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Abstract—Even though ATM seems to be clearly the wave of the
future, one performance analysis indicates that the combination
of stringent performance requirements (e.g., 10 − 9 cell blocking
probabilities), moderate-size buffers and highly bursty traffic will
require that the utilization of the network be quite low. That
performance analysis is based on asymptotic decay rates of
steady-state distributions used to develop a concept of effective
bandwidths for connection admission control. However, we have
developed an exact numerical algorithm that shows that the
effective-bandwidth approximation can overestimate the target
small blocking probabilities by several orders of magnitude when
there are many sources that are more bursty than Poisson. The
bad news is that the appealing simple connection-admission-
control algorithm using effective bandwidths based solely on tail-
probability asymptotic decay rates may actually not be as
effective as many have hoped. The good news is that the
statistical multiplexing gain on ATM networks may actually be
higher than some have feared. For one example, thought to be
realistic, our analysis indicates that the network actually can
support twice as many sources as predicted by the effective-
bandwidth approximation. That discrepancy occurs because for
a large number of bursty sources the asymptotic constant in the
tail probability exponential asymptote is extremely small. That in
turn can be explained by the observation that the asymptotic
constant decays exponentially in the number of sources when the
sources are scaled to keep the total arrival rate fixed. We also
show that the effective-bandwidth approximation is not always
conservative. Specifically, for sources less bursty than Poisson,
the asymptotic constant grows exponentially in the number of
sources (when they are scaled as above) and the effective-
bandwidth approximation can greatly underestimate the target
blocking probabilities. Finally, we develop new approximations
that work much better than the pure effective-bandwidth
approximation.
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I. INTRODUCTION AND SUMMARY

Great energy is being devoted to studying the promising new
asynchronous transfer mode (ATM) technology for supporting
multi-service high-speed communication networks; e.g., see
Roberts [39]. As indicated in [39], interest in ATM is stimulated by
two factors: first, by new technology making it possible to transmit
and switch at very high bandwidths and, second, by growing demand
for more sophisticated and powerful communication services.

Even though ATM seems to be well on its way to widespread use,
a performance analysis based on asymptotic decay rates of steady-
state distributions indicates that the combination of stringent
performance requirements (e.g., 10 − 9 cell blocking probabilities),
moderate-size buffers and highly bursty traffic associated with these
new services will necessitate operating the networks at very low
utilizations. (The basic model represents an ATM switch receiving
fixed-size ATM cells from several sources and transmitting them over
an output channel in a first-in-first-out fashion. The basic question is:
How many sources can be admitted for a fixed buffer size with a
specified small cell blocking probability?) A main message of this
paper is that ATM networks may be able to achieve higher utilizations
than that asymptotic analysis indicates. In other words, there seems
to be more potential for statistical multiplexing gain.

The approximation based on asymptotic decay rates of tail
probabilities is very appealing because it supports a concept of
effective bandwidths. From an engineering perspective, the notion of
effective bandwidths is very natural. The idea is to assign each
source an effective bandwidth requirement, and then consider any
subset of sources feasible (admissible) if the sum of the required
effective bandwidths is less than the total available bandwidth. Thus,
a suitable notion of effective bandwidths could go a long way toward
solving the connection admission control problem. For instance,
once effective bandwidths have been assigned, we can approach
engineering and design problems using multi-rate loss network
models, e.g., as in Choudhury, Leung and Whitt [12,13] and
references therein.



A large-deviations asymptotic analysis provides strong support
for the simple effective-bandwidth procedure, because it shows that it
is asymptotically correct as the buffer size gets large and the tail
probabilities get small, and because it provides a basis for assigning
actual effective bandwidth values to different sources (voice, data,
video, etc.); e.g., see Hui [31], Gibbens and Hunt [26], Guerin,
Ahmadi and Naghshineh [28], Kelly [32], Sohraby [41], [42], Chang
[10], Whitt [45], Elwalid and Mitra [23], Kesidis, Walrand and Chang
[33], Glynn and Whitt [27], Courcoubetis, Kesidis, Ridder, Walrand
and Weber [20], and Chang, Heidelberger, Juneja and Shahabuddin
[11].

The additive nature of effective bandwidths is clearly appropriate
if we let the effective bandwidths be either the source peak rates or
the source average rates. However, it seems intuitively clear that
working with peak rates is far too conservative, while working with
average rates is far too optimistic. (We show this later in our
examples.) Most of the recent work has been aimed at finding
appropriate effective bandwidths in between the peak and average
rates.

Unfortunately, however, from the outset, teletraffic engineering
experience suggests that there may be a flaw in the effective
bandwidth concept because it corresponds to having no traffic
smoothing from multiplexing. In particular, it is known that when
many separate bursty sources are multiplexed (superposed), the total
is less bursty than the components; i.e., there is a basis for more
statistical multiplexing gain than with Poisson sources. This is
theoretically supported by the classical limit theorem stating that
superpositions of arrival processes, suitably scaled, converge to a
Poisson process as the number of component arrival processes
increases; e.g., see C, inlar [19]. See Heffes and Lucantoni [30],
Sriram and Whitt [43] and Fendick, Saksena and Whitt [25] for
related performance studies. In contrast, with the effective-
bandwidth approximation, the burstiness of n superposed independent
and identically distributed sources is the same as for a single source
(e.g., see p. 76 of [45]). This implies that the effective-bandwidth
approximation will predict greater congestion for any fixed arrival
rate than it should.

Nevertheless, there is a case for the effective bandwidths, because
previous teletraffic analysis (such as in [25], [30], [43]) did not focus
on extremely small loss probabilities such as 10 − 9 . Such very small
loss probabilities naturally suggest that appropriate asymptotics
should provide what we want. And the asymptotic analysis
associated with effective bandwidths indicates no traffic smoothing.

The question, then, is what will actually happen in real systems?
Will there be significant traffic smoothing or not? Is the asymptotic
analysis supporting effective bandwidths sufficiently accurate or is it
not?

These questions have plagued researchers in recent years because
the natural models are very difficult to analyze. It is difficult to
calculate very small tail probabilities in models with many
independent bursty sources, by either exact analytical formulas or by
computer simulation.

Our main contribution is a new algorithm for a queueing model
that enables us to compute the desired small tail probabilities exactly
when there are many bursty sources. From this exact analysis, we
find that in some cases the effective-bandwidth approximation is
excellent, but in other cases (which we think are realistic), it is not.
Thus, we conclude that the notion of effective bandwidths based
directly on large-deviation asymptotics may not be effective for
connection admission control.

However, from an engineering perspective, the notion of effective
bandwidths remains very appealing. Thus it is natural to look for
modifications of the proposed effective bandwidth approximation
which will work well; e.g., as in Guerin and Gun [29]. It is important
to note that our analysis does not rule out the general notion of
effective bandwidths. Instead, our analysis only indicates that there
may be serious difficulties with the implementation based directly on
a particular kind of asymptotics, without refinements.

A second main contribution of this paper is to develop
modifications of the basic effective-bandwidth approximation for tail
probabilities that are more accurate (namely, (1.1), (1.5) and (1.7)
below). However, these new approximations do not support the
simple notion of effective bandwidths discussed above. Nevertheless,
the approximate tail probabilities can be used for admission control.

The key to our analysis here is the exact numerical solution of the

i = 1
Σ
n

G i/G/1 queueing model, which has a single server, unlimited

waiting room, the first-in first-out service discipline and i.i.d.
(independent and identically distributed) service times that are
independent of a superposition arrival process. The arrival process is
the superposition of n independent component general arrival
processes. Our algorithm permits these component arrival processes
to be heterogeneous Markovian arrival processes (MAPs), as in
Lucantoni [35,36]; see Section 8 here. (The general theory also
allows batch arrivals, but in this paper we consider only single
arrivals.) Since superpositions of independent MAPs are again
MAPs, it suffices to consider the MAP/G/1 queue. However, the
computational effort increases when the number of sources increases.
Our algorithm is based on Lucantoni [35]. A major new idea is the
combination of the matrix-analytic results in [35] with numerical
transform inversion. In particular, we use the Fourier-series method
in Abate and Whitt [5]. We also use a scheme for accuracy
enhancement for computing small probabilities as described in [15].
Moreover, we use a number of techniques for speeding up
computation, in order to treat a large number of sources. These
techniques are described in Section 8. For the computation of the
asymptotic parameters we use algorithms in [1], [2], [14].

We have also extended the numerical transform inversion
algorithms to multidimensional transforms [15] and applied the
multidimensional inversion to calculate transient performance
measures in the MAP/G/1 queue [37]. Thus, we are in a position to
study the transient behavior as well as the steady-state behavior.
With the ability to calculate time-dependent tail probabilities, we can
study whether or not transient analysis is needed in the admission
control problem. Here, however, we only discuss steady-state
behavior.

In our examples here, we consider only homogeneous sources,
but in Section 7 we also indicate how to treat large systems with
heterogeneous sources approximately. We primarily consider sources
that are more bursty than a Poisson process, in particular, Markov
modulated Poisson processes (MMPPs) with two-state Markov
environment processes. (The MMPP is a Poisson process whose rate
is itself a continuous-time Markov chain.) For the main example, we
consider on-off sources in which the arrival rate in one environment
state is zero, i.e., interrupted Poisson processes, which are known to
be renewal processes having hyperexponential interarrival-time
distributions [34]. These bursty source models are often used to
model ATM traffic. They can represent quite bursty traffic. We have
also obtained similar results for other (non-renewal) MMPP sources
and multiple numbers of more than one kind (two or three) of MMPP
sources.



We also consider sources that are less bursty than a Poisson
process. In particular, we consider renewal processes with E 2

(Erlang of order 2) interarrival times. Such less bursty sources might
appear in ATM networks as a consequence of traffic shaping at the
edge of the network. Contrary to conventional wisdom, we show that
the effective-bandwidth approximation underestimates the exact tail
probabilities with these less bursty sources, so that the effective
bandwidth approximation need not be conservative.

As a surrogate for the steady-state blocking probability with a
finite buffer, we consider the tail probability of the steady-state
waiting time in our infinite-capacity queue. When the service times
are deterministic with mean 1, as is the case with ATM cells (with the
appropriate time units), the least integer above the steady-state
waiting time coincides with the steady-state queue length or buffer
content seen by an arrival. (We can also directly compute the queue-
length distribution in the MAP/G/1 queue.) We are thus
approximating the steady-state blocking probability in the finite-
capacity system by the steady-state probability that the buffer content
exceeds that capacity level in the infinite-capacity system at an arrival
epoch.

Hence, we let W be the steady-state waiting time until beginning
service and we focus on the tail probabilities P(W > x). It turns out
that in considerable generality these waiting-time tail probabilities are
asymptotically exponential, i.e.,

P(W > x) ∼ αe − ηx as x → ∞ , (1.1)

where η is a positive constant called the asymptotic decay rate, α is a
positive constant called the asymptotic constant, and f (x) ∼ g(x) as
x → ∞ means that f (x)/ g(x) → 1 as x → ∞; see Abate, Choudhury
and Whitt [2]. In standard single-source examples the approximation
provided by (1.1) is often remarkably accurate [2]–[4]. Moreover,
numerical experience indicates that for bursty sources the
approximation provided by (1.1) with α replaced by 1 often tends to
be conservative, i.e.,

P(W > x) ≤ e − ηx for all x . (1.2)

This is a basis for the simple one-parameter approximation

P(W > x) ∼∼ e − ηx (1.3)

The asymptotic decay rate η in (1.1)–(1.3) is the basis for the concept
of effective bandwidths. The simple one-parameter approximation
(1.3) is appealing because the key parameter η in (1.1)–(1.3) is
relatively easy to determine, exactly or approximately. Indeed, it is
typically much easier to obtain than the asymptotic constant α.
Moreover, the resulting admission-control algorithm using effective
bandwidths based on (1.3) is remarkably simple. Hence, we call (1.3)
the effective-bandwidth approximation.

It is important to note that much of the effective-bandwidth
literature has not arrived at (1.3) via (1.1). The large-deviation result
supporting (1.3) is the weaker limit

x − 1 log P(W > x) → − η as x → ∞ . (1.4)

General sufficient conditions for (1.4) are given in Chang [10] and
Glynn and Whitt [27]. Clearly (1.1) implies (1.4), but not conversely.
Indeed, the weaker limit (1.4) yields no information about the
asymptotic constant α in (1.1).

We have indicated that most of the effective-bandwidth literature
has arrived at approximation (1.3) via the limit (1.4) or related
bounds such as (1.2). However, several people have focused on (1.1)
too, namely, Abate et al. [2], Baiocchi [7], Elwalid and Mitra [23,24]
and Neuts [38]. Given (1.1), (1.3) is a convenient simple
approximation because α is much harder to obtain than η, and

because (1.3) is consistent with the notion of effective bandwidths.

As discussed in [3], for standard single-source models
approximation (1.3) is often a reasonable substitute for approximation
(1.1)–(1.4) when we are primarily interested in percentiles of the
distribution, rather than the probabilities themselves. If the
asymptotic constant α in (1.1) is not too different from 1, then it plays
a relatively small role in higher percentiles.

It should be noted that the asymptotic decay rate η in (1.1) is
identical to the asymptotic decay rate for the blocking probability in
the corresponding finite-buffer model as the buffer size gets large; see
Baiocchi [7]. Hence, our analysis of the infinite-capacity model is
directly relevant to the finite-capacity model with large buffer sizes.

In order to do better than (1.1), without calculating the exact tail
probabilities, we have also developed a refined three-term
approximation of the form

P(W > x) ∼∼ α 1 e − η1 x + α 2 e − η2 x + α 3 e − η3 x , (1.5)

where α 1 and η 1 are the asymptotic constant and asymptotic decay
rate in (1.1), while α 2 , α 3 η 2 and η 3 are chosen to match the
probability of delay P(W > 0 ) and the first three moments EW,
E(W 2 ) and E(W 3 ), with η 2 and η 3 required to satisfy
η 1 ≤ min {η 2 ,η 3 }; see Choudhury, Lucantoni and Whitt [17].

We thus have four ways to ‘‘calculate’’ the tail probability
P(W > x) : (1.3), (1.1), (1.5) and the full numerical algorithm. Each
successive method tends to be more accurate, but each successive
method requires substantial more computational effort. The
effective-bandwidth approximation (1.3) is by far the easiest to
compute, with there being virtually no limit to the size of the model;
e.g., see [45].

Using our exact numerical algorithm for the MAP/G/1 queue, we
have investigated the three approximations in (1.3), (1.1) and (1.5).
For many standard single-source models, the refinement in (1.1) is
remarkably accurate even for x not too large, e.g., for the 90th

percentile of the distribution. For standard single-source models for
which (1.1) is excellent at the 90th percentile and beyond, (1.5)
typically is excellent for the entire distribution.

However, we have found that the story changes dramatically
when the arrival process is the superposition of many component
processes. Then the effective bandwidth approximation (1.3) can
perform very badly. It is even possible for (1.1) and (1.5) to perform
badly, but there is a substantial region where (1.3) performs badly
and (1.1) performs well. This is the basis for our new improved
approximations beyond (1.3).

We emphasize that, for the model being considered, the limits in
(1.1) and (1.4) do indeed hold, and we are indeed interested in very
small tail probabilities, and relatively large x. However, there is a
serious difficulty (evidently pointed out for the first time here): The
asymptotic constant α in (1.1) can be very different from 1 when the
number of component arrival processes is large.

We also explain why the asymptotic constant α can be very
different from 1 with many sources. To do so, we consider the case
of n identical sources with fixed total rate. As n increases, the total
rate is kept fixed by properly scaling the individual streams. With
this structure, it is known that the asymptotic decay rate η in (1.1) is
actually independent of n. We give numerical examples showing that
the asymptotic constant with n sources (and this scaling), α n , is itself
asymptotically exponential in n, i.e.,

α n ∼ βe − nγ as n → ∞ , (1.6)

where β > 0 and, for sources more bursty than Poisson, γ ≥ 0, while



for sources less bursty than Poisson, γ ≤ 0. Moreover, γ in (1.6)
tends to be larger when the burstiness gets further from Poisson and
the traffic intensity decreases, which is a likely operating condition
for ATM networks.

Combining (1.1) and (1.6), we obtain the refined asymptotic
approximation (with the scaling for (1.6))

P(W > x) ∼∼ βe − nγ e − ηx . (1.7)

Our numerical results supporting (1.6) and (1.7) naturally suggest
a limit theorem, on which we were working but others have
delivered. The idea is still to consider large-deviation asymptotics,
but now letting both n and x go to infinity. Since this paper was
originally submitted, large deviation limits supporting (1.6) and (1.7)
have been reported by several authors, the first known to us being A.
Dembo and O. Zeitouni (talk at National Meeting of the Operations
Research Society of America, Boston, April 1994). Large-deviation
papers supporting (1.6) and (1.7) have been written by Botvich and
Duffield [9], Courcoubetis and Weber [21], Simonian [40] and Tse,
Gallager and Tsitsiklis [44]. To state their result, let W n be the
steady-state waiting time with n sources. Paralleling (1.4), their
result is

n − 1 logP(W n > nx) = I(x) as n → ∞ , (1.8)

for an appropriate function I(x), yielding the approximation

P(W n > x) ∼∼ e − nI(x / n) . (1.9)

Clearly (1.8) provides strong theoretical support for (1.6) and (1.7),
but (1.8) is substantially weaker than (1.1) and does not yield the
asymptotic constant β in (1.6) and (1.7). Nevertheless, the form of
the limit function I(x) provides useful insights, as can be seen from
the references.

We propose (1.7) as a basis for developing useful approximations
for the tail probabilities when there are large numbers of each of a
few types of sources. In particular, we suggest using (1.7) to estimate
β and γ by extrapolating using (1.6) and exact calculations for small
n; see Section 7 for further discussion.

Approximation (1.7) can be regarded as an approximation to the
true asymptote (1.1). Our numerical experience indicates that for
sources more bursty than Poisson the true asymptote (1.1) is a good
approximation at 10 − 9 if α is not too small, e.g., α ≥ 10 − 4 . For a
wide range of problems, this is the region of interest. Our experience
also indicates that the true asymptote (1.1) is a poor approximation at
10 − 9 if α is too small, e.g., α ≤ 10 − 8 . For estimated values of α in
between, e.g., 10 − 8 < α < 10 − 4 , the true asymptote is only
moderately good as an approximation. In this region, we propose
using the true asymptote with α replaced by 10 − 4 as a rough
conservative heuristic approximation. For sources less bursty than
Poisson, (1.1) tends to be a good (bad) approximation at a target
blocking probability 10 − 9 if α < 104 (α > 108 ).

Here is how the rest of the paper is organized. In Section 2 we
consider a specific example with bursty sources to demonstrate that
the effective-bandwidth approximation (1.3) can perform poorly. In
Section 3 we consider the case of n identical sources scaled so that
the total rate is independent of n, and give examples supporting (1.6).
Next in Section 4 we present modifications of the example in
Section 2 with different numbers of sources in which the two
asymptotic approximations in (1.1) and (1.3) are, first, both good and,
second, both bad. These cases seem identifiable by looking at the
observed value of the asymptotic constant α. In Section 5 we
investigate the impact of changing other variables. We show that the
asymptotic approximations tend to get worse as the number of
sources increases, the buffer size decreases, the channel utilization

decreases, the target blocking probability increases, and the source
gets further from Poisson, either more bursty or less bursty.

In Section 6 we consider sources less variable than Poisson. For
these sources, we show that the effective-bandwidth approximation
need not be conservative; i.e., (1.2) does not hold. In Section 7 we
show how to do approximations in large systems with heterogeneous
sources. In Section 8 we briefly describe the computational
algorithm. Finally, in Section 9 we state our conclusions.

II. AN EXAMPLE WHERE THE EFFECTIVE-BANDWIDTH
APPROXIMATION FAILS

In this section we consider an example with homogeneous on-off
sources. (The on-off property is not essential for our model or for the
conclusions we draw from it. A source can have multiple states, each
characterized by a different arrival rate. We use such sources in later
examples.) Our primary purpose is to show that the effective-
bandwidth approximation (1.3) can be a bad approximation for a
realistic example and can lead to seriously underestimating the
number of sources the queue can accommodate.

We let the service times be i.i.d. with mean 1. Thus the unit of
time is the time required to transmit one ATM cell. We let the
service time have an Erlang distribution of order 16 (E 16 ), which has
squared coefficient of variation (SCV, variance divided by the square
of the mean) cs

2 = 1/16. This distribution is similar to the
deterministic (D) distribution of ATM cells, but better behaved for
numerical calculations. (It is possible to do calculations for D
distributions, but it requires more computational effort to achieve
comparable precision.) In fact, we have computed using the E 1024

distribution and have found for the examples in this paper with
MMPP sources that there is little difference between E 16 and E 1024 ,
supporting our hypothesis that D is well approximated by E 16 .

The on-off source has exponentially distributed on and off
periods. During the on periods, cells arrive according to a Poisson
process; during the off periods there are no arrivals. Each on-off
source is characterized by three parameters, the mean on period ω,
the mean off period ζ and the (peak) rate during the on period, p.
Here we let the on and off periods have means ω = 436. 36 and
ζ = 4363. 63, respectively. We let the peak rate be p = 0. 1375.
The overall average rate is thus λ = pω/(ω + ζ) = 0. 0125. The
ratio of peak to mean rates is thus p /λ = 11. 0. The mean number of
cells during an on period is pω = 60. 0.

We feel that the level of source burstiness considered above can
happen quite naturally in bursty data sources. Furthermore, the
example is chosen mainly to illustrate that bad behavior can occur.
Later we discuss how the basic behavior of superposed sources
changes with change in burstiness, buffer size and other parameters.

The above on-off source (an interrupted Poisson process) can also
be characterized as a renewal process with a hyperexponential (H 2 ,
mixture of two exponentials) interarrival time distribution [34]. The
mean interarrival time for one source is thus 1/λ = 80 and the SCV
is ca

2 = 100. 2. Scaled to have mean 1, the first four moments of an
interarrival time are: m 1 = 1, m 2 = 101. 2, m 3 = 1. 68 × 104 and
m 4 = 3. 73 × 106 . This is another way to see that the individual
sources are quite bursty. (For a simple exponential random variable
with mean 1, the n th moment is n!)

Since the arrival process is a renewal process, The SCV coincides
with the normalized asymptotic variance or limiting index of
dispersion for counts for the counting process N(t), i.e.,



I c (∞) ≡
t→ ∞
lim

EN(t)
Var N(t)_ _______ = ca

2 = 100. 2 , (2.1)

see [25,43]. The value I c (∞) = 100. 2 is large, so that each source is
indeed quite bursty.

We let the buffer size be 600 cells, which falls in the range
considered by switch manufacturers. The buffer size 600 is ten times
the mean number of cells in an on period; i.e., the buffer contains 10
bursts. The quality of the approximations depends strongly on the
buffer size. (We discuss this further in Section 5.) Currently buffer
size is limited by the availability of fast memory. We regard 600 as a
representative moderate buffer size.

As is customary in ATM, we let the target blocking probability be
10 − 9 . Hence, we choose the number of sources so that

P(W > 600 ) ∼∼ 10 − 9 . (2.2)

Our exact numerical results indicate that (2.2) is attained with n = 24
sources, yielding a utilization of 30%.

Figure 1 displays the exact tail probabilities P(W > x) and the
approximations (1.1), (1.3) and (1.5). In addition, Figure 1 displays
the Poisson approximation, which is the exact tail probability in the
M/E 16/1 queue, computed by numerical transform inversion. The tail
probability P(W > x) is our approximate probability of buffer
overflow with x being the buffer size.

________________________
Insert Figure 1 about here.

________________________

The (exact) asymptotic parameters in (1.1) are η = 0. 01809 and
α = 1. 453 × 10 − 5 . The three-term approximation is also fully
determined, based on the exact probability of delay
P(W > 0 ) = 0. 4242 and first three moments EW = 0. 6924,
E(W 2 ) = 8. 573 and E(W 3 ) = 579. 3.

Of course, there is the question of numerical accuracy of the exact
results reported in Figure 1. We verified them using a built-in
accuracy check in our numerical procedures, as explained in [15, 37]
and Section 8 here. In the related case of 64 sources with exponential
service times, numerical results by Elwalid and Mitra [24] confirmed
our results.

Figure 1 indicates that (1.1) and (1.5) are still in error by a factor
of 3.9 at x = 600. This error is relatively small, though, compared to
the error in (1.3), which is by a factor of 105 . The Poisson
approximation obviously is even worse than (1.3).

It is interesting to consider Figure 1 in relation to previous
discussions of ‘‘cell-level congestion’’ and ‘‘burst-level congestion,’’
e.g., in [39]. To a large extent, Figure 1 indicates two nearly linear
regions for the exact curve. As discussed on p. 19 of [39], there is an
initial period of steep nearly linear decline corresponding to ‘‘cell-
level congestion’’ and a later period of more gradual nearly linear
decline corresponding to ‘‘burst-level congestion.’’ This burst level
congestion corresponds to the true asymptote (1.1). However, the
transition between these two regimes is smooth and fairly long. As in
[39], much of the ATM literature considers separate models to
represent cell-level and burst-level congestion. In contrast, we
represent both within a single model. Indeed, we consider precisely
the multiple-MMPP-source model described as difficult on p. 185 of
[39]. In this context, a major contribution here is to point out that the
intercept with the y-axis of the asymptote, which is the asymptotic
constant α in (1.1), may well be very small.

Now suppose, instead, that we use approximation (1.3). Let η n

be η in (1.1) as a function of n (without any rescaling of individual

sources). As indicated above, η 24 = 0. 01809, but η increases as n
(and ρ) decreases. Figure 2 displays η n as a function of n (without
any rescaling of individual sources). It turns out that

e − 600ηn ≤ 10 − 9 for all n ≤ 12 , (2.3)

but not for n ≥ 13; η 12 = 0. 03749 and η 13 = 0. 03354. Hence,
using the effective-bandwidth approximation (1.3), we conclude that
the queue can accommodate only 12 sources with criterion (2.2).
Hence, (1.3) indeed significantly underestimates the capacity. The
actual capacity is two times that predicted by (1.3).

________________________
Insert Figure 2 about here.

________________________

Table 1 compares seven different procedures for determining the
number of sources that can be supported:

(i) The exact tail probabilities

(ii) the effective-bandwidth approximation (1.3)

(iii) the full asymptotic approximation (1.1)

(iv) the three-term approximation (1.5)

(v) the Poisson approximation

(vi) average-rate engineering

(vii) peak-rate engineering.

________________________
Insert Table 1 about here.

________________________

From Figure 1 and Table 1, we see that even though the true
asymptote is not too accurate for the tail probability (being off by a
factor of 4), it produces a good estimate for the number of sources
(being off by only one).

Since the average rate is λ = 0. 0125, if we could size by average
rate, then the queue could accommodate 80 sources. Since the peak
rate is p = 0. 1375, if we sized by peak rate, then the queue can
accommodate 7 sources. The numbers 7 and 80 help put the realized
improvement from 12 to 24 going from approximation (1.3) to the
exact numerical result in perspective.

There is a simple explanation for the poor performance of
approximation (1.3). For n = 24, the asymptotic constant in (1.1) is
α 24 = 1. 453 × 10 − 5 . As can be seen from Figure 1, in this case the
one-term asymptotic approximation αe − ηx based on (1.1) is a good
approximation, but replacing α by 1 introduces a large error.

In customary models with a single source, the asymptotic constant
α is usually not too different from 1. Hence, it is interesting to see
how α n depends on n (again, without rescaling the individual
sources). This is shown in Figure 3. There we see that α n declines
from α 1 = 0. 340 to a minimum value of α 11 = 6 × 10 − 8 and then
increases toward 1 again as the traffic intensity approaches 1. From
heavy-traffic theory, we anticipate that α n → 1 as ρ n → 1.
Assuming that α n stays well above the target value 10 − 9 for all n, as
it does in Figure 3, we can anticipate that the asymptote (1.1) will be
a reasonably good approximation, but we clearly cannot simply
replace the asymptotic constant α by 1.

________________________
Insert Figure 3 about here.

________________________

Instead of fixing the buffer size at 600 and asking how many
sources the queue can accommodate, we could instead fix the number



of sources at 24 and ask what size buffer is required. The exact
numerical results indicate a buffer size of 600. The approximations
(1.1) and (1.5) indicate that a buffer size of 530 is required,
approximation (1.3) indicates 1146 and the Poisson approximation
indicates only about 20. These results are also displayed in Table 1.
This is another way to look at the weakness of the effective-
bandwidth and Poisson approximations. This view also shows that
approximations (1.1) and (1.5) are reasonably good.

As shown in [4], the asymptotics (1.1) for the steady-state waiting
time are closely related to corresponding asymptotics for other
steady-state quantities, such as the workload, sojourn time and queue
length (at arrivals and at arbitrary times). For this example, the queue
length decay rate parameter σ in [4] is σ = 0. 9821. Although we
consider only the waiting time here, our experience indicates that a
detailed analysis of one of the other steady-state distributions tells
essentially the same story. For the example considered in this
section, if we look at the queue length at an arbitrary time (instead of
at the arrival instant) then both the exact value and approximation
(1.1) drop roughly by a factor of 3, but the effective-bandwidth
approximation (1.3) remains unchanged (another weakness of (1.3)).
However this further difference by a factor of 3 is small compared to
the already-established difference by a factor of 105 .

III. ASYMPTOTICS FOR THE ASYMPTOTIC CONSTANT IN
SCALED SUPERPOSITION PROCESSES

As shown in [10], [18], [23], [24], [27], [45], the asymptotic

decay rate η n in the
i = 1
Σ
n

G i/G/1 model with the superposition of n

i.i.d. arrival processes is independent of n when we fix the total
arrival rate by scaling the component arrival processes. In particular,
let {N(t) : t ≥ 0 } be the arrival counting process with only one
source. The proper scaling is achieved with n sources by letting each
component arrival process be distributed as {N(t / n) : t ≥ 0 }. If the
arrival rate of N(t) is λ, then the arrival rate of N(t / n) is λ / n, so that
the total arrival rate with n sources is λ for all n. (This scaling is also
discussed previously in [43] and 25].)

Of course, when we add sources in a real network, we do not do
any rescaling, so we did not do any rescaling in Section 2. However,
since η n is independent of n with this rescaling, the rescaling helps us
understand what is happening with the various approximations. As
discussed in [43], a key theoretical reference point is the fact that,
with the scaling, the superposition process approaches a Poisson
process as n → ∞. Since η n does not change with n, we see that the
two limits x → ∞ and n → ∞ do not interchange. This is a source of
our difficulties.

Our numerical experience indicates that with this rescaling as
n → ∞ the asymptotic constant α n in (1.1) approaches 0 for sources
more bursty than Poisson and approaches infinity for sources less
bursty than Poisson. More precisely, α n appears to decay or grow
exponentially as in (1.6) as n → ∞. Numerical evidence supporting
(1.6) is given in Figures 4 and 5 for sources more bursty than
Poisson. There we display α n as a function of n in log scale for
different examples. Figure 4 displays α n as a function of n for the
example in Section 2, while Figure 5 displays α n as a function of n in
four other examples. For Figure 4, the reference case is the case with
n = 24 sources and ρ = 0. 30. All other cases in Figure 4 are
rescaled to have this same ρ. In each example we rescale the arrival
processes as n changes, so that η n is independent of n. The linearity
in Figures 4 and 5 for n not too small provides strong support for
(1.6). (Figure 12 in Section 6 provides similar support for sources
less bursty than Poisson.)

________________________
Insert Figures 4 and 5 about here.

________________________

The four examples depicted in Figure 5 represent all combinations
of two different traffic intensities, ρ = 0. 5 and ρ = 0. 8, and two
MMPP arrival processes. The service-time distributions always are
E 16 with mean 1. As before, these represent nearly deterministic
service times. The two arrival processes are two-state MMPPs with
asymptotic variance constants in (2.1) of 2.8 and 28. These represent
moderately bursty and substantially more bursty sources, respectively
(but less bursty than the example in Section 2). These examples have
positive arrival rates in both environment states, so that the
component MMPPs are not renewal processes.

In particular, the MMPPs are characterized by four parameters,
one of which can be taken to be the arrival rate. The ratio of the
arrival rates in the two environment states is fixed at 4. The expected
numbers of arrivals during visits to the two environment states are
equal, 5 in the less bursty example with I c (∞) = 2. 8 and 75 in the
more bursty example with I c (∞) = 28.

From Figure 5, we see that the key decay rate parameter γ in (1.6)
is decreasing in the traffic intensity ρ but increasing in the burstiness.
This appears to be a general tendency. This means that the
phenomenon in Section 2 is most likely to occur with low ρ and high
burstiness, which is what we anticipate for ATM. The phenomenon
might have been missed by others, because they focused on higher ρ
and less bursty sources. For instance, the examples in Section 5 of
Elwalid and Mitra [23] all have high ρ (above 0.75) and lower
burstiness, so that α > 10 − 2 .

IV. THREE REGIMES FOR THE ASYMPTOTIC APPROXIMATIONS

The example in Section 2 was one for which the asymptotic
approximation αe − ηx in (1.1) is pretty good, but the simple
approximation e − ηx in (1.3) is bad (because α ∼∼ 10 − 5). In this
section we present modifications of this example in which, first, both
approximations (1.1) and (1.3) are good and, second, both
approximations (1.1) and (1.3) are bad.

To obtain these alternative cases, we simply modify the number
of sources in the example with n = 24 in Section 2, scaling the
arrival processes as in Section 3 to keep the total arrival rate fixed at
λ = 0. 3 and η fixed at η = 0. 01809. In particular, the two
alternative regimes are obtained by letting n = 2 and n = 60. The
results are displayed in Figures 6 and 7.

Since η is independent of n, approximation (1.3) is the same for
the three cases n = 2, n = 24 and n = 60. However, α 2 = 0. 505,
α 24 = 1. 45 × 10 − 5 and α 60 = 2. 22 × 10 − 12 . (For n = 1,
α 1 = 0. 992. ) From Figures 1, 6 and 7, it is evident that we have the
three regimes as claimed. In Figure 6 with n = 2, approximations
(1.1), (1.3) and (1.5) are all very close, while in Figure 7 it is evident
that approximations (1.1), (1.3) and (1.5) are very far apart.

________________________
Insert Figures 6 and 7 about here.

________________________

Since α 60
∼∼ 10 − 12 < 10 − 9 when n = 60, it should come as little

surprise that the asymptotics (1.1) have not kicked in by the time the
tail probabilities reach 10 − 9 in this case. As a rough rule of thumb, it
appears that approximation (1.1) tends to be good only when α n is
greater than the desired tail probability P(W > x). To a large extent,
it appears that we are able to understand when the various
approximations will be sufficiently accurate by computing only the
asymptotic constant α. (This computation is possible, even for very



large n, by computing α n for small values of n and then extrapolating
using (1.6).)

From Figure 7, we also see that the three-term approximation
(1.5) is not accurate at 10 − 9 . The performance of approximation
(1.5) in Figure 7 with n = 60 is much worse than in Figure 1 with
n = 24. It is reassuring that its poor performance is signalled by the
fact that it is not possible to find parameters exactly matching the
third moment in this case; see [17]. Moreover, the three-term
approximation performs pretty well even in Figure 7 for tail
probabilities above 10 − 4 , for which it was originally designed. The
poor performance at 10 − 9 in Figure 7 suggests that alternative fitting
procedures should be considered for extremely small probabilities
such as 10 − 9 . (This is being investigated.)

V. CHANGING OTHER PARAMETERS

In Section 4 we saw what happens as we changed the number of
sources, scaling them in the manner of Section 3 so that the total
arrival rate remains unchanged. We saw that the quality of the
asymptotic approximations decline as n increases.

More generally, we conclude that the asymptotic approximations
tend to get worse as the number of sources increases, the buffer size
decreases, the channel utilization decreases, the target blocking
probability increases, and the source gets further from Poisson.
However, we would also like to point out that there is significant
difference in the accuracy and the region of applicability of the
effective bandwidth asymptotic (1.3) and the other asymptotic
approximations (1.1) and (1.5). Roughly speaking, (1.3) is not bad
when 10 − 2 < α < 102 , whereas (1.1) and (1.5) are not bad when
10 − 8 < α < 108 . We expect that in practical engineering situations
with multiple sources (1.1) and (1.5) will typically be a reasonably
good approximation, while (1.3) may be quite bad.

In this section we consider the effects of buffer size and
burstiness. Figures 8 and 9 compare the approximations with exact
values when the buffer size is 6000 and 60, respectively, instead of
600 as in Section 2. Here we keep the number of sources fixed at
n = 24. We scale the sources in the manner of Section 3 until the
blocking probability at the indicated capacity is 10 − 9 .

________________________
Insert Figures 8 and 9 about here.

________________________

So far, we have focused on the steady-state waiting time at arrival
epoch. Similar results hold for the steady-state workload at an
arbitrary time (the virtual waiting time). To demonstrate this, the
remaining numerical results in this paper, including those in Figures 8
and 9, are for the steady-state workload. (The differences between
the waiting time and workload are negligible compared to the main
phenomena being discussed.)

When the buffer size is increased to 6000, the buffer holds 100
bursts instead of 10. Figure 8 shows that all the approximations
perform very well with this larger buffer, just as in Figure 6. Now
the utilization is 0.835. The effective-bandwidth approximation
works very well; it predicts that the system can support 23 sources,
which is within 1 of the exact value.

In contrast, Figure 9 shows that the approximations get even
worse when we decrease the buffer size from 600 to 60, which
corresponds to just one burst. Figure 9 parallels Figure 7. Now the
utilization is only 0.18. The effective-bandwidth approximation
would now only admit 10 sources.

Suppose now we keep the buffer size at the high value of 6000
and the number of sources at n = 24, but increase the burstiness.
Suppose that we increase the burstiness by multiplying the mean
number of bursts in an on period by 5. We keep the arrival rate fixed
by multiplying the ratio of the off period to the on period by 5. This
makes the mean number of arrivals in an on period 300, which means
that the buffer now holds 6000/300 = 20 bursts.

Figure 10 compares the approximations with exact values in this
case. Figure 10 shows that there is once again a big difference
between the effective-bandwidth approximation and the exact result,
just as in Figure 1. For this example, the effective-bandwidth
approximation would admit only 11 sources. Hence, the advantage of
the larger buffer of size 6000 is offset by the larger burstiness. The
actual performance of the approximations obviously depends on the
combination of variables that actually prevails.

________________________
Insert Figure 10 about here.

________________________

VI. SOURCES LESS BURSTY THAN POISSON

In this section we consider sources that are less bursty than
Poisson. In particular, we assume that each source is renewal with
interarrival times that are E 2 . As before, we assume that the overall
arrival process is the superposition of independent versions of the
single source process. It seems unlikely that the sources in an ATM
network will actually be less bursty than Poisson, but this is a
possibility, due to traffic shaping at the network edge.

In the earlier bursty model we approximated the deterministic
cell-length distribution by an E 16 distribution and commented that
E 16 and D give about the same result. However, this is no longer true
with less bursty arrival processes. Therefore, in order to remain
pretty close to D, in this section we assume an E 1024 service time
distribution.

Figure 11 displays the approximations and exact tail probabilities
for this case assuming 24 sources and a buffer size of 8. In order to
meet the 10 − 9 buffer overflow probability, the channel utilization has
to be 29%. In this case the buffer overflow probability is greatly
underestimated by the effective-bandwidth approximation (1.3). For
this case of less bursty sources, the effective-bandwidth
approximation (1.3) would admit 39 sources in order to meet the
buffer overflow requirement with a buffer of size 8, instead of the
proper number of 24.

________________________
Insert Figure 11 about here.

________________________

Figure 11 also shows the probability of buffer overflow for
Poisson arrivals. For large tail probabilities, the exact result is close
to the Poisson prediction and, for small tail probabilities, the exact
result approaches the true asymptote. It is also interesting to observe
that the true asymptote is about ten orders of magnitude higher than
the effective bandwidth approximation. This is in sharp contrast with
the earlier highly bursty examples where the true asymptote was
always smaller than the effective bandwidth approximation. Also,
note that there is a qualitative change in the shape of the exact curve.
It is concave in Figure 11 as opposed to being convex for the more
bursty sources.

The behavior of the tail probabilities in Figure 11 may be
understood by plotting, in log scale, the asymptotic constant α n as a
function of n, the number of sources. This we do in Figure 12 for the
E 2 sources at channel utilizations 0.3 and 0.7 respectively. This is



similar to what we did in Figure 5, and indeed Figures 5 and 12 look
similar in the sense that in both cases the logarithm of α n is
asymptotically linear with n, i.e., α n changes exponentially with n.
However, the striking difference is that with more bursty sources
(Figure 5) α n decays exponentially with n and approaches zero, while
in the less bursty E 2 case, α n grows exponentially with n and
approaches infinity. The growth rate increases as the channel
utilization decreases. We have also plotted how the α n changes with
n for Poisson sources with channel utilizations of 0.3 and 0.7
respectively. Of course, α n does not change with n in the Poisson
case. The Poisson case places in perspective the spectacular growth
rate of α n with n in the non-Poisson case.

________________________
Insert Figure 12 about here.

________________________

As before, the effective-bandwidth approximation (1.3) performs
better with larger buffer sizes. This is shown in Figure 13 where the
buffer size is 100 instead of 8. As before, the number of sources is
n = 24. The sources have been scaled in the manner of Section 3 so
that P(W > 100 ) = 10 − 9 . This drives the channel utilization up to
0.949. Figure 13 shows that all the approximations are close to the
exact values in this case.

________________________
Insert Figure 13 about here.

________________________

VII. APPROXIMATIONS FOR LARGE SYSTEMS WITH
HETEROGENEOUS SOURCES

In this section we propose a method for obtaining useful
approximations for tail probabilities in large systems.
Approximations are needed, because our exact algorithm cannot
handle large numbers of sources, since the number of phases of the
superposed Markovian Arrival Process (MAP) grows rapidly with the
number of sources. Specifically, it can be shown that if there are L
types of sources, k i sources of type i, and each source of type i has m i

phases, then the total number, P, of phases of the superposed MAP is
given by

P =
i = 1
Π

L 

 m i − 1
k i + m i − 1




. (7.1)

Note that for Poisson sources m i = 1 and


 m i − 1
k i + m i − 1




= 1, so that

we can add any number of them without increasing P. To run the
exact model in reasonable time, we need P to be at most about 100.
In all the numerical examples in this paper we assumed L = 1 and
m i = 2 so that we could treat up to about K 1 = 99 sources. (We
actually considered up to 60 sources). However, with L = 2 and 3
(with m i still fixed at 2) we can treat only up to K i = 9 and K i = 3
sources of each type.

Now we specify our approximation procedure in terms of two
examples. First, suppose that there are three classes, each with 100
homogeneous sources. We can calculate the asymptotic decay rate η
exactly by considering the three-class system with one source in each
class, with each source scaled appropriately, as in Section 3, so that
the arrival rate of each single source equals the total arrival rate for
all 100 sources, for each class, in the original system.

In order to approximately determine the asymptotic constant α in
the original system, we calculate the exact asymptotic constants in the
systems with three classes and k sources in each class, again scaled to

be consistent with the original system according to Section 3, for
several feasible k, e.g., k = 1 , 2 and 3. (Note that here L = 3 and
m i = 2, so that k i = 3 for all i is feasible.) Then, assuming (1.6),
we obtain an approximate asymptotic constant for the original system
by fitting β and γ in (1.6) to the data. If the resulting estimated
asymptotic constant α is substantially greater than the target tail
probability, then we can apply approximation (1.1) with confidence.
If the estimated asymptotic constant α is less than the target tail
probability, then we note that (1.1) is probably not appropriate. If the
estimated asymptotic constant is greater than the target tail
probability, but not much greater, then we might use the heuristic
suggested in Section 1; i.e., we might use (1.1) with a higher value of
α as a rough conservative estimate.

The approach we have just described is satisfactory if all classes
have many sources, as when there are 100 sources from each of the
three classes. However, in actual applications, e.g., with video
sources, there may be only a few sources from some classes. To
illustrate, suppose that we have four classes, with 1 source in the first
class, 2 sources in the second class and 100 sources each in the last
two classes. Let all sources have two states. The method we have
just applied does not work for this example, but a modification does.

We have found that the asymptotic relation (1.6) still holds if we
divide the sources into two groups, and hold one group of sources
fixed, while we multiply the number of sources in the second group
by n. As before, we scale the sources in the second group, so that the
total arrival rate for each class remains fixed, independent of n.

As before, (1.1) holds for each n and the asymptotic decay rate η
is independent of n. Moreover, numerical experience indicates that
the asymptotic relation (1.6) still holds, but now β in (1.6) is a
function of the fixed sources. Now to estimate α in the original
system we at first estimate β and γ in (1.6) using n = 2 and 3 and
then estimate α from those using n = 100. Note that here L = 4,
m i = 2 for each i, k 1 = 1, k 2 = 2, k 3 = k 4 = n and hence n = 2
and 3 are feasible for the exact model.

More generally, the asymptotic result just described suggests an
approximation for m classes with multiplicities n 1 ,n 2 , . . . , n m of the
form

α n1 , . . . , nm
∼∼ βe − (γ 1 n1 + . . . + γm nm ) . (7.2)

For multiple classes, approximation (7.2) is convenient because we
can determine the asymptotic decay rates γ i by changing one class at
a time. However, more work is needed on this.

VIII. THE ALGORITHM

In this section we describe our algorithm for numerically
computing the exact tail probabilities. To compute the tail
probabilities, we draw heavily on Lucantoni [35]; see [36] for a
review. We model each source as a Markovian Arrival Process
(MAP), which is a two-dimensional Markov process {N(t) , J(t) } on
the state space { (i , j) :i ≥ 0 , 1 ≤ j ≤ m} with an infinitesimal
generator having the structure

Q =
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0

D 0
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0

D 0

D 1
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D 1
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0

0

. . .

. . .

. . .






(8.1)

where 0 , D 0 and D 1 in (8.1) are m×m matrices; D 0 has negative
diagonal elements and nonnegative off-diagonal elements; and
D ≡ D 0 + D 1 is an irreducible infinitesimal generator. We also
assume that D ≠ D 0 , which ensures that arrivals will occur. The



variable N(t) counts the number of arrivals in the interval [ 0 ,t],
while J(t) gives the arrival ‘‘phase’’ at time t.

In this paper we consider the superposition of many sources. If
the individual sources are characterized by matrices D 0i and D 1i for
i = 1 , 2 , . . . , K, where K is the number of sources, then it can be
shown [35] that the superposed system is also a MAP characterized
by matrices

D 0 = D 01 ⊕ D 02 ⊕ . . . ⊕ D 0K (8.2)

D 1 = D 11 ⊕ D 12 ⊕ . . . ⊕ D 1K (8.3)

where ⊕ is the Kronecker sum. We do all computations on the
superposed MAP characterized by D 0 and D 1 .

As explained in [35], the Laplace-Stieltjes transform (LST) of the
steady-state waiting-time cumulative distribution function (CDF) is
given by

Ŵ(s) = (πd) − 1 s( 1 − ρ) g[sI + D( ĥ(s) ) ] − 1 e , (8.4)

where e is a vector of all 1’s, ĥ(s) is service time LST, ρ is the traffic
intensity (the mean arrival rate times the mean service time),
d = D 1 e, π is the stationary probability vector of the Markov process
with generator D (i.e., π satisfies πD = 0 and πe = 1), g satisfies the
equations gG = g and ge = 1, and G satisfies the equation

G =
0
∫
∞

e (D0 + D1 G) xdH(x) , (8.5)

where H(x) is the service-time CDF and

D( ĥ(s) ) = D 0 + D 1 ĥ(s) . (8.6)

Our computation is based on, first, fast and accurate computation
of Ŵ(s) using (8.4) and, second, fast and accurate transform
inversion to get the waiting time CDF from Ŵ(s). To do the
inversion, we use the Fourier-series method in [5] along with the
round-off error control procedure in [15]. The procedure in [15] also
provides a self-contained accuracy check by doing the calculation
twice with different round-off control parameters. This amounts to
using different contours for complex inversion integration. With this
procedure, we achieve high accuracy even at the tail probability of
10 − 9 .

Next we describe two techniques for greatly speeding up the
computation of the LST Ŵ(s). First, note that all individual sources
are two-phase sources. The Kronecker sum operations in (8.2) and
(8.3) makes the superposed source a 2K-phase source. This would
prevent us from using large K, but we can take advantage of the fact
that the sources are homogeneous to greatly reduce the
dimensionality of the superposed source. We can define the phase of
the superposed source as one plus the number of component sources
in phase 1. Therefore, the total number of phases is K + 1 instead of
2K . The D 0 and D 1 matrices of the new superposed sources are
given in terms of the component D 01 and D 11 matrices of the
(identical) component sources as follows:

(D 1 ) i ,i = (i − 1 ) (D 11 ) 1 , 1 + (K − i + 1 ) (D 11 ) 2 , 2

for i = 1 , 2 , . . . , K + 1

(D 1 ) i ,i + 1 = (K − i + 1 ) (D 11 ) 2 , 1 for i = 1 , 2 , . . . , K

(D 1 ) i ,i − 1 = (i − 1 ) (D 11 ) 1 , 2 for i = 2 , 3 , . . . , K + 1 (8.7)

with (D 1 ) i , j = 0 for all other pairs (i , j),

(D 0 ) i ,i + 1 = (K − i + 1 ) (D 01 ) 2 , 1 for i = 1 , 2 , . . . , K

(D 0 ) i ,i − 1 = (i − 1 ) (D 01 ) 1 , 2 for i = 2 , 3 , . . . , K + 1 (8.8)

with (D 0 ) i , j = 0 for all other pairs (i , j) with i ≠ j, and

(D 0 ) i ,i = − [ (D 0 ) i ,i − 1 + (D 0 ) i ,i + 1

+ (D 1 ) i ,i + (D 1 ) i ,i − 1 + (D 1 ) i ,i + 1 ] . (8.9)

For the service-time distribution, we approximate the
deterministic distribution by an Erlangian distribution of order
k (E k ). A significant computational burden is the computation of G
from the matrix integral equation (8.5). The uniformization
procedure recommended in [35] for general service-time distributions
can be significantly improved for Erlang distributions by noting that
for the E k distribution with mean 1 (8.5) reduces to

G = [I − k − 1 (D 0 + D 1 G) ] − k . (8.10)

Equation (8.10) can easily be solved by successive substitution, i.e.,

G n + 1 = [I − k − 1 (D 0 + D 1 G n ) ] − k , (8.11)

where G 0 is chosen to be a stochastic matrix. Note that since we
choose k = 2m (specifically 24 for bursty sources and 210 for smooth
sources), each iteration in (8.11) involves only a single matrix
inversion and m matrix multiplications.

In order to compute the asymptotic parameters α and η in (1.1),
we use two independent algorithms (that cross-check each other): the
algorithm in [2] and the moment-based procedure in [14] and [1].

IX. CONCLUSIONS

Our first main conclusion here is that the effective-bandwidth
approximation (1.3) can break down when there is a large number of
independent sources. Approximation (1.3) tends to get worse as the
number of sources increases, the channel utilization decreases, the
buffer size decreases and the source gets further from Poisson, either
more bursty or less bursty.

If the sources are more bursty than Poisson, as is anticipated for
ATM networks, then the effective-bandwidth approximation (1.3) is
conservative. When the approximation is bad, there may be
substantially more statistical multiplexing gain than approximation
(1.3) predicts. On the other hand, if the sources are less bursty than
Poisson, then the effective-bandwidth approximation is no longer
conservative, and may also be bad. In general, contrary to many
statements, the effective-bandwidth approximation need not be
conservative.

Typically, the exact tail probabilities lie between the effective-
bandwidth approximation (1.3) and the true asymptote (1.1). If these
two curves are very close to each other (differ by less than a factor of
10), then (1.3) is usually reasonably accurate. If the two curves are
far from each other, but not too far (differ by less than 108), then
(1.3) is bad, but (1.1) and (1.5) are reasonably accurate. Finally, if
the two curves are extremely far apart (differ by more than 108), then
even (1.1) and (1.5) are not accurate. Our second main conclusion is
that, even though (1.3) may not be a good approximation, the true
asymptote (1.1) often is a good approximation. Moreover, from
calculations of the asymptotic parameters α and η, we have a way to
estimate whether or not the approximations will be good.

A reason for the degradation of the effective-bandwidth
approximation as the number n of sources increases is that the
asymptotic constant α n in (1.1) is itself asymptotically exponential in
n. For sources more bursty than Poisson, α n decrease to 0
exponentially fast, as shown in Figures 4 and 5. For sources less
bursty than Poisson, α n increases to infinity exponentially in n, as
shown in Figure 12. The Poisson case is the reference case, because
α n there does not change with n. The asymptotically exponential
form for α n in (1.6) allows us to compute it approximately for



arbitrary n by extrapolating based on computed values for small n.
For heterogeneous sources with different multiplicities, we exploit
(7.1). Having a way to approximate the asymptotic constant α is
important, not only because we can use it in approximations (1.1) and
(1.5), but also because the value of α indicates whether or not the
approximations will be good.

Finally, in addition to gaining a better understanding of the
effective-bandwidth approximation (1.3), we have provided bases for
more refined analysis tools via our exact MAP/G/1 numerical
algorithm, the refined approximation (1.5) [17] and the exponential
relation for α n in (1.6). We have indicated how (1.6) and (7.1) can
be combined with the true asymptote (1.1) to get an approximation
that is almost as simple as the effective-bandwidth approximation
(1.3), but is applicable in a substantially wider region.
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Figure 1. A comparison of approximations and exact values of the
probability of buffer overflow (approximated by the tail probability
P(W > x)) as a function of the buffer size x for the example in
Section 2.

Figure 2. The decay rate η n in (1.1) as a function of the number n of
sources (without scaling the sources) for the example in Section 2.



Figure 3. The asymptotic constant α n in (1.1) as a function of the
number n of sources (without scaling the sources) for the example in
Section 2.

Figure 4. The asymptotics constant α n as a function of the number n
of sources (with scaling) for the example in Section 2.



Figure 5. The asymptotic constant α n as a function of the number n
of sources (with scaling) for four examples in Section 3.

Figure 6. A comparison of approximations and exact values of the
probability of buffer overflow (approximated by the tail probability
P(W > x) as a function of the buffer size x for the example with
n = 2 in Section 4.



Figure 7. A comparison of approximations and exact values of the
probability of buffer overflow (approximated by the tail probability
P(W > x) as a function of the buffer size x for the example with
n = 60 in Section 4.

Figure 8. A comparison of approximations and exact values of the
probability of buffer overflow (approximated by the workload-tail
probability) as a function of the buffer size x for the example with
n = 24 in Section 2 and higher buffer capacity 6000 in Section 5.



Figure 9. A comparison of approximations and exact values of the
probability of buffer overflow (approximated by the workload-tail
probability) n = 24 in Section 2 and lower buffer capacity 60 in
Section 5.

Figure 10. A comparison of approximations and exact values of the
probability of buffer overflow (approximated by the workload-tail
probability) n = 24 in Section 2, higher buffer capacity 6000 and
higher burstiness in Section 5.



Figure 11. A comparison of approximations with exact values of the
probability of buffer overflow (approximated by the workload tail
probability) as a function of the buffer size x for the example in
Section 6 with E 2-renewal-process sources, n = 24 and buffer size 8.

Figure 12. The asymptotic constant α n as a function of the number
n of sources (with scaling for the E 2 examples in Section 6.



Figure 13. A comparison of approximations with exact values of the
probability of buffer overflow (approximated by the workload tail
probability) as a function of the buffer size x for the example in
Section 6 with E 2-renewal-process sources, n = 24 and buffer size
100.

_ ________________________________________________________________
Method of Number of Sources Allowed Buffer Size Required

Computation for Buffer Size x = 600 to Support n = 24 Sources_ ________________________________________________________________
exact 24 600_ ________________________________________________________________
effective-bandwidth
approximation (1.3) 12 1146_ ________________________________________________________________
(1.1) and (1.5) 25 530_ ________________________________________________________________
Poisson 78 20_ ________________________________________________________________
Average-Rate
engineering 80 not applicable_ ________________________________________________________________
peak-rate
engineering 7 not applicable_ ________________________________________________________________ 
















































































Table 1.
A comparison of different methods for determining (i) the number of
sources for the fixed buffer size x = 600 and (ii) the buffer size
required to support n = 24 sources for the example in Section 2.

Even though ATM seems to be clearly the wave of the future, one performance
analysis indicates that the combination of stringent performance requirements
(e.g., 10 − 9 cell blocking probabilities), moderate-size buffers and highly bursty
traffic will require that the utilization of the network be quite low. That
performance analysis is based on asymptotic decay rates of steady-state
distributions used to develop a concept of effective bandwidths for connection
admission control. However, we have developed an exact numerical algorithm
that shows that the effective-bandwidth approximation can overestimate the
target small blocking probabilities by several orders of magnitude when there
are many sources that are more bursty than Poisson. The bad news is that the
appealing simple connection-admission-control algorithm using effective
bandwidths based solely on tail-probability asymptotic decay rates may
actually not be as effective as many have hoped. The good news is that the
statistical multiplexing gain on ATM networks may actually be higher than
some have feared. For one example, thought to be realistic, our analysis
indicates that the network actually can support twice as many sources as
predicted by the effective-bandwidth approximation. That discrepancy occurs
because for a large number of bursty sources the asymptotic constant in the tail
probability exponential asymptote is extremely small. That in turn can be
explained by the observation that the asymptotic constant decays exponentially
in the number of sources when the sources are scaled to keep the total arrival
rate fixed. We also show that the effective-bandwidth approximation is not
always conservative. Specifically, for sources less bursty than Poisson, the
asymptotic constant grows exponentially in the number of sources (when they
are scaled as above) and the effective-bandwidth approximation can greatly
underestimate the target blocking probabilities. Finally, we develop new
approximations that work much better than the pure effective-bandwidth
approximation.



I. Introduction and Summary

Great energy is being devoted to studying the promising new asynchronous
transfer mode (ATM) technology for supporting multi-service high-speed
communication networks; e.g., see Roberts [39]. As indicated in [39], interest
in ATM is stimulated by two factors: first, by new technology making it
possible to transmit and switch at very high bandwidths and, second, by
growing demand for more sophisticated and powerful communication services.

Even though ATM seems to be well on its way to widespread use, a
performance analysis based on asymptotic decay rates of steady-state
distributions indicates that the combination of stringent performance
requirements (e.g., 10 − 9 cell blocking probabilities), moderate-size buffers and
highly bursty traffic associated with these new services will necessitate
operating the networks at very low utilizations. (The basic model represents an
ATM switch receiving fixed-size ATM cells from several sources and
transmitting them over an output channel in a first-in-first-out fashion. The
basic question is: How many sources can be admitted for a fixed buffer size
with a specified small cell blocking probability?) A main message of this
paper is that ATM networks may be able to achieve higher utilizations than
that asymptotic analysis indicates. In other words, there seems to be more
potential for statistical multiplexing gain.

The approximation based on asymptotic decay rates of tail probabilities is
very appealing because it supports a concept of effective bandwidths. From an
engineering perspective, the notion of effective bandwidths is very natural.
The idea is to assign each source an effective bandwidth requirement, and then
consider any subset of sources feasible (admissible) if the sum of the required
effective bandwidths is less than the total available bandwidth. Thus, a
suitable notion of effective bandwidths could go a long way toward solving the
connection admission control problem. For instance, once effective
bandwidths have been assigned, we can approach engineering and design
problems using multi-rate loss network models, e.g., as in Choudhury, Leung
and Whitt [12,13] and references therein.

A large-deviations asymptotic analysis provides strong support for the
simple effective-bandwidth procedure, because it shows that it is
asymptotically correct as the buffer size gets large and the tail probabilities get
small, and because it provides a basis for assigning actual effective bandwidth
values to different sources (voice, data, video, etc.); e.g., see Hui [31], Gibbens
and Hunt [26], Guerin, Ahmadi and Naghshineh [28], Kelly [32], Sohraby
[41], [42], Chang [10], Whitt [45], Elwalid and Mitra [23], Kesidis, Walrand
and Chang [33], Glynn and Whitt [27], Courcoubetis, Kesidis, Ridder,
Walrand and Weber [20], and Chang, Heidelberger, Juneja and Shahabuddin
[11].

The additive nature of effective bandwidths is clearly appropriate if we let
the effective bandwidths be either the source peak rates or the source average
rates. However, it seems intuitively clear that working with peak rates is far
too conservative, while working with average rates is far too optimistic. (We
show this later in our examples.) Most of the recent work has been aimed at
finding appropriate effective bandwidths in between the peak and average
rates.

Unfortunately, however, from the outset, teletraffic engineering experience
suggests that there may be a flaw in the effective bandwidth concept because it
corresponds to having no traffic smoothing from multiplexing. In particular, it
is known that when many separate bursty sources are multiplexed
(superposed), the total is less bursty than the components; i.e., there is a basis
for more statistical multiplexing gain than with Poisson sources. This is
theoretically supported by the classical limit theorem stating that
superpositions of arrival processes, suitably scaled, converge to a Poisson
process as the number of component arrival processes increases; e.g., see
C, inlar [19]. See Heffes and Lucantoni [30], Sriram and Whitt [43] and
Fendick, Saksena and Whitt [25] for related performance studies. In contrast,
with the effective-bandwidth approximation, the burstiness of n superposed
independent and identically distributed sources is the same as for a single
source (e.g., see p. 76 of [45]). This implies that the effective-bandwidth
approximation will predict greater congestion for any fixed arrival rate than it
should.

Nevertheless, there is a case for the effective bandwidths, because previous
teletraffic analysis (such as in [25], [30], [43]) did not focus on extremely small

loss probabilities such as 10 − 9. Such very small loss probabilities naturally
suggest that appropriate asymptotics should provide what we want. And the
asymptotic analysis associated with effective bandwidths indicates no traffic
smoothing.

The question, then, is what will actually happen in real systems? Will there
be significant traffic smoothing or not? Is the asymptotic analysis supporting
effective bandwidths sufficiently accurate or is it not?

These questions have plagued researchers in recent years because the
natural models are very difficult to analyze. It is difficult to calculate very
small tail probabilities in models with many independent bursty sources, by
either exact analytical formulas or by computer simulation.

Our main contribution is a new algorithm for a queueing model that
enables us to compute the desired small tail probabilities exactly when there
are many bursty sources. From this exact analysis, we find that in some cases
the effective-bandwidth approximation is excellent, but in other cases (which
we think are realistic), it is not. Thus, we conclude that the notion of effective
bandwidths based directly on large-deviation asymptotics may not be effective
for connection admission control.

However, from an engineering perspective, the notion of effective
bandwidths remains very appealing. Thus it is natural to look for
modifications of the proposed effective bandwidth approximation which will
work well; e.g., as in Guerin and Gun [29]. It is important to note that our
analysis does not rule out the general notion of effective bandwidths. Instead,
our analysis only indicates that there may be serious difficulties with the
implementation based directly on a particular kind of asymptotics, without
refinements.

A second main contribution of this paper is to develop modifications of the
basic effective-bandwidth approximation for tail probabilities that are more
accurate (namely, (1.1), (1.5) and (1.7) below). However, these new
approximations do not support the simple notion of effective bandwidths
discussed above. Nevertheless, the approximate tail probabilities can be used
for admission control.

The key to our analysis here is the exact numerical solution of the

i = 1
Σ
n

G i/G/1 queueing model, which has a single server, unlimited waiting room,

the first-in first-out service discipline and i.i.d. (independent and identically
distributed) service times that are independent of a superposition arrival
process. The arrival process is the superposition of n independent component
general arrival processes. Our algorithm permits these component arrival
processes to be heterogeneous Markovian arrival processes (MAPs), as in
Lucantoni [35,36]; see Section 8 here. (The general theory also allows batch
arrivals, but in this paper we consider only single arrivals.) Since
superpositions of independent MAPs are again MAPs, it suffices to consider
the MAP/G/1 queue. However, the computational effort increases when the
number of sources increases. Our algorithm is based on Lucantoni [35]. A
major new idea is the combination of the matrix-analytic results in [35] with
numerical transform inversion. In particular, we use the Fourier-series method
in Abate and Whitt [5]. We also use a scheme for accuracy enhancement for
computing small probabilities as described in [15]. Moreover, we use a
number of techniques for speeding up computation, in order to treat a large
number of sources. These techniques are described in Section 8. For the
computation of the asymptotic parameters we use algorithms in [1], [2], [14].

We have also extended the numerical transform inversion algorithms to
multidimensional transforms [15] and applied the multidimensional inversion
to calculate transient performance measures in the MAP/G/1 queue [37].
Thus, we are in a position to study the transient behavior as well as the
steady-state behavior. With the ability to calculate time-dependent tail
probabilities, we can study whether or not transient analysis is needed in the
admission control problem. Here, however, we only discuss steady-state
behavior.

In our examples here, we consider only homogeneous sources, but in
Section 7 we also indicate how to treat large systems with heterogeneous
sources approximately. We primarily consider sources that are more bursty
than a Poisson process, in particular, Markov modulated Poisson processes
(MMPPs) with two-state Markov environment processes. (The MMPP is a
Poisson process whose rate is itself a continuous-time Markov chain.) For the



main example, we consider on-off sources in which the arrival rate in one
environment state is zero, i.e., interrupted Poisson processes, which are known
to be renewal processes having hyperexponential interarrival-time
distributions [34]. These bursty source models are often used to model ATM
traffic. They can represent quite bursty traffic. We have also obtained similar
results for other (non-renewal) MMPP sources and multiple numbers of more
than one kind (two or three) of MMPP sources.

We also consider sources that are less bursty than a Poisson process. In
particular, we consider renewal processes with E 2 (Erlang of order 2)
interarrival times. Such less bursty sources might appear in ATM networks as
a consequence of traffic shaping at the edge of the network. Contrary to
conventional wisdom, we show that the effective-bandwidth approximation
underestimates the exact tail probabilities with these less bursty sources, so
that the effective bandwidth approximation need not be conservative.

As a surrogate for the steady-state blocking probability with a finite buffer,
we consider the tail probability of the steady-state waiting time in our infinite-
capacity queue. When the service times are deterministic with mean 1, as is
the case with ATM cells (with the appropriate time units), the least integer
above the steady-state waiting time coincides with the steady-state queue
length or buffer content seen by an arrival. (We can also directly compute the
queue-length distribution in the MAP/G/1 queue.) We are thus approximating
the steady-state blocking probability in the finite-capacity system by the
steady-state probability that the buffer content exceeds that capacity level in
the infinite-capacity system at an arrival epoch.

Hence, we let W be the steady-state waiting time until beginning service
and we focus on the tail probabilities P(W > x). It turns out that in
considerable generality these waiting-time tail probabilities are asymptotically
exponential, i.e.,

P(W > x) ∼ αe − ηx as x → ∞ , (1.1)

where η is a positive constant called the asymptotic decay rate, α is a positive
constant called the asymptotic constant, and f (x) ∼ g(x) as x → ∞ means that
f (x)/ g(x) → 1 as x → ∞; see Abate, Choudhury and Whitt [2]. In standard
single-source examples the approximation provided by (1.1) is often
remarkably accurate [2]–[4]. Moreover, numerical experience indicates that
for bursty sources the approximation provided by (1.1) with α replaced by 1
often tends to be conservative, i.e.,

P(W > x) ≤ e − ηx for all x . (1.2)

This is a basis for the simple one-parameter approximation

P(W > x) ∼∼ e − ηx (1.3)

The asymptotic decay rate η in (1.1)–(1.3) is the basis for the concept of
effective bandwidths. The simple one-parameter approximation (1.3) is
appealing because the key parameter η in (1.1)–(1.3) is relatively easy to
determine, exactly or approximately. Indeed, it is typically much easier to
obtain than the asymptotic constant α. Moreover, the resulting admission-
control algorithm using effective bandwidths based on (1.3) is remarkably
simple. Hence, we call (1.3) the effective-bandwidth approximation.

It is important to note that much of the effective-bandwidth literature has
not arrived at (1.3) via (1.1). The large-deviation result supporting (1.3) is the
weaker limit

x − 1 log P(W > x) → − η as x → ∞ . (1.4)

General sufficient conditions for (1.4) are given in Chang [10] and Glynn and
Whitt [27]. Clearly (1.1) implies (1.4), but not conversely. Indeed, the weaker
limit (1.4) yields no information about the asymptotic constant α in (1.1).

We have indicated that most of the effective-bandwidth literature has
arrived at approximation (1.3) via the limit (1.4) or related bounds such as
(1.2). However, several people have focused on (1.1) too, namely, Abate et
al. [2], Baiocchi [7], Elwalid and Mitra [23,24] and Neuts [38]. Given (1.1),
(1.3) is a convenient simple approximation because α is much harder to obtain
than η, and because (1.3) is consistent with the notion of effective bandwidths.

As discussed in [3], for standard single-source models approximation (1.3)
is often a reasonable substitute for approximation (1.1)–(1.4) when we are
primarily interested in percentiles of the distribution, rather than the
probabilities themselves. If the asymptotic constant α in (1.1) is not too

different from 1, then it plays a relatively small role in higher percentiles.

It should be noted that the asymptotic decay rate η in (1.1) is identical to
the asymptotic decay rate for the blocking probability in the corresponding
finite-buffer model as the buffer size gets large; see Baiocchi [7]. Hence, our
analysis of the infinite-capacity model is directly relevant to the finite-capacity
model with large buffer sizes.

In order to do better than (1.1), without calculating the exact tail
probabilities, we have also developed a refined three-term approximation of
the form

P(W > x) ∼∼ α 1 e
− η1 x + α 2 e

− η2 x + α 3 e
− η3 x , (1.5)

where α 1 and η 1 are the asymptotic constant and asymptotic decay rate in
(1.1), while α 2 , α 3 η 2 and η 3 are chosen to match the probability of delay
P(W > 0 ) and the first three moments EW, E(W 2 ) and E(W 3 ), with η 2 and
η 3 required to satisfy η 1 ≤ min {η 2 ,η 3 }; see Choudhury, Lucantoni and
Whitt [17].

We thus have four ways to ‘‘calculate’’ the tail probability P(W > x) :
(1.3), (1.1), (1.5) and the full numerical algorithm. Each successive method
tends to be more accurate, but each successive method requires substantial
more computational effort. The effective-bandwidth approximation (1.3) is by
far the easiest to compute, with there being virtually no limit to the size of the
model; e.g., see [45].

Using our exact numerical algorithm for the MAP/G/1 queue, we have
investigated the three approximations in (1.3), (1.1) and (1.5). For many
standard single-source models, the refinement in (1.1) is remarkably accurate
even for x not too large, e.g., for the 90th percentile of the distribution. For
standard single-source models for which (1.1) is excellent at the 90th percentile
and beyond, (1.5) typically is excellent for the entire distribution.

However, we have found that the story changes dramatically when the
arrival process is the superposition of many component processes. Then the
effective bandwidth approximation (1.3) can perform very badly. It is even
possible for (1.1) and (1.5) to perform badly, but there is a substantial region
where (1.3) performs badly and (1.1) performs well. This is the basis for our
new improved approximations beyond (1.3).

We emphasize that, for the model being considered, the limits in (1.1) and
(1.4) do indeed hold, and we are indeed interested in very small tail
probabilities, and relatively large x. However, there is a serious difficulty
(evidently pointed out for the first time here): The asymptotic constant α in
(1.1) can be very different from 1 when the number of component arrival
processes is large.

We also explain why the asymptotic constant α can be very different from
1 with many sources. To do so, we consider the case of n identical sources
with fixed total rate. As n increases, the total rate is kept fixed by properly
scaling the individual streams. With this structure, it is known that the
asymptotic decay rate η in (1.1) is actually independent of n. We give
numerical examples showing that the asymptotic constant with n sources (and
this scaling), α n, is itself asymptotically exponential in n, i.e.,

α n ∼ βe − nγ as n → ∞ , (1.6)

where β > 0 and, for sources more bursty than Poisson, γ ≥ 0, while for
sources less bursty than Poisson, γ ≤ 0. Moreover, γ in (1.6) tends to be
larger when the burstiness gets further from Poisson and the traffic intensity
decreases, which is a likely operating condition for ATM networks.

Combining (1.1) and (1.6), we obtain the refined asymptotic approximation
(with the scaling for (1.6))

P(W > x) ∼∼ βe − nγ e − ηx . (1.7)

Our numerical results supporting (1.6) and (1.7) naturally suggest a limit
theorem, on which we were working but others have delivered. The idea is
still to consider large-deviation asymptotics, but now letting both n and x go to
infinity. Since this paper was originally submitted, large deviation limits
supporting (1.6) and (1.7) have been reported by several authors, the first
known to us being A. Dembo and O. Zeitouni (talk at National Meeting of the
Operations Research Society of America, Boston, April 1994). Large-
deviation papers supporting (1.6) and (1.7) have been written by Botvich and
Duffield [9], Courcoubetis and Weber [21], Simonian [40] and Tse, Gallager



and Tsitsiklis [44]. To state their result, let W n be the steady-state waiting time
with n sources. Paralleling (1.4), their result is

n − 1 logP(W n > nx) = I(x) as n → ∞ , (1.8)

for an appropriate function I(x), yielding the approximation

P(W n > x) ∼∼ e − nI(x / n) . (1.9)

Clearly (1.8) provides strong theoretical support for (1.6) and (1.7), but (1.8) is
substantially weaker than (1.1) and does not yield the asymptotic constant β in
(1.6) and (1.7). Nevertheless, the form of the limit function I(x) provides
useful insights, as can be seen from the references.

We propose (1.7) as a basis for developing useful approximations for the
tail probabilities when there are large numbers of each of a few types of
sources. In particular, we suggest using (1.7) to estimate β and γ by
extrapolating using (1.6) and exact calculations for small n; see Section 7 for
further discussion.

Approximation (1.7) can be regarded as an approximation to the true
asymptote (1.1). Our numerical experience indicates that for sources more
bursty than Poisson the true asymptote (1.1) is a good approximation at 10 − 9 if
α is not too small, e.g., α ≥ 10 − 4. For a wide range of problems, this is the
region of interest. Our experience also indicates that the true asymptote (1.1) is
a poor approximation at 10 − 9 if α is too small, e.g., α ≤ 10 − 8. For estimated
values of α in between, e.g., 10 − 8 < α < 10 − 4, the true asymptote is only
moderately good as an approximation. In this region, we propose using the
true asymptote with α replaced by 10 − 4 as a rough conservative heuristic
approximation. For sources less bursty than Poisson, (1.1) tends to be a good
(bad) approximation at a target blocking probability 10 − 9 if
α < 104 (α > 108 ).

Here is how the rest of the paper is organized. In Section 2 we consider a
specific example with bursty sources to demonstrate that the effective-
bandwidth approximation (1.3) can perform poorly. In Section 3 we consider
the case of n identical sources scaled so that the total rate is independent of n,
and give examples supporting (1.6). Next in Section 4 we present
modifications of the example in Section 2 with different numbers of sources in
which the two asymptotic approximations in (1.1) and (1.3) are, first, both
good and, second, both bad. These cases seem identifiable by looking at the
observed value of the asymptotic constant α. In Section 5 we investigate the
impact of changing other variables. We show that the asymptotic
approximations tend to get worse as the number of sources increases, the buffer
size decreases, the channel utilization decreases, the target blocking probability
increases, and the source gets further from Poisson, either more bursty or less
bursty.

In Section 6 we consider sources less variable than Poisson. For these
sources, we show that the effective-bandwidth approximation need not be
conservative; i.e., (1.2) does not hold. In Section 7 we show how to do
approximations in large systems with heterogeneous sources. In Section 8 we
briefly describe the computational algorithm. Finally, in Section 9 we state our
conclusions.

II. An Example where the Effective-Bandwidth Approximation Fails

In this section we consider an example with homogeneous on-off sources.
(The on-off property is not essential for our model or for the conclusions we
draw from it. A source can have multiple states, each characterized by a
different arrival rate. We use such sources in later examples.) Our primary
purpose is to show that the effective-bandwidth approximation (1.3) can be a
bad approximation for a realistic example and can lead to seriously
underestimating the number of sources the queue can accommodate.

We let the service times be i.i.d. with mean 1. Thus the unit of time is the
time required to transmit one ATM cell. We let the service time have an
Erlang distribution of order 16 (E 16 ), which has squared coefficient of
variation (SCV, variance divided by the square of the mean) cs

2 = 1/16. This
distribution is similar to the deterministic (D) distribution of ATM cells, but
better behaved for numerical calculations. (It is possible to do calculations for
D distributions, but it requires more computational effort to achieve
comparable precision.) In fact, we have computed using the E 1024 distribution
and have found for the examples in this paper with MMPP sources that there is

little difference between E 16 and E 1024, supporting our hypothesis that D is
well approximated by E 16.

The on-off source has exponentially distributed on and off periods. During
the on periods, cells arrive according to a Poisson process; during the off
periods there are no arrivals. Each on-off source is characterized by three
parameters, the mean on period ω, the mean off period ζ and the (peak) rate
during the on period, p. Here we let the on and off periods have means
ω = 436. 36 and ζ = 4363. 63, respectively. We let the peak rate be
p = 0. 1375. The overall average rate is thus λ = pω/(ω + ζ) = 0. 0125.
The ratio of peak to mean rates is thus p /λ = 11. 0. The mean number of cells
during an on period is pω = 60. 0.

We feel that the level of source burstiness considered above can happen
quite naturally in bursty data sources. Furthermore, the example is chosen
mainly to illustrate that bad behavior can occur. Later we discuss how the
basic behavior of superposed sources changes with change in burstiness, buffer
size and other parameters.

The above on-off source (an interrupted Poisson process) can also be
characterized as a renewal process with a hyperexponential (H 2, mixture of
two exponentials) interarrival time distribution [34]. The mean interarrival
time for one source is thus 1/λ = 80 and the SCV is ca

2 = 100. 2. Scaled to
have mean 1, the first four moments of an interarrival time are: m 1 = 1,
m 2 = 101. 2, m 3 = 1. 68 × 104 and m 4 = 3. 73 × 106. This is another way
to see that the individual sources are quite bursty. (For a simple exponential
random variable with mean 1, the n th moment is n!)

Since the arrival process is a renewal process, The SCV coincides with the
normalized asymptotic variance or limiting index of dispersion for counts for
the counting process N(t), i.e.,

I c (∞) ≡
t→ ∞
lim

EN(t)
Var N(t)_ _______ = ca

2 = 100. 2 , (2.1)

see [25,43]. The value I c (∞) = 100. 2 is large, so that each source is indeed
quite bursty.

We let the buffer size be 600 cells, which falls in the range considered by
switch manufacturers. The buffer size 600 is ten times the mean number of
cells in an on period; i.e., the buffer contains 10 bursts. The quality of the
approximations depends strongly on the buffer size. (We discuss this further in
Section 5.) Currently buffer size is limited by the availability of fast memory.
We regard 600 as a representative moderate buffer size.

As is customary in ATM, we let the target blocking probability be 10 − 9.
Hence, we choose the number of sources so that

P(W > 600 ) ∼∼ 10 − 9 . (2.2)

Our exact numerical results indicate that (2.2) is attained with n = 24 sources,
yielding a utilization of 30%.

Figure 1 displays the exact tail probabilities P(W > x) and the
approximations (1.1), (1.3) and (1.5). In addition, Figure 1 displays the
Poisson approximation, which is the exact tail probability in the M/E 16/1
queue, computed by numerical transform inversion. The tail probability
P(W > x) is our approximate probability of buffer overflow with x being the
buffer size.

___________________________
Insert Figure 1 about here.

___________________________

The (exact) asymptotic parameters in (1.1) are η = 0. 01809 and
α = 1. 453 × 10 − 5. The three-term approximation is also fully determined,
based on the exact probability of delay P(W > 0 ) = 0. 4242 and first three
moments EW = 0. 6924, E(W 2 ) = 8. 573 and E(W 3 ) = 579. 3.

Of course, there is the question of numerical accuracy of the exact results
reported in Figure 1. We verified them using a built-in accuracy check in our
numerical procedures, as explained in [15, 37] and Section 8 here. In the
related case of 64 sources with exponential service times, numerical results by
Elwalid and Mitra [24] confirmed our results.

Figure 1 indicates that (1.1) and (1.5) are still in error by a factor of 3.9 at
x = 600. This error is relatively small, though, compared to the error in (1.3),
which is by a factor of 105. The Poisson approximation obviously is even



worse than (1.3).

It is interesting to consider Figure 1 in relation to previous discussions of
‘‘cell-level congestion’’ and ‘‘burst-level congestion,’’ e.g., in [39]. To a large
extent, Figure 1 indicates two nearly linear regions for the exact curve. As
discussed on p. 19 of [39], there is an initial period of steep nearly linear
decline corresponding to ‘‘cell-level congestion’’ and a later period of more
gradual nearly linear decline corresponding to ‘‘burst-level congestion.’’ This
burst level congestion corresponds to the true asymptote (1.1). However, the
transition between these two regimes is smooth and fairly long. As in [39],
much of the ATM literature considers separate models to represent cell-level
and burst-level congestion. In contrast, we represent both within a single
model. Indeed, we consider precisely the multiple-MMPP-source model
described as difficult on p. 185 of [39]. In this context, a major contribution
here is to point out that the intercept with the y-axis of the asymptote, which is
the asymptotic constant α in (1.1), may well be very small.

Now suppose, instead, that we use approximation (1.3). Let η n be η in
(1.1) as a function of n (without any rescaling of individual sources). As
indicated above, η 24 = 0. 01809, but η increases as n (and ρ) decreases.
Figure 2 displays η n as a function of n (without any rescaling of individual
sources). It turns out that

e
− 600ηn ≤ 10 − 9 for all n ≤ 12 , (2.3)

but not for n ≥ 13; η 12 = 0. 03749 and η 13 = 0. 03354. Hence, using the
effective-bandwidth approximation (1.3), we conclude that the queue can
accommodate only 12 sources with criterion (2.2). Hence, (1.3) indeed
significantly underestimates the capacity. The actual capacity is two times that
predicted by (1.3).

___________________________
Insert Figure 2 about here.

___________________________

Table 1 compares seven different procedures for determining the number of
sources that can be supported:

(i) The exact tail probabilities

(ii) the effective-bandwidth approximation (1.3)

(iii) the full asymptotic approximation (1.1)

(iv) the three-term approximation (1.5)

(v) the Poisson approximation

(vi) average-rate engineering

(vii) peak-rate engineering.

___________________________
Insert Table 1 about here.

___________________________

From Figure 1 and Table 1, we see that even though the true asymptote is
not too accurate for the tail probability (being off by a factor of 4), it produces
a good estimate for the number of sources (being off by only one).

Since the average rate is λ = 0. 0125, if we could size by average rate,
then the queue could accommodate 80 sources. Since the peak rate is
p = 0. 1375, if we sized by peak rate, then the queue can accommodate 7
sources. The numbers 7 and 80 help put the realized improvement from 12 to
24 going from approximation (1.3) to the exact numerical result in perspective.

There is a simple explanation for the poor performance of approximation
(1.3). For n = 24, the asymptotic constant in (1.1) is α 24 = 1. 453 × 10 − 5.
As can be seen from Figure 1, in this case the one-term asymptotic
approximation αe − ηx based on (1.1) is a good approximation, but replacing α
by 1 introduces a large error.

In customary models with a single source, the asymptotic constant α is
usually not too different from 1. Hence, it is interesting to see how α n

depends on n (again, without rescaling the individual sources). This is shown
in Figure 3. There we see that α n declines from α 1 = 0. 340 to a minimum
value of α 11 = 6 × 10 − 8 and then increases toward 1 again as the traffic
intensity approaches 1. From heavy-traffic theory, we anticipate that α n → 1
as ρ n → 1. Assuming that α n stays well above the target value 10 − 9 for all

n, as it does in Figure 3, we can anticipate that the asymptote (1.1) will be a
reasonably good approximation, but we clearly cannot simply replace the
asymptotic constant α by 1.

___________________________
Insert Figure 3 about here.

___________________________

Instead of fixing the buffer size at 600 and asking how many sources the
queue can accommodate, we could instead fix the number of sources at 24 and
ask what size buffer is required. The exact numerical results indicate a buffer
size of 600. The approximations (1.1) and (1.5) indicate that a buffer size of
530 is required, approximation (1.3) indicates 1146 and the Poisson
approximation indicates only about 20. These results are also displayed in
Table 1. This is another way to look at the weakness of the effective-
bandwidth and Poisson approximations. This view also shows that
approximations (1.1) and (1.5) are reasonably good.

As shown in [4], the asymptotics (1.1) for the steady-state waiting time are
closely related to corresponding asymptotics for other steady-state quantities,
such as the workload, sojourn time and queue length (at arrivals and at
arbitrary times). For this example, the queue length decay rate parameter σ in
[4] is σ = 0. 9821. Although we consider only the waiting time here, our
experience indicates that a detailed analysis of one of the other steady-state
distributions tells essentially the same story. For the example considered in
this section, if we look at the queue length at an arbitrary time (instead of at the
arrival instant) then both the exact value and approximation (1.1) drop roughly
by a factor of 3, but the effective-bandwidth approximation (1.3) remains
unchanged (another weakness of (1.3)). However this further difference by a
factor of 3 is small compared to the already-established difference by a factor
of 105.

III. Asymptotics for the Asymptotic Constant in Scaled Superposition Processes

As shown in [10], [18], [23], [24], [27], [45], the asymptotic decay rate η n

in the
i = 1
Σ
n

G i/G/1 model with the superposition of n i.i.d. arrival processes is

independent of n when we fix the total arrival rate by scaling the component
arrival processes. In particular, let {N(t) : t ≥ 0 } be the arrival counting
process with only one source. The proper scaling is achieved with n sources
by letting each component arrival process be distributed as {N(t / n) : t ≥ 0 }.
If the arrival rate of N(t) is λ, then the arrival rate of N(t / n) is λ/ n, so that the
total arrival rate with n sources is λ for all n. (This scaling is also discussed
previously in [43] and 25].)

Of course, when we add sources in a real network, we do not do any
rescaling, so we did not do any rescaling in Section 2. However, since η n is
independent of n with this rescaling, the rescaling helps us understand what is
happening with the various approximations. As discussed in [43], a key
theoretical reference point is the fact that, with the scaling, the superposition
process approaches a Poisson process as n → ∞. Since η n does not change
with n, we see that the two limits x → ∞ and n → ∞ do not interchange. This
is a source of our difficulties.

Our numerical experience indicates that with this rescaling as n → ∞ the
asymptotic constant α n in (1.1) approaches 0 for sources more bursty than
Poisson and approaches infinity for sources less bursty than Poisson. More
precisely, α n appears to decay or grow exponentially as in (1.6) as n → ∞.
Numerical evidence supporting (1.6) is given in Figures 4 and 5 for sources
more bursty than Poisson. There we display α n as a function of n in log scale
for different examples. Figure 4 displays α n as a function of n for the example
in Section 2, while Figure 5 displays α n as a function of n in four other
examples. For Figure 4, the reference case is the case with n = 24 sources and
ρ = 0. 30. All other cases in Figure 4 are rescaled to have this same ρ. In
each example we rescale the arrival processes as n changes, so that η n is
independent of n. The linearity in Figures 4 and 5 for n not too small provides
strong support for (1.6). (Figure 12 in Section 6 provides similar support for
sources less bursty than Poisson.)

___________________________
Insert Figures 4 and 5 about here.
___________________________



The four examples depicted in Figure 5 represent all combinations of two
different traffic intensities, ρ = 0. 5 and ρ = 0. 8, and two MMPP arrival
processes. The service-time distributions always are E 16 with mean 1. As
before, these represent nearly deterministic service times. The two arrival
processes are two-state MMPPs with asymptotic variance constants in (2.1) of
2.8 and 28. These represent moderately bursty and substantially more bursty
sources, respectively (but less bursty than the example in Section 2). These
examples have positive arrival rates in both environment states, so that the
component MMPPs are not renewal processes.

In particular, the MMPPs are characterized by four parameters, one of
which can be taken to be the arrival rate. The ratio of the arrival rates in the
two environment states is fixed at 4. The expected numbers of arrivals during
visits to the two environment states are equal, 5 in the less bursty example with
I c (∞) = 2. 8 and 75 in the more bursty example with I c (∞) = 28.

From Figure 5, we see that the key decay rate parameter γ in (1.6) is
decreasing in the traffic intensity ρ but increasing in the burstiness. This
appears to be a general tendency. This means that the phenomenon in
Section 2 is most likely to occur with low ρ and high burstiness, which is what
we anticipate for ATM. The phenomenon might have been missed by others,
because they focused on higher ρ and less bursty sources. For instance, the
examples in Section 5 of Elwalid and Mitra [23] all have high ρ (above 0.75)
and lower burstiness, so that α > 10 − 2.

IV. Three Regimes for the Asymptotic Approximations

The example in Section 2 was one for which the asymptotic approximation
αe − ηx in (1.1) is pretty good, but the simple approximation e − ηx in (1.3) is
bad (because α ∼∼ 10 − 5). In this section we present modifications of this
example in which, first, both approximations (1.1) and (1.3) are good and,
second, both approximations (1.1) and (1.3) are bad.

To obtain these alternative cases, we simply modify the number of sources
in the example with n = 24 in Section 2, scaling the arrival processes as in
Section 3 to keep the total arrival rate fixed at λ = 0. 3 and η fixed at
η = 0. 01809. In particular, the two alternative regimes are obtained by letting
n = 2 and n = 60. The results are displayed in Figures 6 and 7.

Since η is independent of n, approximation (1.3) is the same for the three
cases n = 2, n = 24 and n = 60. However, α 2 = 0. 505,
α 24 = 1. 45 × 10 − 5 and α 60 = 2. 22 × 10 − 12. (For n = 1, α 1 = 0. 992. )
From Figures 1, 6 and 7, it is evident that we have the three regimes as
claimed. In Figure 6 with n = 2, approximations (1.1), (1.3) and (1.5) are all
very close, while in Figure 7 it is evident that approximations (1.1), (1.3) and
(1.5) are very far apart.

___________________________
Insert Figures 6 and 7 about here.
___________________________

Since α 60 ∼∼ 10 − 12 < 10 − 9 when n = 60, it should come as little surprise
that the asymptotics (1.1) have not kicked in by the time the tail probabilities
reach 10 − 9 in this case. As a rough rule of thumb, it appears that
approximation (1.1) tends to be good only when α n is greater than the desired
tail probability P(W > x). To a large extent, it appears that we are able to
understand when the various approximations will be sufficiently accurate by
computing only the asymptotic constant α. (This computation is possible,
even for very large n, by computing α n for small values of n and then
extrapolating using (1.6).)

From Figure 7, we also see that the three-term approximation (1.5) is not
accurate at 10 − 9. The performance of approximation (1.5) in Figure 7 with
n = 60 is much worse than in Figure 1 with n = 24. It is reassuring that its
poor performance is signalled by the fact that it is not possible to find
parameters exactly matching the third moment in this case; see [17].
Moreover, the three-term approximation performs pretty well even in Figure 7
for tail probabilities above 10 − 4, for which it was originally designed. The
poor performance at 10 − 9 in Figure 7 suggests that alternative fitting
procedures should be considered for extremely small probabilities such as
10 − 9. (This is being investigated.)

V. Changing Other Parameters

In Section 4 we saw what happens as we changed the number of sources,
scaling them in the manner of Section 3 so that the total arrival rate remains
unchanged. We saw that the quality of the asymptotic approximations decline
as n increases.

More generally, we conclude that the asymptotic approximations tend to
get worse as the number of sources increases, the buffer size decreases, the
channel utilization decreases, the target blocking probability increases, and the
source gets further from Poisson. However, we would also like to point out
that there is significant difference in the accuracy and the region of
applicability of the effective bandwidth asymptotic (1.3) and the other
asymptotic approximations (1.1) and (1.5). Roughly speaking, (1.3) is not bad
when 10 − 2 < α < 102, whereas (1.1) and (1.5) are not bad when
10 − 8 < α < 108. We expect that in practical engineering situations with
multiple sources (1.1) and (1.5) will typically be a reasonably good
approximation, while (1.3) may be quite bad.

In this section we consider the effects of buffer size and burstiness.
Figures 8 and 9 compare the approximations with exact values when the buffer
size is 6000 and 60, respectively, instead of 600 as in Section 2. Here we keep
the number of sources fixed at n = 24. We scale the sources in the manner of
Section 3 until the blocking probability at the indicated capacity is 10 − 9.

___________________________
Insert Figures 8 and 9 about here.
___________________________

So far, we have focused on the steady-state waiting time at arrival epoch.
Similar results hold for the steady-state workload at an arbitrary time (the
virtual waiting time). To demonstrate this, the remaining numerical results in
this paper, including those in Figures 8 and 9, are for the steady-state
workload. (The differences between the waiting time and workload are
negligible compared to the main phenomena being discussed.)

When the buffer size is increased to 6000, the buffer holds 100 bursts
instead of 10. Figure 8 shows that all the approximations perform very well
with this larger buffer, just as in Figure 6. Now the utilization is 0.835. The
effective-bandwidth approximation works very well; it predicts that the system
can support 23 sources, which is within 1 of the exact value.

In contrast, Figure 9 shows that the approximations get even worse when
we decrease the buffer size from 600 to 60, which corresponds to just one
burst. Figure 9 parallels Figure 7. Now the utilization is only 0.18. The
effective-bandwidth approximation would now only admit 10 sources.

Suppose now we keep the buffer size at the high value of 6000 and the
number of sources at n = 24, but increase the burstiness. Suppose that we
increase the burstiness by multiplying the mean number of bursts in an on
period by 5. We keep the arrival rate fixed by multiplying the ratio of the off
period to the on period by 5. This makes the mean number of arrivals in an on
period 300, which means that the buffer now holds 6000/300 = 20 bursts.

Figure 10 compares the approximations with exact values in this case.
Figure 10 shows that there is once again a big difference between the
effective-bandwidth approximation and the exact result, just as in Figure 1.
For this example, the effective-bandwidth approximation would admit only 11
sources. Hence, the advantage of the larger buffer of size 6000 is offset by the
larger burstiness. The actual performance of the approximations obviously
depends on the combination of variables that actually prevails.

___________________________
Insert Figure 10 about here.

___________________________

VI. Sources Less Bursty than Poisson

In this section we consider sources that are less bursty than Poisson. In
particular, we assume that each source is renewal with interarrival times that
are E 2. As before, we assume that the overall arrival process is the
superposition of independent versions of the single source process. It seems
unlikely that the sources in an ATM network will actually be less bursty than
Poisson, but this is a possibility, due to traffic shaping at the network edge.



In the earlier bursty model we approximated the deterministic cell-length
distribution by an E 16 distribution and commented that E 16 and D give about
the same result. However, this is no longer true with less bursty arrival
processes. Therefore, in order to remain pretty close to D, in this section we
assume an E 1024 service time distribution.

Figure 11 displays the approximations and exact tail probabilities for this
case assuming 24 sources and a buffer size of 8. In order to meet the 10 − 9

buffer overflow probability, the channel utilization has to be 29%. In this case
the buffer overflow probability is greatly underestimated by the effective-
bandwidth approximation (1.3). For this case of less bursty sources, the
effective-bandwidth approximation (1.3) would admit 39 sources in order to
meet the buffer overflow requirement with a buffer of size 8, instead of the
proper number of 24.

___________________________
Insert Figure 11 about here.

___________________________

Figure 11 also shows the probability of buffer overflow for Poisson
arrivals. For large tail probabilities, the exact result is close to the Poisson
prediction and, for small tail probabilities, the exact result approaches the true
asymptote. It is also interesting to observe that the true asymptote is about ten
orders of magnitude higher than the effective bandwidth approximation. This
is in sharp contrast with the earlier highly bursty examples where the true
asymptote was always smaller than the effective bandwidth approximation.
Also, note that there is a qualitative change in the shape of the exact curve. It
is concave in Figure 11 as opposed to being convex for the more bursty
sources.

The behavior of the tail probabilities in Figure 11 may be understood by
plotting, in log scale, the asymptotic constant α n as a function of n, the number
of sources. This we do in Figure 12 for the E 2 sources at channel utilizations
0.3 and 0.7 respectively. This is similar to what we did in Figure 5, and indeed
Figures 5 and 12 look similar in the sense that in both cases the logarithm of
α n is asymptotically linear with n, i.e., α n changes exponentially with n.
However, the striking difference is that with more bursty sources (Figure 5) α n

decays exponentially with n and approaches zero, while in the less bursty E 2

case, α n grows exponentially with n and approaches infinity. The growth rate
increases as the channel utilization decreases. We have also plotted how the
α n changes with n for Poisson sources with channel utilizations of 0.3 and 0.7
respectively. Of course, α n does not change with n in the Poisson case. The
Poisson case places in perspective the spectacular growth rate of α n with n in
the non-Poisson case.

___________________________
Insert Figure 12 about here.

___________________________

As before, the effective-bandwidth approximation (1.3) performs better
with larger buffer sizes. This is shown in Figure 13 where the buffer size is
100 instead of 8. As before, the number of sources is n = 24. The sources have
been scaled in the manner of Section 3 so that P(W > 100 ) = 10 − 9. This
drives the channel utilization up to 0.949. Figure 13 shows that all the
approximations are close to the exact values in this case.

___________________________
Insert Figure 13 about here.

___________________________

VII. Approximations for Large Systems with Heterogeneous Sources

In this section we propose a method for obtaining useful approximations
for tail probabilities in large systems. Approximations are needed, because our
exact algorithm cannot handle large numbers of sources, since the number of
phases of the superposed Markovian Arrival Process (MAP) grows rapidly
with the number of sources. Specifically, it can be shown that if there are L
types of sources, k i sources of type i, and each source of type i has m i phases,
then the total number, P, of phases of the superposed MAP is given by

P =
i = 1
Π

L 

 m i − 1
k i + m i − 1




. (7.1)

Note that for Poisson sources m i = 1 and


 m i − 1
k i + m i − 1




= 1, so that we can

add any number of them without increasing P. To run the exact model in
reasonable time, we need P to be at most about 100. In all the numerical
examples in this paper we assumed L = 1 and m i = 2 so that we could treat
up to about K 1 = 99 sources. (We actually considered up to 60 sources).
However, with L = 2 and 3 (with m i still fixed at 2) we can treat only up to
K i = 9 and K i = 3 sources of each type.

Now we specify our approximation procedure in terms of two examples.
First, suppose that there are three classes, each with 100 homogeneous sources.
We can calculate the asymptotic decay rate η exactly by considering the three-
class system with one source in each class, with each source scaled
appropriately, as in Section 3, so that the arrival rate of each single source
equals the total arrival rate for all 100 sources, for each class, in the original
system.

In order to approximately determine the asymptotic constant α in the
original system, we calculate the exact asymptotic constants in the systems
with three classes and k sources in each class, again scaled to be consistent
with the original system according to Section 3, for several feasible k, e.g.,
k = 1 , 2 and 3. (Note that here L = 3 and m i = 2, so that k i = 3 for all i is
feasible.) Then, assuming (1.6), we obtain an approximate asymptotic constant
for the original system by fitting β and γ in (1.6) to the data. If the resulting
estimated asymptotic constant α is substantially greater than the target tail
probability, then we can apply approximation (1.1) with confidence. If the
estimated asymptotic constant α is less than the target tail probability, then we
note that (1.1) is probably not appropriate. If the estimated asymptotic
constant is greater than the target tail probability, but not much greater, then we
might use the heuristic suggested in Section 1; i.e., we might use (1.1) with a
higher value of α as a rough conservative estimate.

The approach we have just described is satisfactory if all classes have many
sources, as when there are 100 sources from each of the three classes.
However, in actual applications, e.g., with video sources, there may be only a
few sources from some classes. To illustrate, suppose that we have four
classes, with 1 source in the first class, 2 sources in the second class and
100 sources each in the last two classes. Let all sources have two states. The
method we have just applied does not work for this example, but a
modification does.

We have found that the asymptotic relation (1.6) still holds if we divide the
sources into two groups, and hold one group of sources fixed, while we
multiply the number of sources in the second group by n. As before, we scale
the sources in the second group, so that the total arrival rate for each class
remains fixed, independent of n.

As before, (1.1) holds for each n and the asymptotic decay rate η is
independent of n. Moreover, numerical experience indicates that the
asymptotic relation (1.6) still holds, but now β in (1.6) is a function of the fixed
sources. Now to estimate α in the original system we at first estimate β and γ
in (1.6) using n = 2 and 3 and then estimate α from those using n = 100.
Note that here L = 4, m i = 2 for each i, k 1 = 1, k 2 = 2, k 3 = k 4 = n and
hence n = 2 and 3 are feasible for the exact model.

More generally, the asymptotic result just described suggests an
approximation for m classes with multiplicities n 1 ,n 2 , . . . , n m of the form

α n1 , . . . , nm
∼∼ βe − (γ 1 n1 + . . . + γm nm ) . (7.2)

For multiple classes, approximation (7.2) is convenient because we can
determine the asymptotic decay rates γ i by changing one class at a time.
However, more work is needed on this.

VIII. The Algorithm

In this section we describe our algorithm for numerically computing the
exact tail probabilities. To compute the tail probabilities, we draw heavily on
Lucantoni [35]; see [36] for a review. We model each source as a Markovian
Arrival Process (MAP), which is a two-dimensional Markov process
{N(t) , J(t) } on the state space { (i, j) :i ≥ 0 , 1 ≤ j ≤ m} with an
infinitesimal generator having the structure
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(8.1)

where 0 , D 0 and D 1 in (8.1) are m×m matrices; D 0 has negative diagonal
elements and nonnegative off-diagonal elements; and D ≡ D 0 + D 1 is an
irreducible infinitesimal generator. We also assume that D ≠ D 0, which
ensures that arrivals will occur. The variable N(t) counts the number of
arrivals in the interval [ 0 ,t], while J(t) gives the arrival ‘‘phase’’ at time t.

In this paper we consider the superposition of many sources. If the
individual sources are characterized by matrices D 0i and D 1i for
i = 1 , 2 , . . . , K, where K is the number of sources, then it can be shown [35]
that the superposed system is also a MAP characterized by matrices

D 0 = D 01 ⊕ D 02 ⊕ . . . ⊕ D 0K (8.2)

D 1 = D 11 ⊕ D 12 ⊕ . . . ⊕ D 1K (8.3)

where ⊕ is the Kronecker sum. We do all computations on the superposed
MAP characterized by D 0 and D 1.

As explained in [35], the Laplace-Stieltjes transform (LST) of the steady-
state waiting-time cumulative distribution function (CDF) is given by

Ŵ(s) = (πd) − 1 s( 1 − ρ) g[sI + D(ĥ(s) ) ] − 1 e , (8.4)

where e is a vector of all 1’s, ĥ(s) is service time LST, ρ is the traffic intensity
(the mean arrival rate times the mean service time), d = D 1 e, π is the
stationary probability vector of the Markov process with generator D (i.e., π
satisfies πD = 0 and πe = 1), g satisfies the equations gG = g and ge = 1,
and G satisfies the equation

G =
0
∫
∞

e (D0 + D1 G) xdH(x) , (8.5)

where H(x) is the service-time CDF and

D(ĥ(s) ) = D 0 + D 1 ĥ(s) . (8.6)

Our computation is based on, first, fast and accurate computation of Ŵ(s)
using (8.4) and, second, fast and accurate transform inversion to get the waiting
time CDF from Ŵ(s). To do the inversion, we use the Fourier-series method
in [5] along with the round-off error control procedure in [15]. The procedure
in [15] also provides a self-contained accuracy check by doing the calculation
twice with different round-off control parameters. This amounts to using
different contours for complex inversion integration. With this procedure, we
achieve high accuracy even at the tail probability of 10 − 9.

Next we describe two techniques for greatly speeding up the computation
of the LST Ŵ(s). First, note that all individual sources are two-phase sources.
The Kronecker sum operations in (8.2) and (8.3) makes the superposed source
a 2K-phase source. This would prevent us from using large K, but we can take
advantage of the fact that the sources are homogeneous to greatly reduce the
dimensionality of the superposed source. We can define the phase of the
superposed source as one plus the number of component sources in phase 1.
Therefore, the total number of phases is K + 1 instead of 2K. The D 0 and D 1

matrices of the new superposed sources are given in terms of the component
D 01 and D 11 matrices of the (identical) component sources as follows:

(D 1 ) i ,i = (i − 1 ) (D 11 ) 1 , 1 + (K − i + 1 ) (D 11 ) 2 , 2 for i = 1 , 2 , . . . , K + 1

(D 1 ) i ,i + 1 = (K − i + 1 ) (D 11 ) 2 , 1 for i = 1 , 2 , . . . , K (8.7)

(D 1 ) i ,i − 1 = (i − 1 ) (D 11 ) 1 , 2 for i = 2 , 3 , . . . , K + 1

with (D 1 ) i , j = 0 for all other pairs (i, j),

(D 0 ) i ,i + 1 = (K − i + 1 ) (D 01 ) 2 , 1 for i = 1 , 2 , . . . , K

(D 0 ) i ,i − 1 = (i − 1 ) (D 01 ) 1 , 2 for i = 2 , 3 , . . . , K + 1 (8.8)

with (D 0 ) i , j = 0 for all other pairs (i, j) with i ≠ j, and

(D 0 ) i ,i = − [ (D 0 ) i ,i − 1 + (D 0 ) i ,i + 1 + (D 1 ) i ,i + (D 1 ) i ,i − 1 + (D 1 ) i ,i + 1 ] .(8.9)

For the service-time distribution, we approximate the deterministic
distribution by an Erlangian distribution of order k (E k ). A significant
computational burden is the computation of G from the matrix integral

equation (8.5). The uniformization procedure recommended in [35] for general
service-time distributions can be significantly improved for Erlang
distributions by noting that for the E k distribution with mean 1 (8.5) reduces to

G = [I − k − 1 (D 0 + D 1 G) ] − k . (8.10)

Equation (8.10) can easily be solved by successive substitution, i.e.,

G n + 1 = [I − k − 1 (D 0 + D 1 G n ) ] − k , (8.11)

where G 0 is chosen to be a stochastic matrix. Note that since we choose
k = 2m (specifically 24 for bursty sources and 210 for smooth sources), each
iteration in (8.11) involves only a single matrix inversion and m matrix
multiplications.

In order to compute the asymptotic parameters α and η in (1.1), we use two
independent algorithms (that cross-check each other): the algorithm in [2] and
the moment-based procedure in [14] and [1].

IX. Conclusions

Our first main conclusion here is that the effective-bandwidth
approximation (1.3) can break down when there is a large number of
independent sources. Approximation (1.3) tends to get worse as the number of
sources increases, the channel utilization decreases, the buffer size decreases
and the source gets further from Poisson, either more bursty or less bursty.

If the sources are more bursty than Poisson, as is anticipated for ATM
networks, then the effective-bandwidth approximation (1.3) is conservative.
When the approximation is bad, there may be substantially more statistical
multiplexing gain than approximation (1.3) predicts. On the other hand, if the
sources are less bursty than Poisson, then the effective-bandwidth
approximation is no longer conservative, and may also be bad. In general,
contrary to many statements, the effective-bandwidth approximation need not
be conservative.

Typically, the exact tail probabilities lie between the effective-bandwidth
approximation (1.3) and the true asymptote (1.1). If these two curves are very
close to each other (differ by less than a factor of 10), then (1.3) is usually
reasonably accurate. If the two curves are far from each other, but not too far
(differ by less than 108), then (1.3) is bad, but (1.1) and (1.5) are reasonably
accurate. Finally, if the two curves are extremely far apart (differ by more than
108), then even (1.1) and (1.5) are not accurate. Our second main conclusion
is that, even though (1.3) may not be a good approximation, the true asymptote
(1.1) often is a good approximation. Moreover, from calculations of the
asymptotic parameters α and η, we have a way to estimate whether or not the
approximations will be good.

A reason for the degradation of the effective-bandwidth approximation as
the number n of sources increases is that the asymptotic constant α n in (1.1) is
itself asymptotically exponential in n. For sources more bursty than Poisson,
α n decrease to 0 exponentially fast, as shown in Figures 4 and 5. For sources
less bursty than Poisson, α n increases to infinity exponentially in n, as shown
in Figure 12. The Poisson case is the reference case, because α n there does not
change with n. The asymptotically exponential form for α n in (1.6) allows us
to compute it approximately for arbitrary n by extrapolating based on
computed values for small n. For heterogeneous sources with different
multiplicities, we exploit (7.1). Having a way to approximate the asymptotic
constant α is important, not only because we can use it in approximations (1.1)
and (1.5), but also because the value of α indicates whether or not the
approximations will be good.

Finally, in addition to gaining a better understanding of the effective-
bandwidth approximation (1.3), we have provided bases for more refined
analysis tools via our exact MAP/G/1 numerical algorithm, the refined
approximation (1.5) [17] and the exponential relation for α n in (1.6). We have
indicated how (1.6) and (7.1) can be combined with the true asymptote (1.1) to
get an approximation that is almost as simple as the effective-bandwidth
approximation (1.3), but is applicable in a substantially wider region.
Acknowledgments. We thank our colleagues Bharat Doshi, Ted Eckberg,
Dave Houck and Pat Wirth for helpful comments.
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Figure 1. A comparison of approximations and exact values of the probability

of buffer overflow (approximated by the tail probability P(W > x)) as a

function of the buffer size x for the example in Section 2.



Figure 2. The decay rate η n in (1.1) as a function of the number n of sources

(without scaling the sources) for the example in Section 2.



Figure 3. The asymptotic constant α n in (1.1) as a function of the number n

of sources (without scaling the sources) for the example in Section 2.



Figure 4. The asymptotics constant α n as a function of the number n of

sources (with scaling) for the example in Section 2.



Figure 5. The asymptotic constant α n as a function of the number n of

sources (with scaling) for four examples in Section 3.



Figure 6. A comparison of approximations and exact values of the probability

of buffer overflow (approximated by the tail probability P(W > x) as a

function of the buffer size x for the example with n = 2 in Section 4.



Figure 7. A comparison of approximations and exact values of the probability

of buffer overflow (approximated by the tail probability P(W > x) as a

function of the buffer size x for the example with n = 60 in Section 4.



Figure 8. A comparison of approximations and exact values of the probability

of buffer overflow (approximated by the workload-tail probability) as a

function of the buffer size x for the example with n = 24 in Section 2 and

higher buffer capacity 6000 in Section 5.



Figure 9. A comparison of approximations and exact values of the probability

of buffer overflow (approximated by the workload-tail probability) n = 24 in

Section 2 and lower buffer capacity 60 in Section 5.



Figure 10. A comparison of approximations and exact values of the

probability of buffer overflow (approximated by the workload-tail probability)

n = 24 in Section 2, higher buffer capacity 6000 and higher burstiness in

Section 5.



Figure 11. A comparison of approximations with exact values of the

probability of buffer overflow (approximated by the workload tail probability)

as a function of the buffer size x for the example in Section 6 with E 2-

renewal-process sources, n = 24 and buffer size 8.



Figure 12. The asymptotic constant α n as a function of the number n of

sources (with scaling for the E 2 examples in Section 6.



Figure 13. A comparison of approximations with exact values of the

probability of buffer overflow (approximated by the workload tail probability)

as a function of the buffer size x for the example in Section 6 with E 2-

renewal-process sources, n = 24 and buffer size 100.

_ ____________________________________________________________________

Method of Number of Sources Allowed Buffer Size Required
Computation for Buffer Size x = 600 to Support n = 24 Sources_ ____________________________________________________________________

exact 24 600_ ____________________________________________________________________
effective-bandwidth
approximation (1.3) 12 1146_ ____________________________________________________________________
(1.1) and (1.5) 25 530_ ____________________________________________________________________
Poisson 78 20_ ____________________________________________________________________
Average-Rate
engineering 80 not applicable_ ____________________________________________________________________
peak-rate
engineering 7 not applicable_ ____________________________________________________________________ 
















































































Table 1. A comparison of different methods for determining (i) the number of
sources for the fixed buffer size x = 600 and (ii) the buffer size required to
support n = 24 sources for the example in Section 2.


