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In this paper we consider the M,/G/s/0 model, which has s servers in parallel, no extra waiting space, and i.i.d. service times that are
independent of a nonhomogeneous Poisson arrival process. Arrivals finding all servers busy are blocked (lost). We consider
approximations for the average blocking probabilities over subintervals (e.g., an hour when the expected service time is five minutes)
obtained by replacing the nonstationary arrival process over that subinterval by a stationary arrival process. The stationary-Poisson
approximation, using a Poisson (M) process with the average rate, tends to significantly underestimate the blocking probability. We
obtain much better approximations by using a non-Poisson stationary (G) arrival process with higher stochastic variability to capture
the effect of the time-varying deterministic arrival rate. In particular, we propose a specific approximation based on the heavy-traffic
peakedness formula, which is easy to apply with either known arrival-rate functions or data from system measurements. We compare
these approximations to exact numerical results for the M,/M/s/0 model with linear arrival rate.

Most real queueing systems reveal significant time
variation in the arrival rates, e.g., see Hall (1991).
However, queueing models with nonstationary arrival pro-
cesses are relatively difficult to analyze. Here we propose a
way to approximate a queueing model with a nonstationary
arrival process over a fixed time interval by a queueing
model with a stationary arrival process. The main idea is to
introduce extra stochastic variability to approximately capture
the fluctuations over time in the deterministic arrival rate
function.

The specific model we consider is the nonstationary Er-
lang loss model or M,/G/s/0 queue, which has s servers in
parallel, no extra waiting spaces, and i.i.d. service times
with a general distribution that are independent of a non-
stationary Poisson arrival process. The arrival process has
a deterministic arrival-rate function A(¢t) defined over the
time interval [0, T]. Our goal is to predict the average
blocking probability over the interval.

A common approach to this problem is to compute the
average arrival rate over this time interval, A = T~ [T A(r)
dr, and approximate the nonstationary M,/G/s/0 model by
the associated stationary M/G/s/0 model, obtained by re-
placing the nonstationary Poisson process with a stationary
Poisson arrival process having rate A. Here we develop an
alternative procedure that can do much better in predict-
ing the average blocking probability over the interval [0,
7).
Our approach is to act as if the M, arrival process were a
stationary G arrival process, and then try to approximately
characterize the stochastic variability. For this we use the
concept of peakedness; see Eckberg (1983), Whitt (1984),
and Chapter 7 of Wolff (1989). This approach has the

advantage that it can be applied to general G, arrival pro-
cesses, without actually knowing how much of the variabil-
ity is due to fluctuations in a time-varying deterministic
arrival rate or non-Poisson stochastic variability. Over appro-
priate subintervals we simply act as if the arrival process were
actually stationary and try to assess the stochastic variability
under this assumption. From that perspective, our approach
can be regarded as part of current engineering practice
(when indeed an attempt is made to estimate peakedness).
From that point of view, we are investigating the quality of
the approximations that are being done.

We evaluate our approximations for the special case of
exponential service times by making comparisons with ex-
act numerical results obtained from a discrete-time
Markov chain (DTMC) algorithm, which is described in
Section 5 of Davis et al. (1995). Runge-Kutta methods for
solving ordinary differential equations could also have
been used, as in Green et al. (1991) and Taaffe and Ong
(1987). The DTMC algorithm also applies to the PH,/PH,/
s/r model (with more required computation); indeed it is
used in Davis et al. to study the influence of the service-
time distribution on the time-dependent blocking in the
M /PH]s/0 model. (The impact of the service-time distribu-
tion can be substantial.) It is significant that our approach
to the M,/G/s/0 model here, replacing it by a G/GI/s/0
model, can capture the effect of this service-time distribu-
tion; see Section 4.2 of Davis et al.

Variations of our approximation methods also can be
applied to queueing models with waiting rooms. However,
the time-dependent behavior of a loss model is easier to
analyze because the system has less memory, i.c., high ar-
rival rates in the past can at most make all servers be busy
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initially. For loss models, it is more reasonable to do the
kind of “local” analysis we do.

Here is how the rest of this paper is organized. In Sec-
tion 1 we discuss initial conditions and specify the perfor-
mance measures of interest. In Section 2 we introduce the
stationary-process approximations. In Section 3 we make
a connection between our approximation method and a
method for estimating peakedness in a stationary model,
due to Holtzman and Jagerman (1979). In Section 4 we
examine numerical examples, and in Section 5 we state our
conclusions.

1. INITIAL CONDITIONS AND PERFORMANCE
MEASURES

We do not specify the initial conditions; we hope to obtain
reasonable approximations without explicitly considering
the initial conditions. In our numerical examples we will
consider three cases: starting with all servers idle, starting
with all servers busy, and starting with the stationary distri-
bution associated with the initial arrival rate A(0). We con-
sider the stationary distribution with the initial arrival rate
as the principal case, because it seems to be a reasonable
approximation. By considering all three cases, we investi-
gate the impact of the initial conditions.

Throughout this paper we assume that the individual
mean service time is 1. In order to be able to ignore the
initial conditions, we assume that 7 is not too small, e.g.,
T = 5. In our numerical examples we let T = 12.

Let O(¢) represent the number of busy servers at time ¢.
The time-dependent blocking probability is

B(t) = P(Q(1) = ). (1)

Note that B(¢) is the probability that the system is full at
time ¢, which would be the probability of blocking if there
were an arrival at time ¢ (an event of probability zero).
Since the arrival process is Poisson, it has independent
increments. Hence B(f) also represents the conditional
probability of blocking at time ¢ given that there is an
arrival at time ¢. (Conditioning on an arrival at time ¢ does
not alter the distribution of the remaining arrival process.)

We consider two “average blocking” performance mea-
sures. First, we consider the expected proportion of time
during [0, T] that the system is full,

(7
=g, B ar, @)
0
and second, we consider the ratio of the expected number
of lost customers to the expected number of arrivals. Let-
ting B(t) be the number of blocked calls in the interval
[0, 7] and A(¢) the number of arrivals in [0, ¢], this ratio is

- _EB(T) _J{M)B() at
¢ T EA(T) [T @) dt

; 3)

where the final display depends on having an M, arrival
process.
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We call B, in (2) the time congestion and B, in (3) the
call congestion. This is consistent with usage for stationary
non-Poisson arrivals. Since our goal is usually to satisfy
customer demand, we usually are primarily interested in
the call congestion.

Often the time congestion and call congestion do not
differ greatly, but this is not always the case. For example,
having all arrivals in [0, 7] occur at the single instant T
clearly maximizes call congestion and minimizes time con-
gestion, yielding 8, = 0.

Note that (3) is the ratio of the expected number
blocked to the expected number of arrivals; which is not
necessarily the expected proportion of arrivals blocked,
where 0/0 is defined to be 0. (In general, we do not have
E(X/Y) = EX/EY.) To better understand (3), suppose that
we simulate » independent replications of the M,/M/s/0
model over [0, 7] and calculated the numbers A, and B, of
arrivals and blocked arrivals in run i, 1 < i < 5, and their
averages A, = n"' 3., A, and B, = n~' 37_, B, Then, by
the law of large numbers, the estimate B,,/4,, converges as
n — o« to B,. However, in general we do not have E(B,/A,)
= B,. Continuing the example above further, suppose that
all arrivals in [0, 7] occur at the instant 7 and that the
number of arrivals is equally likely to be s or 3s. Then B, =
1/2, while the expected proportion of blocked customers is
1/3.

We conclude this section by pointing out that 8, in (3) is
nearly the expected proportion of blocked calls, due to
Proposition 10.1(c) of Massey and Whitt (1994). Surpris-
ingly, for an M, arrival process it turns out that the call
congestion equals the expected conditional proportion of
calls blocked, given that there is at least one arrival, i.e.,

_ I8 B dAw)
BC“E[ A(T)

where the integration is the sum associated with each sam-
ple path.

|A(T) > 0] ,

2. STATIONARY-PROCESS APPROXIMATIONS

We now consider approximations for the time congestion
B, in (2) and the call congestion B, in (3) in the M,/G/s/0
model. An important consideration is the length T of the
relevant subinterval. The length T should be neither too
small nor too large. The relevant time scale is the mean
service time, which here has been fixed at 1. In order to
predict the blocking with precision (i.e., not to be doing
too much averaging in (2) and (3)), we would usually pre-
fer to have T as small as possible. However, to have a
reasonable approximation, the length T should be long
enough that for most points ¢, e.g., for T/4 < t < T, most
of the relevant past to determine the blocking at time ¢ is
included in the interval [0, T]). On the other hand, T
should not be so large that the blocking in many subinter-
vals (such as ((k — 1)7/10, k7/10], 1 < k =< 10) are nearly
independent. Then there is needless averaging that re-
duces the precision of our performance measure.
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Reasonable values of T might be between 6 and 20. We
anticipate that 7 = 1 is too small, while T = 100 is too
large. For example, consider telephone calls, with an aver-
age length of five minutes. Consistent with engineering
practice, an appropriate length of the averaging interval
might be one hour, which corresponds to T = 12. Indeed,
in our numerical examples we let 7 = 12, With shorter or
longer call holding times, the interval might range from
fifteen minutes to two hours.

At the outset we assume that we have a reasonable
value of T such as 7 = 12. Our approximation strategy is
to use a stationary arrival process with the average arrival
rate

- 1 r
x TL A1) dt . (4)

The stationary-Poisson approximation is a stationary-
Poisson (M) process with arrival rate A in (4). The approx-
imate time congestion and call congestion (which agree for
M) are then given by the Erlang blocking formula

B(s. %) = ()_\S/s!)/éo (XK1Y . (5)

As we might well anticipate, the stationary-Poisson ap-
proximation typically underestimates the call congestion
and the time congestion because it ignores the time fluctu-
ations of the arrival rate. A second stationary approxima-
tion uses a non-Poisson stationary point process to
approximate the nonhomogencous Poisson arrival process.
We introduce extra stochastic variability into the stationary
point process to represent the fluctuations over time. Ob-
viously there are several ways to do this. We describe two.

Our first approach is to act as if the arrival process is a
stationary point process (i.e., has stationary increments).
Indeed, we make the nonstationary Poisson process a sta-
tionary point process by, first, considering the periodic ex-
tension in which independent copies of the original
Poisson process on (0, T] are placed on (k7, (k + 1)T] for
all integers k and, second, moving the origin to a point
uniformly distributed in the interval (0, 7]. (It is easy to
verify that the new process is a stationary point process.)

Let N = {N(¢) : t = 0} be the stationary point process
so constructed. We partially characterize the variability of
the stationary point process N using the index of dispersion
for counts (IDC), i.e.,

_VarN(t) VarN(z)

Iy = EN(t) —  x  ° (6)

as in Cox and Lewis (1966) and Fendick and Whitt (1989).

By our construction, the number of arrivals in any inter-
val of length T is Poisson with mean AT. Hence I(kT) = 1
for all £ = 1. Moreover, it is not difficult to show that
I(t) — 1 ast — 0. However, I(¢) is typically greater than 1
for0 <r<T.

Given that the arrival process is a nonhomogeneous
Poisson process with arrival-rate function A(¢), it is not
difficult to calculate the IDC I(¢). Note that

Var N(t) _E[N()*] — (X1)?

I(t) = ENG) - " , where (7)
T

E[N(t)z]:%f [A,(s) + A,(s)}] ds, with (8)
0

A (s)

s+t
f Au) du,

T s—=T+t
f A(u)du—i—f Aw) du, T7tsss<T.
s 0

9)

Since the mean service time in the loss model is 1, it is
natural to use

e2=1(1), (10)

as an approximate variability parameter. We suggest (10)
because the mean service time indicates the time scale we
are interested in. The parameter ¢* can be thought of as
the squared coefficient of variation (variance divided by the
square of the mean) in a renewal process approximation
for the stationary process N; see Fendick and Whitt,

Formulas (7)-(10) are convenient for obtaining the vari-
ability parameter ¢ from an explicit arrival rate function
A(t). However, we could also use another variant of this
approach with data. We could apply any procedure for
estimating /(1) to the stationary point process obtained
from assuming the periodic independent extension with
origin uniformly distributed over [0, T]; see Cox and Lewis
and Section IIL.B of Fendick et al. (1991). The arrival
process need not be Poisson and the arrival rate function
need not be given explicitly.

However, it is often reasonable to assume that the ar-
rival process is a nonhomogeneous Poisson process. In that
case, it is often natural to assume that the arrival rate is
linear when the subintervals are not too long. Estimation
procedures for that case are studied in Massey et al.
(1996). Hence, in this paper, we will consider the special
case in which A(t) = a + b, 0 < ¢ = T. We can of course
compute /(1) directly from (7)—(9). For simplicity, we in-
troduce the approximation

A(s)=(a+bs), 0ss<T. (11)
We obtain
b1’
2= == _—
co=I(1)=1 +6(2a hT) (12)

from (7)-(11).

Our second approach is motivated by what we might do
with system measurements. (See Section 3 for further dis-
cussion on this point.) As with the first approach, we act as
if the arrival process is stationary. We might then estimate
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the variability by looking at the counts in # disjoint subin-
tervals of length T/n. As an approximation, we assume that
the numbers of points in different subintervals are inde-
pendent. For this independence approximation, the inter-
vals should not be too short. Our approximating discrete-
time arrival process is thus a process with stationary
independent increments.

Hence, our second approach to the M, arrival process is
to divide the interval (0, T] into n subintervals ((k —
1)T/n, kT/n}, 1 < k < n, and perform a random permuta-
tion on them. We act as if what we see in any one subin-
terval is a mixture of the resulting » Poisson distributions.

To describe the distribution in a randomly selected in-
terval, let

kT/n
)\k = J
(k=1 T/n

Then the number of arrivals in any one (random) subinter-
val has mean

AMw du, 1sk<n. (13)

T 1 < T
a2 M T (14)

and variance

3]»—\

i RE (15)

(Use the fact that the second moment is the mixture of the
second moments.) The number of arrivals in (0, 7] thus
has mean nA,, = AT. Assuming stationary and independent
increments for the discrete-time process, the number of
arrivals in [0, T] has variance

nel=AT+ X (Ax — An)2. (16)
k=1

Based on this analysis, we approximate the original M,
arr1va1 process by a stationary point process N = {N(t) :
= (} partially characterized by its 1nten51ty E[N(1)] = A
in (4) and a variability parameter ¢? corresponding to the
variance to mean ratio for counts in [0, 7], i.e.,

Var[N(T)]
E[N(T)]

CZ

1 _ 2
AT kZI (e = A7 (7

We now consider simplifications of Formula (17). First,
assuming that A is constant over each subinterval ((k —
1)T/n, kT/n], we can write

T
1= (1) L (A(s) = M2 ds . (18)
From (18) it is clear that the formula for ¢ depends criti-
cally on n. Indeed, the formula for the variance in (16)
depends critically on n: Forn = 1, no? = AT; while no; —
AT as n —> o, Intermediate values of n capture the addi-
tional variability due to the fluctuations in the arrival rate.
It seems reasonable to let the length of a measurement
interval be of the order of one mean service time, because
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that is the relevant time scale in the loss model. Hence, as
a further simplification, in (18) we let n ~ T and obtain

2 1 ! _ 32
c 1+ XTL (A(s) — A)“ds. (19)

Formula (19) is a convenient simplification for working
with explicit arrival-rate functions, while (17) is convenient
for measurements. Note that (17) can capture both sto-
chastic variability and deterministic time-variations in the
arrival rate function in G, arrival processes.

Before proceeding, we want to exclude a pathological
situation. We want to exclude extremely rapid oscillations
in A(¢) from c? in (18) and (19). It is known that if we have
an M, process with arrival rate function A(f) = a + b
sin(yt) with very high frequency v that, from the point of
view of the queueing models, the M, process is actually
approximately equivalent to an M process with constant
arrival rate function a; e.g., see Theorem 4.5 of Eick et al.
(1993b). Another example is A(f) = a + (— 1 for 0 <
b < a and very large n. For each n such that nT is an even
integer, [T(A(s) — X)> ds = b°T, but as n — % the process
approaches a Poisson process with constant rate a. Hence,
we assume that before (18) or (19) is applied the arrival-
rate function is appropriately smooth over short time
scales. For example, if necessary, we might replace A(f) by
its average over a single mean service time, i.e., X = [,
A(s) ds, and then calculate ¢ in (18) or (19). Note that
extra smoothing is not necessary with (17).

For the special case of a linear arrival rate function, i.e.,
when A(t) = a + bt, 0 <t =< T, (19) becomes

b2T?
2 = —_—————————
U soa b1 (20)

Note that (20) agrees with (12).

Finally, we approximate the distribution of Q(¢) in the
M,/G/s/0 model over the interval (0, 7] by the behavior of
the stationary G/G/s/0 model with this arrival process N
partially characterized by the parameters X and 2. To an-
alyze the G/G/s/0 model, we use further approximations;
for background, see Eckberg, Whitt, and Chapter 7 of
Wolff, In particular, below we use a heavy-traffic peaked-
ness approximation. The peakedness is defined as the ratio
of the variance to the mean of the steady-state number of
busy servers in an associated infinite-server model with the
same service-time distribution and the same arrival pro-
cess. By Little’s law, the steady-state mean number of busy
servers in the infinite-server model is always the arrival
rate divided by the individual service rate. To obtain more
tractable formulas for the peakedness, we consider the
limiting behavior of the peakedness as the arrival rate
grows. The heavy-traffic peakedness is

1)—1—J [1-G))?dt, (21)

_ 2 _
z=1+(c E[S]
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where G is the service-time cdf and ¢? comes from (10),
(12), (19), or (20); see Eckberg and p. 692 of Whitt. Com-
bining (19) and (21), we obtain the expression

1 (7
= S T2
z=1+ <X L (A(s) — A) ds)

1
. (E[S]J [1-G@)]? dt)
=1. (22)

For the case of exponential service times primarily consid-
ered in this paper,

cr—1_ 1 (7 2
z=1+ 5 —1+m (A(s) = A)“ds. (23)
1]

For the special case of exponential service times, we can
approximate the time and call congestion in a G/M/s/0
system where the arrival process is partially specified by its
rate and peakedness using the equivalent random method,
see Section 7.5 of Wolff. The idea is to replace the given
parameter triple (X, s, z) with the parameter triple (A, § +
s, 1) which produces approximately the same overflow
rate. An algorithm for the equivalent random method is in
Jagerman (1984). We call this approximation the
stationary-peakedness (PK) approximation.

Alternatively, for the G/G/s/0 model, we could use the
Hayward approximation; i.e., the blocking probability B(s,
A, z) is approximated by B(s/z, A/z, 1) = B(s/z, A/z), where
B(s, a) is the Erlang blocking formula for s servers and
offered load @ in (5) extended to nonintegral s; see Fred-
ericks (1980), Jagerman (1984), Whitt, and Wolff.

It is important to note that our stationary-process ap-
proximations are invariant under time reversal; i.e., the
approximations for A(¢), 0 <t < T,and M(T ~¢),0 st =<
T, are the same. Moreover, our approximations do not
depend on the initial conditions. It is natural to consider
refinements to our stationary approximations that are sen-
sitive to order and initial conditions, and we do consider
an clementary one in Section 4 below. However, the
stationary-process approximations here are appealing be-
cause of their simplicity.

3. ESTIMATING PEAKEDNESS FROM
MEASUREMENTS

It is significant that the stationary-peakedness approxima-
tions above are closely related to what occurs if we act as if
the M, arrival process were a stationary G process and
estimate the arrival rate and peakedness from a sample;
see Cox and Lewis and Holtzman and Jagerman (1979). In
particular, following Holtzman and Jagerman, suppose
that we use (21) as the definition of peakedness with ¢2
defined by Var[N(T))/E[N(T)] as in (17). Suppose that we
can observe the total number X, of arrivals in the subinter-
val ((k — 1)T/n, kT/n} for each k, 1 < k < n. Then,
assuming that

Var N(T) _
EN(T)

Var N(T/n)
EN(T/n)

, (24)

a reasonable tractable estimate of ¢? is the ratio S%/X,
where S2 is the sample variance and X, is the sample mean
of the n observations from the » subintervals of (0, T, i.e.,

3\»——\

2 X, and 53=;%~1~21(X,—5(,,)2. (25)
Indeed, we propose X, and S2/X, as direct estimates of A
and c¢? in (4) and (17).

We remark that (24) above would hold as an equality if
the process had stationary and independent increments.
The idea in (24) is that both T and T/n are sufficiently
large that the ratios are reasonable approximations for the
limit as 7 — .

Following Holtzman and Jagerman, assume that the ex-
pected value of the ratio is approximately equal to the
ratio of the expectations, so that we can approximate c? by

= E[SZ/E[X,], which leads to a minor variant of (17).
In particular, when this analysis is applied to a nonhomo-
geneous Poisson process, we obtain

n
-1+ 5

Y 2
)\(n Y M) (26)

To compute (26), the expectations ES2 and EX,, are com-
puted with respect to the original M, process. Note that
(26) and (17) yield the same result when 7' = n — 1, which
supports our choice of n =~ T.

Holtzman and Jagerman calculated (26) to show that
inflated values of peakedness would result from nonsta-
tionarity when the arrival process is nonhomogeneous
Poisson. Indeed, since the distribution of Q(¢) in an
M, /G/= model is Poisson for all ¢ (for appropriate initial
conditions), we always have the time-dependent peakedness
of a nonhomogeneous Poisson process being

Var[Q(1)]
E[Q(1)]
Nevertheless, we believe that the larger peakedness in (21)

with (26), (17), or (19) can be useful to represent the
fluctuations over time in approximations.

=1 forall¢.

z(t) =

4. NUMERICAL EXAMPLES

To see how the stationary-process approximations per-
form, we now examine some examples. To focus on the
invariance of our approximations under time reversal of
the arrival-rate function, we consider time-reversed ver-
sions of all our arrival-rate functions. Motivated by tele-
phone applications in which average holding times are
about five minutes and a time interval of interest is one
hour, we consider M,/M/s/0 models having mean service
time 1 over the time interval [0, 12]. Moreover, moti-
vated by what seems to be a simple natural approxima-
tion, each example has A linear over the time interval in
question.
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Example 1. In our first example the increasing linear ar-
rival rate function is A(f) = 10 + 0.833r and the decreasing
time-reversed arrival rate function is A(f) = 20 — 0.833¢,
0 =< t = 12. For both arrival rate functions, the average
arrival rate is A = 15 and the peakedness via (23) and (20)
is z = 1.278. (If we had used (21) and (26) instead for n =
12 corresponding to five-minute summary measurements,
then we would have z = 1.30.)

Four different numbers of servers are considered: 20, 25,
30, and 35. Exact performance measures are calculated by
the DTMC algorithm in Section 5 of Davis et al. for three
different initial conditions: starting out empty, starting out
full (all servers busy), and starting out with the stationary
distribution associated with A(0). The exact call congestion
in (3) and time congestion (2) are displayed in each case in
Table 1. For the case of increasing A, the maximum time
congestion is also displayed. In addition, the number of
servers required to achieve (be less than) 0.01 and 0.001
blocking criteria are indicated (under the assumption of
stationary initial condition).

We calculated the approximations using D. L. Jager-
man’s program TRAFCALC based on Jagerman (1984).
From Table I we see that the blocking probability with the
stationary-Poisson approximation is consistently too low
(call and time congestion agree for a homogeneous Pois-
son arrival process), but that the stationary-peakedness (PK)
approximation is not too bad. For each number of servers
considered, the PK value is within the interval of possible
exact values spanned by the six cases (up and down with
three initial conditions). However, the range of exact val-
ues for each s is rather wide. From Table I, we see that the
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relative range increases as the number of servers increases
(and the blocking probability decreases).

Even restricting attention to stationary initial conditions,
we see that the blocking probability is significantly larger
going down than going up (e.g., 0.017 versus 0.011 at s =
25). Upon reflection, this is consistent with intuition. This
intuition can be strengthened by looking at the explicit
M,/G/ results; e.g., Theorem 2.4, (7) and (8) of Eick et al.
(1993a).

The PK approximation is quite good when A(¢) is in-
creasing and the blocking probability is not too small (e.g.,
above 0.001), but PK significantly underestimates the time
and call congestion when A(t) is decreasing. A refinement
that might be used is to compute the parameters X and ¢
using A(f) in the subinterval [—1, 7] instead of [0, 7].
Since this refinement helps here only when A(¢) is decreas-
ing, the refinement could be confined to that case. For
example, this refinement when A(¢) is decreasing increases
(A, z) from (15, 1.28) to (15.42, 1.35). The most significant
effect is on A. The new call (time) congestion with (A, z) =
(15.42, 1.35) and 20, 25, 30, and 35 servers becomes 0.074,
0.0143, 0.0014, and 0.00007, (0.061, 0.0115, 0.0011, and
0.00006), respectively, which indeed is an improvement.

While the exact blocking probabilities with A increasing
and decreasing (with stationary initial conditions) are quite
different, the number of servers required to meet 0.01 and
0.001 blocking criteria in Table I are not very different. In-
deed, they usually differ by only 1. The PK approximation
performs pretty well from this perspective too, with a maxi-
mum error of 2 servers. However, the stationary-Poisson ap-
proximation produces a significant error at the 0.001 level.

Table I
A Comparison of Approximations with Exact Call and Time Congestion (the Averages in (3) and (2)) in the
M,/M]s/0 Model with Mean Service Time 1 and Arrival Rate A(f), 0 < ¢ < 12, in Example 1. The Number of
Servers Needed to Satisfy 0.01 and 0.001 Blocking Criteria Are Also Given.

Equivalent
random method
Exact up Exact down (PK) A =15
Number Initial A =10 + 0833 A1) = 20 — 0.833 z =128 Stationary Poisson
of servers condition Call Time Max Call Time Call Time approx. A = 15
full 0.066 0.060 0.084 0.072
20 stationary  0.059 0.051 0.151 0.073 0.064 0.062 0.053 0.046
empty 0.059 0.050 0.048 0.044
full 0.0146 0.0143 0.0295 0.0248
25 stationary  0.0110 0.0090 0.043  0.0172 0.0144 0.0100  0.0084 0.0050
empty 0.0110 0.0090 0.0072 0.0065
full 0.0034 0.0044 0.0123 0.0095
30 stationary  0.0011 0.00085 0.0058  0.0023 0.0018 0.00079  0.00065 0.00022
empty 0.0011 0.00085 0.00051 0.00046
full 0.00178  0.00262 0.0070 0.0053
35 stationary  0.000052  0.000031  0.0004  0.00015 0.00012  0.00003  0.00003 0.00000
empty 0.000052  0.000031 0.000017  0.000015
0.01 blocking stationary 26 25 29 27 26 25 25 24
level
0.001 blocking  stationary 31 30 34 32 32 30 30 28
level
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Table 11
A Comparison of Approximations with Exact Call and Time Congestion (the Averages in (3) and (2)) in the
M,/M]s/0 Model with Mean Service Time 1 and Arrival Rate A(r), 0 < ¢ < 12, in Example 2. The Initial Number
of Busy Servers Has the Stationary Distribution with A(0) in Each Case. The Number of Servers Needed to Satisfy
0.01 and 0.001 Blocking Criteria Are Also Given.

Equivalent
random_method
Exact down (PK) A =10
Number of Exact up A(r) = 1.667¢ A =20 - 1.667r z =267 Stationary Poisson
servers Call Time Max Call Time Call Time approx. A = 10
15 0.133 0.080 0.321 0.163 0.103 0.133 0.064 0.037
20 0.038 0.021 0.141 0.059 0.035 0.038 0.017 0.0019
25 0.0060 0.0033 0.0341 0.0145 0.0082 0.0071 0.0030 0.00003
30 0.00047 0.00025 0.0038 0.00198 0.00109 0.00087 0.00035 0.00000
0.01 blocking 24 28 27 25 18
level
0.001 blocking 29 32 32 31 21
level

Example 2. A similar but more extreme example is ob-
tained by considering A(r) = 1.667¢ and A(f) = 20 — 1.667¢ for
0 = =12 as in Table II. Here the average arrival rate is
A = 10 and the peakedness from (23) and (20) is 2.67. (It
would be 2.81 from (26) with n = 12.) As with Example 1,
the stationary-Poisson approximation seriously underesti-
mates the call and time congestion, while PK is a pretty
good approximation for A(f) increasing, but underestimates
the call and time congestion when A(z) is decreasing. Un-
like Table I, PK actually overestimates the call congestion
when A(?) is increasing for small blocking probabilities. As
before, the exact blocking probability for decreasing A is
significantly greater than for increasing A, with the ratio
increasing as the number of servers increases.

Example 3. To have an example with more servers and less
extreme (relative) slope, we consider A(z) = 98 + 4¢ and
A(f) = 146 — 41, 0 <t < 12, in Table IIL. Here the peaked-
ness from (23) and (20) is 1.79. (It would be 1.85 from (26)
with n = 12.) The results in this case are similar to those in
Examples 1 and 2. The range of arrival rates in this example
from 98 to 146 is large, but not nearly as large (relatively) as
in Examples 1 and 2. Hence, this example may be considered
more realistic (and less demanding). In many applications,
the differences between the congestion measures with Adt)
increasing and decreasing shown in Table III might not be
considered extraordinarily great, in view of other un-
certainties. With such modest standards, the stationary-
peakedness approximation might be considered very suitable.

Table II1
A Comparison of Approximations with Exact Call and Time Congestion (the Averages in (3) and (2)) in the
M,/M]s/0 Model with Mean Service Time 1 and Arrival Rate A(t), 0 < t < 12, in Example 3. The Number of
Servers Needed to Satisfy 0.01 and 0.001 Blocking Criteria Are Also Given.

Equivalent
random method
Exact down (PK) A = 122
Number of Initial Exact up A(z) = 98 + 4¢ At) = 146 — 4¢ z =179 Stationary Poisson
servers condition Call Time Max Call Time Call Time approx. A = 122
full 0.0358 0.0326 0.0448 0.0403
135 stationary  0.0336 0.0300 0.1118  0.0416 0.0377 0.0374 0.0274 0.0198
empty 0.0333 0.0297 0.0206 0.0195
full 0.0150 0.0138 0.0235 0.0207
145 stationary  0.0135 0.0119 0.061 0.0195 0.0173 0.0143 0.0104 0.0044
empty 0.0135 0.0119 0.0063 0.0059
full 0.0051 0.0049 0.0117 0.0102
155 stationary  0.0039 0.0034 0.031 0.0072 0.0064 0.0040 0.0029 0.00053
empty 0.0039 0.0034 0.0012 0.0011
full 0.00171  0.00184 0.00625  0.00532
165 stationary ~ 0.00075  0.00064  0.0063  0.00193  0.00168  0.00077 0.00055 0.00003
empty 0.00075  0.00064 0.00014  0.00013
0.01 blocking stationary 146 149 147 140
level
0.001 blocking  stationary 160 167 165 153
level
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For this model, if we estimate (A, z) based on the inter-
val [—1, T] instead of [0, T, then we obtain the parameter
pairs (120, 1.93) and (124, 191) when A(¢) is increasing and
decreasing, respectively, instead of (122, 1.79). The heuris-
tic refined PK approximations for call congestion with 135,
145, and 155 servers are 0.034, 0.0129, 0.0036 when A(2) is
increasing and 0.046, 0.0197, 0.0064 when A(t) is decreas-
ing. The corresponding time congestion values with 135,
145, and 155 servers are 0.024, 0.0089, 0.0025 when A(¢) is
increasing and 0.033, 0.0139, 0.0044 when A(?) is decreas-
ing. As in Example 1, this heuristic refinement to PK
seems to be effective. Indeed, it is reasonable for both
increasing A(¢) and decreasing A(?).

In contrast, the adjusted stationary-Poisson approxima-
tions for call and time congestion with rate 120(124) and
135, 145, and 155 servers are 0.015, 0.0029, and 0.00030
(0.025, 0.0063, and 0.00029), respectively. When A(t) is
increasing, this modification obviously just makes a poor
approximation worse. When A(¢) is decreasing, this modi-
fication is an improvement, but the estimates are still way
too low.

5. CONCLUSIONS

We have proposed approximating average blocking proba-
bilities over a subinterval in a nonstationary loss model by
approximations of the corresponding steady-state blocking
probabilities in an associated stationary loss model. The
underlying idea is that appropriate stochastic variability
in the stationary arrival process can approximately capture
the effect of the fluctuations over time in the deterministic
arrival-rate function in the nonstationary model.

We have investigated the stationary-Poisson approxima-
tion and the stationary-peakedness approximation for the
time and call congestion in (2) and (3) in the M,/M/s/0
model. When the arrival rate function has significant time
variation, as in Examples 1-3 in Section 3, the stationary-
Poisson approximation performs poorly, as anticipated.
The stationary-peakedness approximation performs signif-
icantly better, but the rather large differences between the
congestion measures when A(¢) is increasing and decreas-
ing dramatically reveal limitations of the stationary-
peakedness approximation. These differences motivate
considering refinements and alternative methods that are
not invariant under time reversal of A(r). We suggested
one such refinement in our stationary-process framework,
in particular, computing A and c¢? based on the interval
[—1, T] instead of [0, 7] (assuming that the mean service
time is 1). This refinement seems to help consistently when
A(?) is decreasing, but not when A(f) is increasing. Overall,
the stationary-peakedness approximation seems reason-
ably good, especially when time variations in the arrival
rate function such as are described in Examples 1-3 here
can be regarded as relatively extreme (highly variable)
cases. To the extent the PK approximation and refinements
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are not adequate, the examples serve as motivation for
alternative methods which more directly address the
time-dependence.
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