we show that corresponding asymptotics for 7 and L
are valid in any G/GI/1 queue (having i.i.d. service times
that are independent of a general stationary arrival pro-
cess) whenever the exponential asymptotics for the waiting
time are valid, and we show that the parameters are simply
related. Moreover, we show by making comparisons with
exact numerical values that the resulting approximations
are remarkably good.

Even if we recognize that an exponential approximation
is good for the waiting time, it may be surprising that a
similar exponential approximation is also often good for
the sojourn time without any special assumptions on the

service-time distribution. This idea has been advanced by
Fleming (1992), who proposes simple heavy-traffic approx-
imations for sojourn-time percentiles as well as waiting-
time percentiles in a class of M/GI/1 queues. (He focuses
on two-point service-time distributions, which are realistic
for computer systems.) We provide additional support for
this idea, as well as develop new approximations for more
general models. Having a corresponding exponential ap-
proximation for sojourn times is very important for appli-
cations, because the sojourn time (response time) is often
the critical variable.

Here is how the rest of this paper is organized. In
Section 1 we relate the asymptotic behavior of the wait-
ing time, workload, and sojourn time in the G/GI/1
model. In Section 2 we discuss numerical examples for
the workload and sojourn time, drawing on Choudhury
et al. (1996), which in turn draws upon Lucantoni
(1991).

Additional related work (done after this paper) appears
in Abate et al. (1994), Glynn and Whitt (1994), and
Choudhury et al. (1996). Abate et al. (1994) directly estab-
lish exponential asymptotics for the steady-state variables
in the BMAP/G/1 queue and give explicit expressions for
the asymptotic parameters. Glynn and Whitt establish log-
arithmic limits for the steady-state waiting time and relate
these limits to corresponding logarithmic limits for the
steady-state workload and queue length (at an arbitrary
time and at arrivals). These weaker logarithmic limits hold
in greater generality than the limits considered in this pa-
per. Finally, Choudhury et al. (1996) focus on the special
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case of superposition arrival processes, which is of special
interest for communication networks, and show by numer-
ical examples that the asymptotic approximations often do
not perform as well in that setting. Due to developments in
communication networks, this topic has recently received
much attention. See the references (e.g., Part I) for addi-
tional references.

1. SOJOURN TIME AND WORKLOAD

We consider the G/GI/1 queueing model, which has one
server, unlimited waiting space, the first-come first-served
discipline, and i.i.d. service times that are independent of a
general stationary arrival process. We assume that the
mean service time is 1 and that the arrival rate is p < 1,
We assume that the various steady-state distributions dis-
cussed below exist as proper probability distributions.

Let W be the steady-state waiting time (before beginning
service). As discussed in Part I, in great generality,

PW>x)~ape™ asx —>w, (1)

i.e., eYP(W > x) — ay as x — », where 1 and ay, are
positive constants (independent of x) called the asymptotic
decay rate and the asymptotic constant, respectively. Let V'
be a generic service time random variable. Theorem 10
and Example 5 of Part I show that in order for (1) to be
valid in the G/GI/1 queue, it is necessary, but not suffi-
cient, to have Ee*” < o« for some s > 0.

In this section we show that the steady-state sojourn
time 7 and the steady-state workload L satisfy analogs of
(1) when (1) holds with the same asymptotic decay rate i
and asymptotic constants «; and « that are easily related
to ay-.

For GI/PH/1 queues, the asymptotic behavior of W, L,
and T was described in detail by Neuts (1981). These rela-
tionships are also a consequence of interesting phase-type
results in Asmussen (1992); see Corollary 2.2. In particu-
lar, Asmussen shows that if the service-time distribution is
phase-type characterized by the pair (m, () where 7 is a
d-dimensional vector and Q is a d X d generator matrix,
then W, L, and T have distributions, which except for a
probability mass at the origin, are also phase-type with
representations (my, Q), (7., Q) and (1, Q) where Q is a
common d X d generator matrix and my, 7, and my are
in general different d-dimensional vectors. Since the as-
ymptotic decay rate n is the Perron-Frobenius eigenvalue
of Q, it is identical for all three random variables. The
asymptotic constants involve the eigenvectors associated
with the dominant eigenvalue and the vectors y, 7, and
Ty

We conjecture that this structural solidarity result ex-
tends to GI/PH/s models with s > 1, but without having the
number of phases in O be equal to the number d of
service-time phases. Indeed, we conjecture that the num-
ber of phases in O is

A+ Y =@+s-11d-1)s!.
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This is based on the structural solidarity result for GI/H /s
queues established by de Smit (1983); the waiting-time
distribution is again hyperexponential (plus a mass at the
origin) with this larger number of exponential terms.

We extend Neuts (1981) and Asmussen (1992) for the
sojourn time by replacing the GI and PH in GI/PH/1 by G
and GI, respectively, but we consider only the asymptotic
parameters. This next result extends easily to s servers.

Theorem 1. In the G/Gl/1 model, if e*P(W > x) — ay as
x —» oo, then Ee" <  and

e"P(T>x) »ar=apEe"V>apasx —> .

Proof. By Theorem 10 of Part I, Ee" < «, Since T =
W + V where W and V are independent,

e"P(T>x)= j e TWP(W >x — u)e™dP(V < u)
0

+e™P(V >x)

= J 1jo,ge™* "WP(W >x — u)e ™dP(V < u)
0

+e"P(V >x).

Since Ee™ < o, e"P(V > x) — 0 as x — o, Then the
assumed convergence for W plus the bounded convergence
theorem implies the desired conclusion.

From Proposition 9 of Glynn and Whitt (1994), we know
that the correction term Ee™ in Theorem 1 is o~ !, where
o is the queue-length asymptotic decay rate. Glynn and
Whitt relate the logarithmic asymptotics for the waiting
time and queue length. It remains to relate (1) to analogs
of (1) for the queue length. For special cases, connections
are established in Neuts (1981, 1986) and Abate et al.
(1994). The BMAP/G/1 model in the last paper is very
close to the G/GI/1 model considered here.

Theorem 1 is especially easy to understand when the
service-time distribution is deterministic; then P(T > x) =
PW>x = 1) ~ ae” ™D as x — =, 50 that a; = ae™.
The case of a service-time distribution with finite support
is a minor modification. Theorem 1 is the natural
generalization.

We now consider the workload in the G/GI/1 model.
For this, we use a relation between a distribution and its
associated stationary-excess distribution. If X is a nonnega-
tive random variable with finite mean, then X, is a random
variable with the associated stationary-excess distribution,
ie,

P(Xe>x)=Elff P(X>y)dy,x>0. (2)
X

Applying integration by parts, we see that if Ee™® < oo,
then

E@e*-1)

Xe =
Eef SEX (3)
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Theorem 2. In the G/GI/1 model, if e"P(W > x) — ay as
x —> », then

e™P(L >x) — ay sﬁj:—p(Ee’rV— 1.

Proof. By the generalized Takdcs formula in Franken et
al. (1981 (4.5.9) on p. 129),

P(L>x)=pP(W+V,>x), (4)

for all x, where ¥, is independent of W and has the
stationary-excess distribution of the service-time distribu-
tion. The rest of the argument is as in Theorem 1. We use
(3) (and the fact that EV = 1) to obtain

apEe": = %)2 (Ee™ ~1).

Given that Ee" = ¢!, we can express the correction
term for L in Theorem 2 directly in terms of the asymp-
totic decay rates m and o, ie., pE("™ — l/m =
p(1 = o)/no.

Notice that Theorem 2 is consistent with the well-known
property that L has the same distribution as W in the
M/G/1 queue, because then p(Ee" — 1)/n = 1 by the
defining property of . Similarly, for GI/M/1,

(Ee W 1) _ 22 _
n o
because @ = o = 1 — n. Finally, for the GI/PH/1 queue,
Theorems 1 and 2 agree with Section 2 of Neuts (1981).
When 7 is sufficiently small, we can use the approxima-
tion

a, =a-p P,

2172 3173
Ee"VzE(1+nV+ nr +ZITV”)

212 3
n (cs + 1) nvs
5 + 6 - (5)

Inserting (5) into the formula for oy, we get

=1+ 7+

2 2 3 3
o %EW_P(T,EV+11£+M)
L n 2 6

(c}+1) + 7721/3) .

w12 1D 7 “

Given formula (33) in Part I for GI/GI/1, we see that for
GIIGI1 as p — 1

03—1) (<1+csz)
~ap|l - 1-p) = ({55 o +1
oy, aW( (63+C§ ( P) C3+C52 (T) )

S I
3(c2 + c?)?

)(1 -2+ 0((1-p)?) asp—1,

(7)
where
_(2vy = 3cHcd+2)) ~ (Quy ~ 3ci(ci +2))
3(c2+c¢d)? ’

Theorems 1 and 2 show how to compute oz and oy, given
m and ay or approximations for them. When it is not

*

(8)

convenient to calculate Ee", (5)~(8) show how to approx-
imate a; and «; given 1 and ay or approximations for
them. Paralleling Section 6 of Part 1, we also suggest the
approximations o =~ mET and o =~ nEL.

2. NUMERICAL EXAMPLES FOR THE SOJOURN
TIME AND THE WORKLOAD

We noted that it is easy to see that the asymptotic behavior
of T and W are closely related when the service-time dis-
tribution is deterministic. We now consider what happens
with service-time distributions that are substantially more
variable than an exponential distribution.

As in Part I, we obtain the exact tail probabilities from
the algorithm described in Choudhury et al. (1996), which
draws upon Lucantoni. We obtain the exact values of the
asymptotic parameters from the moment-based generating-
function-inversion algorithm in Choudhury and Lucantoni
(1996). We also estimate the asymptotic parameters by linear
regression applied to the numerically calculated tail prob-
abilities (after taking logarithms) as described in Part 1.

Example 1. Consider the M/H%/1 queue with a hyperexpo-
nential service-time distribution with balanced means.
Let the arrival rate be p = 0.7 and, as always, let the
service-time distribution have mean 1. The H% distribution
is defined in Example 1 of Part I. Consider the case of
service-time squared coefficient of variation (variance di-
vided by the square of the mean) ¢ = 4.0. Then the
parameters of the density are p; = 0.8872983, A\ =
1.7744966 and A, = 0.2254034.

Since the arrival process is Poisson (M), the distribu-
tions of W and L coincide. We apply the Pollaczek-
Khintchine formula to obtain EL = 5.833 and ET =
6.833. The exact asymptotic parameters for L and T ob-
tained from Choudhury and Lucantoni (1994) and the lin-
ear regression are m = 0.1000040, o, = ay = 0.5727238
and ay = 0.6545448, so that o = ay/ar = 0.87500.

The approximations from Section 4 and Section 6 of
Part I are 1y, = 0.1200, n,, = 0.0984, a;,, = nEL =
0.5833, ar,, = nET = 0.6833, n,,EL = 0.5740, and
M, ET = 0.6724. As in Part I, the approximations for the
asymptotic parameters are quite good.

Tables T and II display exact values of the tail probabil-
ities P(L > x) and P(T > x) and the associated exponen-
tial approximations. The regression estimates are displayed
as well to show the (in this case, spectacular) rate of con-
vergence to the exponential limit. In this case, the linear
regression easily produces the exact asymptotic parameters.

Example 2. To see what happens with a nonrenewal ar-
rival process and a service-time distribution very unlike an
exponential distribution, we now consider the MMPP,/
D,/1 model of Example 3 in Part I. As before, p = 0.7 and
¢2 = 2.0. First, the asymptotic decay rates calculated for
W, T, and L by the algorithm in Choudhury and Lucantoni
agreed to eight decimal places, yielding n = 0.11159727.
For this model, it is easy to see that ol = Ee"V =

Copyright © 2001 All Rights Reserved



Table I
A comparison of exponential approximations with
exact values of the workload tail probabilities,
P(L > x), in the M/H5/1 queue with p = 0.7
and ¢Z = 4.0 in Example 1. Also included
are the local linear regression estimates
of the asymptotic parameters

x Exact ae” ™ a,(x) Ti(x)
30 04278 0.4243 0.5931 9.178
6.0 0.31441 0.31431 0.5740 9.966
9.0  0.232846 0.232844 0.57279 9.9984
12.0 0.17249290  0.17249283  0.5727272 9.999554

18.0 0.094663802 0.094663802 0.572723848 9.99960019
24.0 0.051951350 0.051951350 0.572723841 9.99960026

1.13873. The successive approximations in (5) are: 1.0,
1.1115, 1.1301, and 1.1362. The relative error in the ap-
proximation for Ee™ is 0.8% and 0.2% using two and
three moments.

The asymptotic constants are ay = 0.65738, ar =
0.74867, and o; = 0.57261. These provide empirical evi-
dence supporting Theorems 1 and 2. For the asymptotic
constant, («;/a,) = 0.87104. The successive approxima-
tions in (6) are 0.7, 0.817, 0.8717. (Note that (7) does not
apply because the arrival process is not renewal.)

Table III compares exponential approximations for the
tail probabilities of the steady-state workload and sojourn
time with exact values. Again the exponential approxima-
tions perform well. Our experience indicates that, consis-
tent with intuition, the quality of the exponential
approximations for the waiting time and workload is usu-
ally somewhat better than for the sojourn time. However,
the difference is not perceptible in Table III.

Example 3. We conclude with an MMPP/T';,,/1 example,
which is used to evaluate heavy-traffic asymptotic expan-
sions for the asymptotic decay rates of the waiting time in
Section 7 of Choudhury and Whitt (1994). The service-
time distribution is gamma with shape parameter 1/2, so
that the transform is not rational and thus the distribution
is not PH. It is moderately highly variable, with first three
moments 1, 3, and 15.

Table 11
A comparison of exponential approximations with
exact values of the sojourn-time tail probabilities,
P(T > x), in the M/H5/1 queue with p = 0.7
and ¢ = 4.0 in Example 1. Also included
are the local linear regression estimates
of the asymptotic parameters

X Exact o™ a(x) (x)
3.0 04943 0.4849 0.7107 8.263
6.0  0.35947 0.35921 0.6581 9.921
9.0 0.266115 0.266108 0.6547 9.99667
12.0  0.1971358 0.1971356 0.6545 9.99949

18.0 0.108187743 0.108187743 0.654544812 9.9996010
240 0.059373268 0.059373268 0.654544803 9.99960026
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Table III
A comparison of exponential approximations for the
steady-state workload and sojourn-time tail
probabilities with exact values in the
MMPP,/D,/1 queue in Example 2

Workload Sojourn

Percent Percent
x  Exact Approx. error Exact Approx. error
3.0 03765 0.4097 8.8 04801 0.5356 11.6
6.0 02900 0.2931 1.0 03564 0.3833 7.6
9.0 0.2230 0.2097 —-6.0 0.2884 0.2742 —4.9
12.0 0.1506  0.1501 -03 02033 0.1962 35
15.0 0.1049 0.1074 24 01355 0.1403 3.5
18.0 0.0771  0.0768 -0.4 0.0997 0.1004 0.7
21.0 0.0557 0.0550 -13 0.0733 0.0719 -1.9

24.0 0.03913 0.03932 0.5 0.05137 0.05142 0.1
27.0 0.02800 0.02814 0.5 0.03644 0.03678 0.9
30.0 0.02020 0.02013 —03 0.02638 0.02632 —0.2
36.0 0.010304 0.01030 0.0 0.01344 0.01347 0.2
42.0 0.005282 0.005275 -0.1 0.006908 0.006898 -0.1
48.0 0.002699 0.002701 0.1 0.003528 0.003521 0.1
54.0 0.001383 0.001383 0.0 0.001808 0.001808 0.0
60.0 0.000708 0.000708 0.0 0.000925 0.000925 0.0

The arrival process is a two-phase MMPP, which has
four parameters (the arrival rate and mean holding time in
each phase), one of which we determine by letting the
arrival rate be p. A second parameter is determined by
assuming that the long-run arrival rate in each phase is p/2.
A third parameter is determined by assuming that the ex-
pected number of arrivals during each visit to each phase
is 5. Finally, the last parameter is determined by making
the ratio of the arrival rates in the two phases 4.

Tables IV and V display approximations and exact val-
ues for higher percentiles of the steady-state workload and
sojourn-time distributions, respectively. In each case, two
values of p are considered: p = 0.8 and p = 0.5. Three
approximations are considered. All approximations are ex-
ponential approximations ae” ™ with the exact 7, con-
verted to percentiles as in (2) of Part I. The first
approximation has the exact asymptotic constant, «; and
oy, respectively; the second approximation approximates
a; by nEL and a; by nET; and the third approximation
approximates «; and a; by 1.

From Tables IV and V, we see that the approximations
for higher percentiles are very impressive. The accuracy
improves as the percentile increases and as the traffic in-
tensity increases. At p = 0.8, the relative error of the
asymptotic approximation (with exact «) is less than 0.1%
even at the 80th percentile. The approximation based on
a = 7* mean performs remarkably well, substantially bet-
ter than the approximation with a ~ 1.0. However, for
high percentiles such as 99.99, even a ~ 1.0 yields a useful
approximation.

However, as shown in Choudhury et al. (1996), the qual-
ity of these asymptotic approximations can deteriorate
when the arrival process is the superposition of many inde-
pendent component arrival processes. Nevertheless, since
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Table IV

A comparison of approximations with exact values of high percentiles of the
steady-state workload in the MMPPP[T',»/1 queue in Example 3

p = 0.8, n = 0.08039
Percentile value

Percentile Approx., exact « Approx., a =~ nEL Approx.
required Exact a, = 0.73234 a; ~ 0.7439 a; ~ 1.0
80 16.1555 16.1489 16.34 20.0
90 24.7714 24.7709 24.97 28.6
99 53.4126 53.4126 53.61 87.3
99.9 82.0542 82.0542 82.25 859
99.99 110.6959 110.6959 110.89 114.6
p =05, n = 019677

Percentile value
Percentile Approx., exact « Approx., a = nEL Approx.
required Exact e, = 0.36257 a; =~ 0.4135 o, =10
80 3.6059 3.0228 3,70 82
90 6.8173 6.5455 7.22 11.7
99 18.2667 18.2476 18.92 23.4
99.9 29.9509 29.9496 30.62 35.1
99.99 41.6518 41.6517 4232 46.8
Table V

A comparison of approximations with exact values of high percentiles of the
steady-state sojourn time in the MMPP/T',,/1 queue in Example 3

p = 0.8, n = 0.08039
Percentile value

Percentile Approx., exact a Approx., a = nET Approx.
required Exact ar = 0.87702 ar =~ 0.8899 ar = 1.0
80 18.3940 18.3914 18.57 20.0
90 27.0136 27.0134 27.19 28.6
99 55.6551 55.6551 55.83 573
99.9 84.2968 84.2968 84.48 85.9
99.99 112.9384 112.9384 113.12 114.6
p =05, n = 019677

Percentile value
Percentile Approx., exact « Approx., a = nET Approx.
required Exact ar = 0.64493 oy =~ 0.7288 o, ~1.0
80 6.2030 5.9497 6.58 8.2
90 9.5853 9.4724 10.10 11.7
99 21.1821 21.1745 21.80 234
99.9 32.8770 32.8765 33.50 35.1
99.99 445786 44.5786 45.20 46.8

the desired probabilities are often extremely small, even in
that demanding setting the asymptotic approximation is
often good enough provided that we know (or have a good
approximation for) the asymptotic constant as well as the
asymptotic decay rate.
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