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ABSTRACT

Motivated by models of queues with server vacations, we consider a Le ́ vy process modified to

have random jumps at arbitrary stopping times. The extra jumps can counteract a drift in the

Le ´ vy process so that the overall Le ́ vy process with secondary jump input, can have a proper

limiting distribution. For example, the workload process in an M/G/1 queue with a server

vacation each time the server finds an empty system is such a Le ́ vy process with secondary jump

input. We show that a certain functional of a Le ́ vy process with secondary jump input is a

martingale and we apply this martingale to characterize the steady-state distribution. We

establish stochastic decomposition results for the case in which the Le ́ vy process has no negative

jumps, which extend and unify previous decomposition results for the workload process in the

M/G/1 queue with server vacations and Brownian motion with secondary jump input. We also

apply martingales to provide a new proof of the known simple form of the steady-state

distribution of the associated reflected Le ́ vy process when the Le ́ vy process has no negative

jumps (the generalized Pollaczek-Khinchine formula).



1. Introduction

We consider a Le ́ vy process modified to have random jumps at arbitrary stopping times. We

consider this Le ́ vy process with secondary jump input primarily because we want to extend

known decomposition results for the M/G/1 queue with server vacations (Fuhrmann and Cooper

(1985), Shanthikumar (1988, 1989), Doshi (1990a)) and jump-diffusion processes (Kella and

Whitt (1990)). These decomposition results express the steady-state distribution as the

convolution of other component distributions. For surveys of vacation queueing models, see

Doshi (1986), (1990b), Takagi (1987) and Teghem (1986). For background on Le ́ vy processes,

see Chapter 14 of Breiman (1968), Chapter 9 of Feller (1971), Bingham (1975), and Chapter 3 of

Prabhu (1980).

The Le ́ vy processes with secondary jump inputs, which we refer to as JLPs, (defined in

Sections 2 and 3 below) arise in these queueing vacation models in three different ways: First, the

workload or virtual-waiting-time process in an M/G/1 queue in which the server takes a vacation

each time it finds an empty system is a JLP, i.e., the net input of work is a Le ́ vy process without

negative jumps (a compound Poisson process minus t) modified to have positive random jumps

(the vacation times). Second, following Doshi (1990a), if we restrict attention to (condition

upon) times at which the server is busy, then the workload process in the M/G/1 vacation model

is a JLP. (Then, as in this paper, the jumps are not necessarily nonnegative.) Finally, as shown in

Kella and Whitt (1990), special JLPs called jump-diffusion processes arise as heavy-traffic limits

of (and thus approximations for) general queues with server vacations. Other JLPs may also

serve as useful models for queues and related storage systems with service interruptions.

As a basis for proving our decomposition results, we prove that certain functionals associated

with the Le ́ vy process, the reflected Le ́ vy process (RLP), the Le ́ vy process with secondary jump

input (JLP) and the reflected process associated with a Le ́ vy process with secondary jump input
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(RJLP) are martingales. (Even for the M/G/1 queue, this martingale approach seems to be new;

see Bre ́ maud (1981), Rosenkrantz (1983) and Baccelli and Makowski (1989a,b) for other

martingale results for queues. The martingale results here are analogous to previous level

crossing arguments for vacation models; e.g., see Doshi (1990a) and Shanthikumar (1989).)

Together with simple regenerative arguments, the first two martingales provide short proofs

establishing the known simple form of the steady-state distribution of the RLP when the Le ́ vy

process has no negative jumps, i.e., the generalized Pollaczek-Khinchine formula; see Section 4.

See Zolotarev (1964), Bingham (1975) and Harrison (1977) for previous proofs.

In Sections 5 and 6 we characterize the steady-state distributions of JLPs and RJLPs. Under

the assumption that the Le ́ vy process has no negative jumps we establish stochastic

decompositions for the JLP and the RJLP. For example, under certain conditions, the steady-state

distribution of the JLP is a convolution of three distributions: the steady-state distribution of the

RLP, the stationary forward-recurrence-time distribution of the jump size and the steady-state

distribution of the state of the JLP ‘‘right before’’ (not quite, see details later) a jump.

2. The L e′ vy Process

Our basic stochastic process X ≡ { X t  t ≥ 0} is a real-valued stochastic process with

X( 0 ) = 0 defined on an underlying probability space (Ω , ^ , P) endowed with a standard

filtration {^ t  t ≥ 0}, i.e., {^ t  t ≥ 0} is an increasing right-continuous family of complete

sub-σ-fields of ^ . We assume that X is a Le ́ vy process with respect to the filtration {^ t  t ≥ 0},

i.e., X t is adapted to ^ t and X u − X t is independent of ^ t and distributed as X u − t for 0 ≤ t < u.

Moreover, we assume that the sample paths of X are right-continuous with left limits, so that X is

strong Markov. The one-dimensional marginal distributions are infinitely divisible, i.e., X t has

characteristic function (cf)
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Ee i α X t = e φ(α) t , t ≥ 0 , (2.1)

where φ(α) is the characteristic exponent; e.g., see p. 706 of Bingham (1975).

The Le ́ vy process X can be represented as the independent sum of a Brownian motion and

another Le ́ vy process, X̃. If X has no negative jumps and the paths of X̃ are of bounded variation,

then without loss of generality X̃ can be a subordinator (a Le ́ vy process with nondecreasing

sample paths). The subordinator in turn can be represented as a nonnegative compound Poisson

process or as the limit of a sequence of nonnegative compound Poisson processes; p. 303 of

Feller (1971). The process depicting the net input of work in an M/G/1 queue is a Le ́ vy process

without negative jumps, having a degenerate Brownian motion component (with drift coefficient

− 1 and diffusion coefficient 0) and a subordinator which is a compound Poisson process with

Poisson rate equal to the arrival rate and jumps equal to the service times.

We conclude this section by identifying a martingale associated with X that we will apply; it

is similar to the familiar Wald martingale W t = exp { i αX t − φ(α) t } , t ≥ 0; see p. 7 of

Harrison (1985) and p. 243 of Karlin and Taylor (1975). In particular, let

Z t = φ(α)
0
∫
t

e iαX s ds − e iαX t , t ≥ 0 . (2.2)

Since we work with cf’s, we work with complex-valued martingales. As usual, if z = u + iv,

then z = (u 2 + v 2 )1/2 .

Proposition 2.1. For all real α, Z is a complex-valued martingale with respect to {^ tt ≥ 0}.

Proof. First, suppose that φ(α) ≠ 0. The finiteness of E Z tis a consequence of the finiteness

of φ(α) and Fubini’s theorem. For 0 ≤ s < t,

φ(α) E



 s
∫
t

e iα(X u − X s ) du  ^ s






= e φ(α) (t − s) − 1 = E[e iα(X t − X s )
 ^ s ] − 1 w. p. 1 , (2.3)
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where the first equality follows from the independent increments property, Fubini’s theorem, and

integrating e φ(α) (u − s) from s to t. The result now follows by multiplying the left and right sides

by e iαX s and adding φ(α)
0
∫
s

e iαX u du (both of which are ^ s measurable).

3. The L e′ vy Process With Secondary Jump Input (JLP)

Let { T n  n ≥ 0} be a strictly increasing sequence of stopping times with respect to the

filtration {^ t  t ≥ 0}, with T 0 = 0. Let { N t  t ≥ 0} be the associated counting process, i.e.,

N t = sup { n  T n ≤ t } , t ≥ 0 . (3.1)

Let { U n  n ≥ 0} be a sequence of random variables and assume that U n is ^ T n
measurable for

n ≥ 0. Then the Le ́ vy process with secondary jump input (JLP) is { Y t  t ≥ 0}, where

Y t = X t +
k = 0
Σ
N t

U k , t ≥ 0 . (3.2)

An example of interest is the special case in which X has no negative jumps, U n > 0 for all n and

T n = inf { t ≥ 0  X t +
k = 0
Σ

n − 1
U k = 0} , n ≥ 0 , (3.3)

but in general we do not restrict attention to this case.

The following is our main tool. The random variable Y T n
− U n below can be thought of as

the value of Y just prior to the n th jump, but note that Y T n
− U n = Y T n − only if X is continuous

at T n .

Theorem 3.1. (a) If T n → ∞ w.p.1 as n → ∞, then { M tt ≥ 0} is a local martingale with respect

to {^ tt ≥ 0} with localizing sequence { T n }, where

M t ≡ φ(α)
0
∫
t

e iαY s ds + 1 − e iαY t −
k = 0
Σ
N t

(e
iα(Y T k

− U k ) − e
iαY T k ) , t ≥ 0 . (3.4)
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(b) If, in addition, EN t < ∞ for all t, then { M tt ≥ 0} in (3.4) is a zero-mean complex-valued

martingale with respect to {^ t  t ≥ 0}.

Proof. (a) From (3.4), by considering the three cases t ≤ T n − 1 , T n − 1 < t ≤ T n and t > T n , we

see that

M T n ∧ t − M T n − 1 ∧ t = (Z T n ∧ t − Z T n − 1 ∧ t ) e
iα

j = 0
Σ
n − 1

U j

, (3.5)

where x ∧ y = min{ x , y }. Since { Z t t ≥ 0} is a right-continuous martingale with respect to the

standard filtration {^ t t ≥ 0} by Proposition 2.1 and T n is a stopping time, { Z T n ∧ tt ≥ 0} is a

martingale, e.g., p. 20 of Karatzas and Shreve (1988). Moreover, since U k is ^ T k
-measurable for

all k and since e
iα

j = 0
Σ
k − 1

U j

is bounded, { M T n ∧ t − M T n − 1 ∧ tt ≥ 0} and thus { M T n ∧ tt ≥ 0} are

martingales with respect to {^ tt ≥ 0}. Since T n → ∞ w.p.1, { M tt ≥ 0} is a local martingale

with localizing sequence { T n }.

(b) From (a), we have

E(M T n ∧ t^ s ) = M T n ∧ s w. p. 1 . (3.6)

Since
0 ≤ s ≤ t

sup M s ≤ φ(α)t + 2 (N(t) + 1 ) and EN(t) < ∞, the result follows from the

dominated convergence theorem for conditional expectations, p. 301 of Chung (1974), letting

n → ∞ in (3.6).

4. The Reflected L e′ vy Process (RLP)

Let

I t = −
0 ≤ s ≤ t

inf X s and R t = X t + I t , t ≥ 0 . (4.1)

We call R ≡ { R tt ≥ 0} the reflected or regulated Le ́ vy process (RLP) associated with the Le ́ vy
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process X. The process I in (4.1) can also be defined as the minimal right-continuous

nondecreasing process such that X t + I t ≥ 0 for all t; then I increases only when R = 0; see p. 19

of Harrison (1985).

We now characterize the RLP R for the special case in which the Le ́ vy process X has no

negative jumps as the limit of JLPs Y a for which U n = a w.p.1 for all n. We first characterize

the approximating JLPs. Let Y a be the JLP associated with X, U n = a w.p.1 for all n and

Tn
a = inf{ t ≥ 0 X t ≤ − na }, n ≥ 1, as in (3.3). Then Y t

a = X t + It
a where It

a = a(Nt
a + 1 )

and Nt
a is the renewal counting process associated with { Tn

a }. It is immediate that

0 ≤ It
a − I t = Y t

a − R t ≤ a for all t w. p. 1 . (4.2)

Lemma 4.1. If X has no negative jumps, then EIt
a < ∞ and

Mt
a = φ(α)

0
∫
t

e iαYs
a

ds + 1 − e iαY t
a

− α It
a

αa
( 1 − e iαa)
_ _________ (4.3)

is a zero-mean complex-valued martingale with respect to {^ tt ≥ 0}.

Proof. We first show that EIt
a < ∞. Since X has no negative jumps, { Tn

an ≥ 1} is a random

walk with Tn
a < Tn + 1

a w.p.1 and N a is the associated renewal counting process. Hence,

ENt
a < ∞; see p. 182 of Karlin and Taylor (1975). By (4.2), EI t ≤ EIt

a ≤ a(ENt
a + 1 ). Since

It
a = a(Nt

a + 1 ) and (4.2) holds, ENt
a < ∞ for each a > 0 and t > 0. Hence, we can apply

Theorem 3.1.

From (4.2), we see that Mt
a → Mt

0 as a → 0 uniformly on Ω × [ 0 , t 0 ] for all t 0 > 0, where

Mt
a is in (4.3) and

Mt
0 = φ(α)

0
∫
t

e iαR s ds + 1 − e iαR t + iαI t , t ≥ 0 . (4.4)

As an immediate consequence, we obtain the martingale property for M 0 .

Theorem 4.1. If X has no negative jumps then Mt
0 in (4.4) is a zero-mean complex-valued
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martingale with respect to {^ tt ≥ 0}.

Proof. By dominated convergence for conditional expectations, E(Mt
a^ s ) → E(Mt

0^ s )

w.p.1 as a → 0 for 0 ≤ s < t. However, E(Mt
a^ s ) = Ms

a → Ms
0 w.p.1 as a → 0 by

Lemma 4.1 and the convergence noted above.

Remark 4.1. When X is Brownian motion (and even more generally), Proposition 2.1 and

Theorem 4.1 can be obtained from Itô’s lemma, while Theorem 3.1 and Lemma 4.1 can be

obtained from a generalized form of Itô’s lemma; see Kella and Whitt (1990), p. 71 of Harrison

(1985) and p. 301 of Me ́ yer (1976).

We now give our first new proof of the generalized Pollaczek-Khinchine formula. For this

purpose we use the following elementary lemma. It is also well known; e.g., it is a consequence

of Proposition 2 on p. 721 of Bingham (1975).

Lemma 4.2. If X has no negative jumps, EX t < ∞ and EX t < 0, then

ET1
a = − a / EX 1 = − ia /φ′ ( 0 ).

Proof. Since X has no negative jumps, { Tn
an ≥ 0} is a random walk with 0 < Tn

a < Tn + 1
a

w.p.1. Hence, ETn
a = nET1

a . Since EX t < ∞, k − 1 X k → EX 1 w.p.1 as k → ∞ by the strong

law of large numbers. Since EX t < 0, ET1
a < ∞, by Theorem 8.4.4 of Chung (1974). Finally,

− a = n − 1 X Tn
a = (n − 1 Tn

a ) (Tn
a ) − 1 X Tn

a → ET1
aEX 1 w. p. 1 as n → ∞ ,

so that ET1
a = − a / EX 1 .

Theorem 4.2. (generalized Pollaczek-Khinchine formula) If X is a Le `vy process without negative

jumps such that EX t < ∞ and E X t < 0, then

t → ∞
lim Ee iαR t =

φ(α)
α φ′ ( 0 )_ ______ for α ≠ 0 .

Proof. Note that { e iαR t t ≥ 0} is a bounded aperiodic regenerative process with respect to

{ Tn
aN ≥ 0} where Tn

a = inf{ tX t ≤ − na }. (Obviously R Tn
a = 0.) By Lemma 4.2, E T1

a < ∞.
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Hence,

t → ∞
lim Ee iαR t = E ∫

0

T1
a

e iαR s ds / E T1
a , (4.5)

where E T1
a = − ai /φ′ ( 0 ) by Lemma 4.2. Finally, the main result follows from Theorem 4.1 and

Doob’s optional sampling theorem. First, we have EMT1
a ∧t

0 = 0 for all t. To justify the

interchange of the limit as t → ∞ and the expectation, note that the first term of (4.4) is

dominated by t, the second and third terms are bounded, and I t in the fourth term is

nondecreasing in t. Finally, note that φ(α) = 0 only for α = 0 because, by (4.4),

φ(α) E ∫
0

T1
a

e iαR s ds = − iαa ,

which is not 0 for α ≠ 0.

Remark 4.2. We need X to have no negative jumps (in addition to the other assumptions) in

order to have E T1
a = − ai /φ′ ( 0 ) in Lemma 4.2 and the proof of Theorem 4.2.

Of course, one may object to the statement that this proof is short since it essentially relies on

Theorem 3.1, whose proof is not so short. Therefore we give another proof which depends only

on Proposition 2.1. At the same time, we extend previous results about queueing systems with

server vacations. (We will obtain a more general extension in section 5.)

Theorem 4.3. Let X be a Le ́ vy process without negative jumps for which EX t < ∞ and

E X t < 0. Let { U nn ≥ 0} be a positive i.i.d. sequence with EU 0 < ∞. Let { T nn ≥ 0} be

defined as in (3.3). If either X is not deterministic or if the distribution of U 0 is aperiodic, then

t → ∞
lim Ee iαY t =

φ(α)
α φ′ ( 0 )_ ______

αEU 0

i( 1 − Ee iαU 0 )_ ____________ . (4.6)

Proof. As in the proof of Theorem 4.2 above, { Y tt ≥ 0} is regenerative with respect to

{ T nn ≥ 0}. Since X is not deterministic or U 0 is aperiodic, the regenerative process is

aperiodic. Hence,
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t → ∞
lim Ee iαY t =

ET 1

1_ ____ E ∫
0

T 1
e iαY s ds . (4.7)

Since ET 1 = − i EU 0 /φ′ ( 0 ) (again use Lemma 4.2, after conditioning on U 0), the result

follows by multiplying the martingale of Proposition 2.1 by e iαU 0 and applying the optional

sampling theorem. This with (4.7) yields (4.6) for all α such that φ(α) ≠ 0. Since X t ≠ 0, we

cannot have φ(α) = 0 for all α. Indeed, we have φ(α) = 0 for some α ≠ 0 if and only if X t has

a lattice distribution; see p. 174 of Chung (1974), which is not possible for a Le ́ vy process

without negative jumps and EX t < 0.

Remark 4.3. By Theorem 4.2, α φ′ ( 0 )/φ(α) in (4.6) is the cf of the limiting distribution of the

RLP. The other term i( 1 − Ee iαU 0 )/αE U 0 is the cf of the stationary forward-recurrence-time

distribution of U 0 , which has density P(U 0 > x)/ EU 0 . Hence, Y t converges in distribution to

the convolution of those two component distributions, and thus the limiting distribution of Y t has

a stochastic decomposition. Theorem 4.3 extends previous results for the virtual waiting time

process in the M/G/1 queue with multiple server vacations ((5.6) of Doshi (1990a), Cooper

(1970), Fuhrmann and Cooper (1985) and Le ́ vy and Yechiali (1975)) and Brownian motion with

jumps (Theorem 2.2 of Kella and Whitt (1990)).

Second proof of Theorem 4.2. The special case of Theorem 4.3 in which U n = a > 0 for all

n ≥ 1 results in the process { Yt
at ≥ 0} of Lemma 4.1. By (4.2),

Ee iαY t
a

− Ee iαR t  ≤ Ee iαY t
a

− e iαR t  ≤ 2αY t
a − R t ≤ 2αa . (4.8)

Now the result is obtained from (4.8) by taking expectations, letting t → ∞ and then letting

a → 0. The form of the limit is obtained by letting U 0 ≡ a → 0 in (4.6).

This is the quickest way that we know to establish Theorem 4.2.
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5. The Steady-State Distribution of the JLP

We now characterize the limiting distribution of the JLP Y in the general framework of

Section 3. Let →
d

denote convergence in distribution and let →
p

denote convergence in

probability.

Theorem 5.1. Suppose that

(i) P(X t = 0 ) ≠ 1,

(ii) n − 1 T n →
p

λ − 1 as n → ∞ for 0 < λ − 1 < ∞,

(iii) Y t →
d

Y as t → ∞,

(iv) n − 1

k = 0
Σ

n − 1
e

iαY T k →
p

Ee iαY +
and n − 1

k = 0
Σ

n − 1
e

iα(Y T k
− U k ) →

p
Ee iαY −

as n → ∞ for random

variables Y + and Y − with EY + ≠ EY − ,

(v) { t − 1 N tt ≥ 0} is uniformly integrable.

Then necessarily λ = i φ′ ( 0 )/(EY + − EY − ) and

t → ∞
lim Ee iαY t = Ee iαY =

φ(α)
α φ′ ( 0 )_ ______

α(EY + − EY − )

i(Ee iαY −
− Ee iαY +

)_ _________________ . (5.1)

Remark 5.1. Formula (5.1) is not well defined if φ(α) = 0. By condition (i), we do not have

φ(α) = 0 for all α. As noted in the proof of Theorem 4.3, φ(α) = 0 for α ≠ 0 if and only if X t

has a lattice distribution. Then any α such that φ(α) = 0 is an isolated point. For such α, we

understand (5.1) to be defined by taking a limit on α, which is well defined since Y has a bonafide

cf by (iii).

Remark 5.2. If X has no negative jumps with EX t < ∞ and EX t < 0, then the term

α φ′ ( 0 )/φ(α) in (5.1) is the cf for the RLP in Section 4. The second term in (5.1) is considered

in Theorem 5.2 below.
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Remark 5.3. A natural sufficient condition for condition (iv) in Theorem 5.1 is to have

{ Y T k k ≥ 0} and { Y T k
− U kk ≥ 0} be stationary and ergodic. Then the averages in (iv)

converge w.p.1 to Ee
iαY T 0 and Ee

iα(Y T 0
− U 0 )

as k → ∞, respectively; see p. 488 of Karlin and

Taylor (1975). Then Y + is distributed as Y T 0
and Y − is distributed as Y T 0

− U 0 . Another way to

obtain w.p.1 convergence in (iv) is to have regenerative structure.

Remark 5.4. Condition (v) is always satisfied if { N tt ≥ 0} is a renewal counting process; see

p. 136 of Chung (1974).

Remark 5.5. Formula (5.1) generalizes (3.7) of Doshi (1990a). It is also similar to equation (2)

of Shanthikumar (1988) and equation (4) of Fuhrmann and Cooper (1985). However they

concentrated only on the M/G/1 queue and mostly on the queue size, rather than the workload

process. Now we see that there is one more good reason for Fuhrmann and Cooper’s

assumption (7). The essence of this assumption is that the waiting time and the workload process

(viewing vacations as work) are one and the same.

In the proof of Theorem 5.1 we use the following lemma.

Lemma 5.1. Suppose that n − 1

i = 0
Σ

n − 1
W i →

p
m for random variable W i with W i < K < ∞ for

all i and t − 1 N t →
p

λ, 0 < λ < ∞, for a counting process N t . Then

t − 1

i = 0
Σ
N t

X i →
p

λm .

Proof. Since X i is bounded, Nt
− 1

i = 0
Σ
N t

X i is contained in a compact subset for every t w.p.1.

Hence, every subsequence has a sub-subsequence converging w.p.1. Since n − 1

i = 0
Σ

n − 1
X i →

p
m,

the limit of this w.p.1 convergent sub-subsequence must be m. Hence, Nt
− 1

i = 0
Σ
N t

X i →
p

m; e.g.,

see Problem 7, p. 75, of Chung (1974). By assumption and Theorem 4.4 of Billingsley (1968),
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(t − 1 N t , Nt
− 1

i = 0
Σ
N t

X i ) →
p

(λ , m) .

The proof is completed by applying the continuous mapping theorem with multiplication; see

Theorem 5.1 of Billingsley (1968).

Proof of Theorem 5.1. (a) We apply Theorem 3.1(a). By condition (ii), T n → ∞ w.p.1 as

n → ∞, as required there. Also (ii) implies that t − 1 N t →
p

λ as t → ∞; e.g., see Theorem 3 of

Glynn and Whitt (1988). Together with (iv) and Lemma 5.1, this implies that

t − 1

k = 0
Σ
N t

(e
iα(Y T k

− U k ) − e
iαY T k ) →

p
λ(Ee iαY −

− Ee iαY +
) as t → ∞ . (5.2)

Together with (v), (5.2) implies that

t − 1 E
k = 0
Σ
N t

(e
iαY T k

− U k − e
iαY T k ) → λ(Ee iαY −

− Ee iαY +
) as t → ∞ .

By (iii), Ee iαY t → Ee iαY as t → ∞. From Theorem 3.1(a), after dividing by t and letting

t → ∞, we conclude that

φ(α) Ee iαY = λ(Ee iαY −
− Ee iαY +

) . (5.3)

because EM t = 0 for all t for M t in (3.4). We divide by φ(α) in (5.3) for α such that φ(α) ≠ 0.

For α such that φ(α) = 0, we take a limit, as indicated in Remark 5.1. Finally, differentiating

with respect to α in (5.3) and setting α = 0 gives the expression for λ. By condition (iv),

EY + ≠ EY − , so we can divide by (EY + − EY − ).

We now consider the second term in (5.1). Following Shanthikumar (1988) and Doshi

(1990a, §4), we provide necessary and sufficient conditions for the second term to be a bonafide

cf and sufficient conditions for it to be the product of two cf’s (so that we have a further stochastic

decomposition).

Theorem 5.2. (a) The term i(Ee iαY −
− Ee iαY +

)/α(EY + − EY − ) in (5.1) is the cf of a bonafide
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probability distribution if and only if Y − ≤ st Y + .

(b) Suppose that the assumptions of Theorem 5.1 are satisfied. If { U nn ≥ 0} is a

nonnegative i.i.d. sequence with U n independent of X T n
and 1 { N t ≥ n } , then

α(EY + − EY − )

i(Ee iαY −
− Ee iαY +

)_ _________________ =
αEU 0

i( 1 − Ee iαU 0 )_ ____________ Ee iαY −
. (5.4)

Proof. (a) Note that this term is the Fourier transform ∫
− ∞

∞
e iαyf (y) dy of the function

f (y) =
EY + − EY −

P(Y − ≤ y) − P(Y + ≤ y)_ _____________________ , (5.5)

which is a bonafide probability density if and only if P(Y − ≤ y) ≥ P(Y + ≤ y) for all y, i.e., if

and only if Y − ≤ st Y + . For this last step, recall that

E max{0 , Y } = ∫
0

∞
P(Y ≥ y) dy

and

E min{0 , Y } = − E max{0 , − Y }

= − ∫
0

∞
P( − Y ≥ y) dy = − ∫

− ∞

0
P(Y ≤ y) dy .

(b) Since U n is independent of Y T n
− U n = X T n

+
i = 0
Σ

n − 1
U i and the event { N t ≥ n }, the

monotone convergence theorem yields

E
k = 0
Σ
N t 

e
iα(Y T k

− U k ) − e
iαY T k


 = E

k = 0
Σ
∞

e
iα(Y T k

− U k )
( 1 − e iαU k ) 1 { N t ≥ k }

=
k = 0
Σ
∞

Ee
iα(Y T k

− U k )
1 { N t ≥ k } ( 1 − Ee iαU 0 ) (5.6)

= E
k = 0
Σ
N t

e
iα(Y T k

− U k )
( 1 − Ee iαU 0 ) .

Hence, instead of (5.3), we now have
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φ(α) Ee iαY = λE(e iαY −
) ( 1 − Ee iαU 0 ) . (5.7)

Differentiating with respect to α in (5.7), we obtain λ = iφ′ ( 0 )/ EU 0 . Substituting this in (5.7)

gives (5.4).

Combining Theorems 5.1 and 5.2, we obtain the following corollary.

Corollary 5.1. If, in addition to the conditions of Theorems 5.1 and 5.2(a), X has no negative

jumps with EX t < ∞ and EX t < 0, then the distribution of Y is the convolution of two

distributions one of which is the distribution of R. If, in addition, the assumptions of

Theorem 5.2(b) hold, then Y is the convolution of three distributions: the distributions of R and

Y − and the stationary forward-recurrence-time distribution associated with U 0 .

Remark 5.6. Under the conditions of Theorems 5.1 and 5.2, but without the condition on X in

Corollary 5.1, we do not necessarily obtain a valid stochastic decomposition. To see this,

suppose that − X is a Poisson process. Then X t has a lattice distribution, so that φ( 2π) = 0.

Hence, α φ′ ( 0 )/φ(α) is not a bonafide cf. Then (5.1) can be defined for α = 2π by taking a limit

as α → 2π.

Remark 5.7. Theorem 5.2 and Corollary 5.1 are closely related to Sections 4 and 5 of

Doshi (1990a). Equation (5.4) is also similar to equation (3) of Fuhrmann and Cooper (1985).

Remark 5.8. Note that Theorem 4.3 is a simple consequence of Theorems 5.1 and 5.2, but we

prefer the direct proof given before.

6. The Reflected JLP

We conclude by considering a reflected JLP, which we refer to as a RJLP. Let Y be a JLP as

defined in Section 3 and let L t = −
0≤s≤t
inf Y s , t ≥ 0. Then the RJLP is Rt

0 = Y t + L t , t ≥ 0.

Here we require that the underlying Le ́ vy process X has no negative jumps.

As in Section 4, we consider R 0 as the limit of associated JLPs with small positive jumps to
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keep it positive. By the argument of Lemma 4.1 and Theorem 4.1, we obtain the following result.

Lemma 6.1. Suppose that X has no negative jumps and U n ≥ 0 for all n w.p.1. Then EL t < ∞

w.p.1. (a) If N t < ∞ w.p.1, then { M tt ≥ 0} is a local martingale with respect to {^ tt ≥ 0}

with localizing sequence { T n }, where

M t ≡ φ(α)∫
0

t
e iαRs

0

ds + 1 − e iαRt
0

−
k = 0
Σ
N t

e
iα(RT k

0 − U k ) − e
iαRT k

0

+ iαL t , t ≥ 0 . (6.1)

(b) If EN t < ∞ for all t, then { M tt ≥ 0} in (6.1) is a zero-mean complex-valued martingale

with respect to {^ tt ≥ 0}.

Proof. To see that EL t < ∞, note that L t ≤ I t for all t w.p.1; since U n ≥ 0 for all n w.p.1,

Y t ≥ X t for all t w.p.1. (EI t < ∞ by Lemma 4.1.) Paralleling the definition of Y a in Section 4,

let R a be the JLP associated with Y that approximates the RJLP R 0; i.e., let

Tn
a = inf { t ≥ 0  Y t = − na }, n ≥ 1, and Rt

a = Y t + L t
a where L t

a = a(Nt
a + 1 ) with Nt

a

being the counting process associated with { Tn
a }. Then, as in (4.2), L t

a − L t = Rt
a − Rt

0 ≤ a for

all t w.p.1. Moreover, Rt
a is itself a bonafide JLP, so that we can apply Theorem 3.1 to it to

obtain the analog of Lemma 4.1. The assumptions imply that N t + Nt
a < ∞ w.p.1 in (a) as

needed for Theorem 3.1(a) and that EN t + ENt
a < ∞ in (b) as needed for Theorem 3.1(b).

Finally, let a → 0 as in the proof of Theorem 4.1 to obtain the desired conclusion.

We now apply Lemma 6.1 to characterize the limiting distribution of the RJLP.

Theorem 6.1. Suppose that X has no negative jumps, EX t < ∞, EX t < 0, U n ≥ 0 for all n

w.p.1 and the conditions of Theorem 5.1 hold with (iii) replaced by

( iii ) ′ Rt
0 →

d
R 0 and t − 1 ERt

0 → 0 as t → ∞

and (iv) replaced by

( iv ) ′ n − 1

k = 0
Σ

n − 1
e

iαRT k

0

→
P

Ee iαR+
and n − 1

k = 0
Σ

n − 1
e

iα(RT k

0 − U k ) →
P

Ee iαR−
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as n → ∞ for random variable R + and R − with ER + ≠ ER − . Then

t→ ∞
lim t − 1 L t = πEX 1 and

t→ ∞
lim t − 1

i = 0
Σ
N t

U i = ( 1 − π)EX 1 (6.2)

where 0 ≤ π ≤ 1 and

Ee iαR 0

=
φ(α)

α φ′ ( 0 )_ ______


 α(ER + − ER − )

i(Ee iαR−
− Ee iαR+

) ( 1 − π)_ ________________________ + π




. (6.3)

Remark 6.1. The case EX t ≥ 0 can be treated by the same argument.

Proof. By Lemma 6.1, L t < ∞ for all t w.p.1. By condition (v) of Theorem 5.1, N t + L t < ∞

w.p.1, so that we can apply Lemma 6.1 (a). Dividing (6.1) by t and taking expected values we

know from the proof of Theorem 5.1 and (iii)′ that all terms converge except possibly for

t − 1 iαEL t . Hence, t − 1 EL t converges too. Since,

t − 1 ERt
0 = EX 1 + t − 1 E

i = 0
Σ
N t

U i + t − 1 EL t ,

where t − 1 ERt
0 → 0 by (iii)′ ,

t → ∞
lim t − 1 E

j = 0
Σ
N t

U j = − EX 1 −
t→ ∞
lim t − 1 EL t .

Hence, we have established (6.2). Formula (6.3) follows by the proof of Theorem 5.1, again

differentiating with respect to α to determine λ.

As in Section 5, Theorem 6.1 provides a stochastic decomposition.

Corollary 6.1. Under the assumptions of Theorem 6.1, (6.3) holds with 0 ≤ π ≤ 1 and there is a

random variable V such that

α(ER + − ER − )

i(Ee iαR−
− Ee iαR+

)_ _________________ = Ee iαV . (6.4)

Hence, R 0 is distributed as the convolution of the distribution of R in Section 4 and another
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distribution. The second distribution is the mixture of a point mass at 0 with probability π and

the distribution of V with probability 1 − π. If, in addition, the assumptions of Theorem 5.2(b)

hold, then the distribution of V is the convolution of the distribution of R − and the stationary

forward recurrence-time distribution of U 0 .

Remark 6.3. Corollary 6.1 generalizes Theorem 3.3 of Kella and Whitt (1990).
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Appendix A

Here we give some supporting details for the proof of Theorem 3.1. The following is the

basis for obtaining the last three terms in (3.5) from the previous display:

k = 1
Σ
n

e iαY t 1 { N t = k − 1} = e iαY t − e iαY t 1 { N t ≥ n } , (A1)

k = 1
Σ
n

e
iα(Y T k

− U k )
1 { N t ≥ k } =

k = 1
Σ

N(t) ∧ n
e

iα(Y T k
− U k )

=
k = 0
Σ

N(t) ∧ n
e

iα(Y T k
− U k ) − 1 , (A2)

and

k = 1
Σ
n

e
iαY T N t 1 { N t = k − 1} +

k = 1
Σ
n

e
iαY T k − 1 1 { N t ≥ k }

=
k = 1
Σ
n

e
iαY T k − 1 1 { N t ≥ k − 1}

=
k = 0
Σ

n − 1
e

iαY T k 1 { N t ≥ k }

=
k = 0
Σ

N ∧ n
e

iαY T k − e
iαY T n 1 { N t ≥ n } . (A3)


