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Sleep

Objective: Computational Models of Sleep

Agenda:
1. Neurobiology of Sleep
« Action Potentials and Conduction
* Origin of Extracellular Currents
2. Computational Models
« Sleep Time-Frequency Spectra
« Seizure Prediction in Epilepsy



The Neuron
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« Axons carry information from the cell body to the axon
terminals
 Axon terminals communicate with their target cells at

synapses




The Neuron

Signal Transmission and Interpretation
« Direction of signal transmission: neurons
« transmit signals only in one direction (from
dendrites to axon terminals), but
* receive signals from different sources
« Earlier or ‘lower’ processing stages
(‘bottom-up’ or ‘feed-forward’)
* Neighboring neurons in the same area
(‘lateral’)
« Subsequent or ‘higher’ processing areas
(‘top-down’ or ‘feedback’)

« Combination of feed-forward and feed-back signal
loops
* Information is not just passively ‘forwarded’,
- But modified by everything else going on in
the brain!




Changes in the Membrane Potential Produce
Electric Signals in Nerve Cells

Ion Intracellular | Extracellular | Normal
Plasma
Value

K" 150 5 3.5-5.0

Na' 12 140 135-145

Cl 10 105 100-108

Organic 65 0

Anions

« Difference in ion concentration between compartments gives
rise to the resting membrane potential (RMP). Membrane
permeability to these ions also influences the RMP.

 Transient changes from the RMP produce electrical signals
which transmit information in nerve cells.




Terminology Associated with Changes in
Membrane Potential
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» Depolarization- a decrease in the potential difference between the inside
and outside of the cell.

*Hyperpolarization- an increase in the potential difference between the
inside and outside of the cell.

» Repolarization- returning to the RMP from either direction.

*Qvershoot- when the inside of the cell becomes +ve due to the reversal of
the membrane potential polarity.




Gated Channels Are Involved in Neuronal
Signaling
In the nervous system, different channel types are responsible for

transmitting electrical signals over long and short distances:

A. Graded potentials travel over short distances and are activated by the
opening of mechanically or chemically gated channels.

B. Action potentials travel over long distances and they are generated by
the opening of voltage-gated channels.

Gated ion channels in the membrane open to a variety of stimuli:
* Mechanical force, eg. sensory neurons.
» Chemical ligands, eg. neurotransmitters.

 Voltage, eg. changes in the resting membrane potential.



Graded Potentials
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*Graded potentials are depolarizations or hyperpolarizations whose
strength is proportional to the strength of the triggering event.

*Graded potentials lose their strength as they move through the cell due to
the leakage of charge across the membrane (eg. leaky water hose).



Average extracellular action potential (EAP) of the
pyramidal cell model.
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Graded Potentials

= A graded potential depolarization is called excitatory
postsynaptic potential (EPSP). A graded potential
hyperpolarization is called an inhibitory postsynaptic
potentials (IPSP).

= They occur in the cell body and dendrites of the neuron.

* The wave of depolarization or hyperpolarization which
moves through the cell with a graded potential is known as
local current flow.




Graded Potentials Above Threshold Voltage
Trigger Action Potentials
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Graded potentials travel through the neuron until they reach the trigger
zone. If they depolarize the membrane above threshold voltage (about -55
mV in mammals), an action potential is triggered and it travels down the
axon.




Frequency of Action Potential Firing is
Proportional to the Size of the Graded Potential
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The amount of neurotransmitter released from the axon terminal is
proportional to the frequency of action potentials.



Neural Transmission

dendrlte

termmal

« Neurons receive input from other neurons,
especially through their dendrites

* Neurons send output in the form of an action
potential (AP) along their axons

« When an AP arrives at the synaptic end bulb of
a pre-synaptic neuron, neurotransmitter (NT) is
released

NTs bind to receptors on the
post-synaptic neuron, which
often opens ion channels
The flow of ions causes an
electrical current in the
membrane
These graded potentials can
be either
» Positive/Depolarization/
Excitatory
* Negative/
Hyperpolarization/
Inhibitory
The graded potentials are
summed in the axon hillock
If the sum exceeds threshold,
then the post-synaptic neuron
will fire an action potential
When the action potential
reaches the synaptic end
bulb, NTs are released, and
the cycle begins again



EPSPs and Action Potentials
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Source: Hausser et al, Science Vol. 291.
138-141

Neurons encode information and communicate
via action potentials, which are generated by
the summation of synaptic events.

It was previously thought that APs reset the
membrane potential completely.

However, the strength of this reset is variable.
EPSPs shunt, or diminish, the AP response in
pyramidal neurons.
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EPSPs and Action Potentials

"fast" EPSP
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Source: Hausser et al, Science Vol. 291. 138-141

EPSP shunting depends on synaptic input kinetics. The rise and decay
times differ between “fast” and “slow” EPSPs.
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Electroenchaplography (EEG)
 EEG

Current in the EEG measuring circuit depends on the nature and
location of the current sources, on the electrical properties of the
brain, skull and scalp and on location of both electrodes. Source:
Nunez et al (1891)



Electroenchaplography (EEG)

EEG is an
electrophysiological
monitoring method to
record electrical activity of
the brain:

Often non-invasive
Measures voltage
fluctuations resulting
from ionic current
within neurons
Used to diagnose
epilepsy

Limited spatial
resolution
Temporal resolution
at millisecond scale
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Test Your Understanding:

EEG activity is thought to arise from which of the following?
Cortical layers | and VI

Axonal action potentials

Horizontal dipoles

Excitatory and inhibitory post-synaptic potentials

OO w>



Test Your Understanding:

EEG activity is thought to arise from which of the following?
A. Cortical layers | and VI
B. Axonal action potentials

C. Horizontal dipoles
D. Excitatory and inhibitory post-synaptic potentials

Explanation: EEG activity arises from the outermost cortex
layer | and does not directly capture axonal action
potentials. EEG is most sensitive to post-synaptic
potentials generated in the superficial layers of the cortex.




Electrodes

Electrodes are small metal discs A

that are places on the scalp in / == \
special positions. F7| F3| Fz| Fe| Fs|
. Each electrode site is \
labeled with a letter and a | | es| 2| | mf
number \ 5| P3| pPz| Pa| T6|
« Letter: F is frontal lobe and \ /
T is temporal lobe o1| o0z| o2
"'H-h_____’___f’

« Number: Even number
means right side of head
and odd number means
left side of head

« Can be made of: stainless —

steel, tin, gold or silver
covered with a silver
chloride coating




Intra(cranial/cerebral) EEG

Depth electrodes

Grid electrodes



Recording Methods of Extracellular Events

a T Local field potential (LFP):
MWW  Micro-EEG
 Records deep brain
([Egg;h activity while EEG, MEG

and ECoG mainly sample
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EEG Monitoring
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a. Electrode used to
measure evoked
potential signal from
the skull of a rat

b. Location of
electrode array

c. Electrode mounted
and fixed with dental
cement

d. Electrode
recordings of voltage
over time



Recording Methods of Extracellular Events

Electroencephalography (EEG):

« Spatio-temporally smoothed version of the local field potential
(LFP), integrated over a larger area

« Used in combination with structural MRI imaging

Magnetoencephalography (MEG):

« Measures tiny magnetic fields outside that skull from currents
generated by the neurons

* Non-invasive

« High spatio-temporal resolution

Electrocorticography (ECoG):

« Uses subdural platinum-iridium or stainless steel electrodes to
record electric activity directly from the surface of the cerebral
cortex, thereby bypassing signal-distorting skull and intermediate
tissue

Voltage-sensitive dye imaging:
 Membrane voltage of neurons can be detected optically with
voltage-sensitive proteins



Recording Methods of Extracellular Events
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Simultaneously recorded LFP traces from the superficial (‘surface’) and deep
(‘depth’) layers of the motor cortex in an anaesthetized cat and an intracellular trace
from a layer 5 pyramidal neuron. Note the alternation of hyperpolarization and
depolarization (slow oscillation) of the layer 5 neuron and the corresponding
changes in the LFP. The positive waves in the deep layer (close to the recorded
neuron) are also known as delta waves. iIEEG, intracranial EEG.



Computational Models of Sleep

Prominent Computational Neuroscientists:
Gyorgy Buzsaki, NYU
Terry Sejnowski, UCSD
Roger Traub, IBM

What is the biological function of sleep?
Why do we dream?
What are the underlying brain mechanisms?
What is its relation to anesthesia?



Sleep

Sleep is divided into stages
* Apply to adults and children
« But proportion in those stages differs

How do we know?
Scientists have used sleep EEG
Sleep EEG measures miniscule electrical activity
- Small electrodes placed on head
- Sensitive recording equipment determines output
Sleep EEG sometimes used in children
- To detect more troublesome sleep problems



Sleep and Memory Formation

Memory Consolidation

Slow wave Trace
Sleep Reactivation

Consolidation

Senso Short-term / Long-term

Information > Memory | > Memory

Rehearsal



Sleep and Memory Formation

Memory Consolidation

At the fime of encoding,

memories are susceptible to disruption.

With time, they become robust to interference
(Mueller and Pilzecker, 1900)

Cerebral frauma leads to a greater loss

of recent than remote memories
(Ribot, 1882)

1 y 3 4
Spindles  Slow wave,delta




Sleep and Memory Formation
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Brain rhythms

Alpha rhythm (8-13 Hz) appears at the occipital cortex
when eyes close. [resting condition] {rolandic mu rhythm;
temporal tau rhythmj}

Beta rhythm (13-30 Hz) is associated with alertness.

Gamma rhythm (30-80 Hz) is related to sensory
iIntegration and feature binding.

Theta rhythm (4-8 or 4-10 Hz)
Delta rhythm (0.5-4 or 1-4 Hz)
Sleep spindle (12-15 Hz or 7-15 Hz) {sigma rhythm}

K complex (<0.5 Hz) {(very) slow oscillation}



Successive EEG changes throughout the

Sleep stages EEG Stages

Wake

Stage 1
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Stage2 — 9:

— 1:

Alpha wave train

: Alpha wave intermittent (250%)

: Alpha wave intermittent (<50%)

: EEG flattening

: Ripples

: Vertex sharp wave solitary

: Vertex sharp wave bursts

: Vertex sharp wave and

incomplete spindles

Spindles

sleep onset period
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Sleep and Memory Formation
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Sleep and Memory Formation

Multitaper Spectrogram Sleep Stage Patterns
NREM

Slow-wave sleep
Slow waves (a.k.a up/down states)
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Neuroscienct#37 (2006) 1087-1106

GROUPING OF BRAIN RHYTHMS IN CORTICOTHALAMIC SYSTEMS
M. STERIADE*

Laboratory of Neurophiysiology, Laval University, Facully of Medlicine,

Quebec, Canada GTK 7P4



Characteristic patterns of the brain activities in the
neocortex and hippocampus

Awake Non-REM sleep REM
Stage 1 Stage 2 Stage 3-4 sleep
Cortex Alpha wave Spindle Delta wave Gamma wave
Gamma wave K complex Theta wave
Hippocampus Theta wave High-voltage spike (HVS) with high-frequency Theta wave
HVS ripple (~200 Hz)

Buzsaki, Neuroscience, 31, 551-70,1989.
Gottesmann, Neurosci. Biobehav. Rev., 16, 31-8.1992.

Steriade et al.. Science, 262, 679-85,1993.
Steriade, Neuroscience, 101, 243-76.2000.







Does sleep prevent or promote forgetting?

Time course

Wake Wake
* Better relevant

information
retrieval

» Hippocampal and
prefrontal cortex
activation at the

encoding * Forgetting by
» Potentiation of resolving
interference

newly acquired
information




Sleep and Memory Formation

... when neural activity patterns seen during a task
are ‘replayed’ during subsequent periods of inactivity




Sleep, and Memory formation
Reactivation

In rats, hippocampal activity patterns during
behavior are related to patterns during subsequent
periods of inactivity (Paviides and Winson, 1989; Wilson and
McNaughton, 1994),

- specifically, in hippocampal oscillations (Kudrimoti et al.,
1999)

- demonstrated to co-occur with slow-waves (sirota et al.,
2003; Battaglia et al., 2004)

seen in the hippocampus and neocortex of rats (Qin et
al., 1997; Ribeiro et al., 2004; Ji and Wilson, 2007)

seen in non-human primate, in multiple
‘disconnected’ sites, coordinated across
hemispheres. (Hoffman and McNaughton, 2002)

seen in other structures, maybe under other names
(Arieli, Yuste/MacLean, Dan)



The upshot of up states in neocortex:
From slow oscillations to memory formation

Memory Consolidation

Trace
Reactivation

Slow wave
Sleep
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Focus on epilepsy
An in vivo window onto synaptic plasticity
Training the brain to pay attention
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Epilepsy: disorder of brain

dynamics

« Characterized by recurrent
seizures
Associated with abnormally
excessive or synchronous
neuronal activity

Current Treatment:

* Anti-Epileptic Drugs

(undesirable side effects)
« Surgical Removal of Tissue

Motivation for Seizure

Prediction:

* Increase quality of life of
epilepsy sufferers

A robust seizure prediction

algorithm requires machine

learning.




Epilepsy

Epilepsy

Chronic lliness

Affects 1% to 2% of world population
40% of patients refractory to medication
Surgery available as treatment

Partial (“focal”)

Chronic lliness

Affects 1% to 2% of world population
40% of patients refractory to medication
Surgery available as treatment

Generalized: Absence “petit
mal”

Impairment of consciousness
Abrupt start and termination
Short duration

Unpredictable
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seconds

Rhythmic muscle contractions
Loss of consciousness —

Generalized: Tonic-Clonic (“grand mal”)
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Childhood Absence Epilepsy

Pathophysiology of an Absence

Seizure

On Left: Corticoreticular Theory.

Focal point or initiation site of absence
seizure is in somatosensory cortex.
Rhythmic oscillations between cortex
and thalamus drive each other to
propagate the spike-wave discharges
of an absence seizure.

On Right: Oscillations are proposed to
propagate along the corticoreticular
pathway (blue).

EEG normal between seizures
Fpi—A
Fpa—A;
A

Ps=Ag e YA

o
At

(3/sec generalized spike-
and-wave discharges)

A
1200 pV

Patient is unresponsive, blinks eyes ~ Tsec

Clinical Presentation:

Distinct high-amplitude, bilateral
synchronous, symmetric, 3 — 4 Hz
Spike-and-wave discharges of absence

seizure.




Models of Epilepsy: Animal and Computational

Simulated normal Simulated seizure
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Animal Models of Epilepsy

Species Drosophila Danio rerio Mus Canis Papio
melanogaster | (zebra fish) musculus familiaris hamadryas
(fruit fly) (mouse) (dog) (baboon)

First epilepsy | Dynamin Pentylene- Audio-genic Electro Photosensitive

studies mutant tetrazole convulsive

Number of 100,000 100,000 71,000,000 160,000,000 11,000,000,00

neurons (larvae) (cortex) 0

Percentage of | 39% 63% 79% 81% 93%

human genes

Cost perday | <$0.01 ~$0.01 ~$0.20 $27.30 $19.75

Genetic Models of Seizures: i e

« Knockdown of genes
« SCN1A Mutants

tectum

Non-Genetic Models of Seizures:
« Kainic acid (activates receptors for
glutamate)
» Pilocarpine (compromises the
blood-brain barrier)

B

interictal



Computational Model of Absence Epilepsy

Freq Spectrum - normal Freq Spectrum - seizure Power Spectrum - normal  Power Spectrum - seizure
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On Left: Frequency Spectrum of Epilepsy Simulation

There is intense activity in the 2-4 Hz range from bottom left graph, and the top
right graph shows a peak at 3.47 Hz.

On Right: Power Spectrum of Epilepsy Simulation

It is clear to note the differences between normal data and seizure data visually as
evident by spiking patterns. A seizure prediction algorithm can be based on energy
analysis in frequency bandwidths of interest.

Amplitude v. Frequency with Fourier Transform provides Power v. Frequency



Approaches to the problem

Feature Relationship Classification
extraction between EEG based on:
from EEG: channels:

Linear Univariate Statistics
System of I channel at a fime Discriminating measure

noise-driven
linear equations
() = ax(t) + b + n(?) g

Non-linear Bivariate Algorithm

Deterministic Varying synchronization Machine Learning:
dynamical system of EEG channels neural networks,

of nonlinear e 222 AL genetic optimization...
equations RS [ (e % e

Slide by Yann LeCun



Analysis of Electroencephalogram (EEG) Data

Expert System
Facilitating Routine
Analysis of Large
Amount of Data

Analysis in Pre-
Recorded EEG

Revelation of
Dynamical Regularities
of Brain Functional
States Establishing

Automatic Analysis and
Identification of
Oscillatory Patterns in
EEG

Flowchart: Review of methods available for EEG

analysis
On Right:

Removal of Artifacts
and Noise in Pre-
Recorded Electrical
Brain Activity

Analysis in Real-Time

Monitoring System of
Brain Activity in Clinical
Practice

Top: Scalp EEG data

Bottom: Intracranial grid EEG data

Brain-Computer
Interfaces

EEG Data:
recordings of the
fluctuating electric
fields of the brain




The Seizure Prediction Problem

Review of Literature:
 Most methods implement
1D decision boundary

« Machine learning used
only for feature selection

Trade-off Between:

« Sensitivity (being able to
predict seizures)

« Specificity (avoiding false
positives)

A decision boundary

is the region of a

. problem space in

* which the output
label of a classifier is
ambiguous.

Seizure onset
Extraction of features

Interictal phase: period between " from EEG, "
seizures, or convulsions, that are pattern recognifion
characteristic of an epilepsy disorder +

classification

SEBE

Preictal phase: state immediately
before the actual seizure

Wi
Ictal phase: physiologic state of ]
seizure =
(Latin: ictus, meaning a blow or a
stroke)

P [
L]

‘iniericial preictal ictal
phase phase phase




Hypotheses

patterns of brainwave synchronization:
— could differentiate preictal from interictal stages
— would be unique for each epileptic patient

definition of a “pattern” of brainwave synchronization:
— collection of bivariate “features” derived from EEG,
— on all pairs of EEG channels (focal and extrafocal)
— taken at consecutive time-points

— capture transient changes interictal preictal ictal

sEENy
** Yo

a bivariate “feature”:
— captures a relationship:
— over a short time window

goal: patient-specific automatic learning to differentiate
Fre{c’ral and interictal patterns of brainwave synchronization
eatures

[Le Van Quyen et al, 2003; Mirowski et al, 2009] Slide by Yann LeCunn



Patterns of bivariate features

Varying synchronization
of EEG channels

Non-frequential features:

— Max cross-correlation
[Mormann et al, 2005]
— Nonlinear

interdependence
[Arhnold et'al, 1999]

— Dynamical entrainment
[lasemidis et al, 2005]

Frequency-specific

features:
[Le Van Quyen et al, 2005]

— Phase locking
synchrony

— Entropy of phase
difference

— Wavelet coherence

[Le Van Quyen et al, 2003; Mirowski et al, 2009]
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Examples of patterns of cross-correlation
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Separating patterns of features

x Interictal
Preictal [70, 80] min
Preictal [60, 70] min
Preictal [50, 60] min
Preictal [40, 50] min
Preictal [30, 40] min
Preictal [20, 30] min
Preictal [10, 20] min
Preictal [0, 10] min

+ Ictal/postictal

a) 1-frame b) 12-frame c) 60-frame d) Legend
patterns (5s) patterns (1min) patterns (5min)

2D projections (PCA) of wavelet synchrony SPLV features, patient 1

[Mirowski et al, 2009]
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Input pattern

pPX9

convolu’rlon
(across time
and space/freq)

of features: Layer 1 Layer 2 Layer3 Layer 4 Layer 5
oy 5@px48 S@px24  5@I1x16 5@1x8 3
;‘ ﬂ ﬂ M pre|c’ro|
= /V.
= /V‘/'\ interictal
:i :i :i :' — — 1x2 1x8
LR sUb- convolution

g (across time)

1x2 samplin

T convolution )
subsampling

(across fime)

e L,-regularized convolutional networks Input sensifivity
(LeNefs' Obo\/e) Coh high gamma (65Hz - 100Hz) !
e |L,-regularized logistic regression Cohlow garima (30Hz - 53Hz) 3
e Support vector machines Cohhigh bete {14tz - 30rz) :
(GCIUSSICIH kernels) Coh Low beta (13Hz - 15Hz)
. . . . . Coh alpha (7Hz - 13Hz)
1-regularization highlights pairs of Cohthet diz- THt) I1
channels and frequency bands Con eta (<) | I
discriminative for seizure prediction Time (rames)
[LeCun et al, 1998; Mirowski et al, AAA
2007, 2009]
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Example of Seizure Prediction

Patient 8: predictions on EEG segment going from December 8, 11:20 AM to December 9, 5:51 AM
2 hour preictal recording I

Seizure at

c "Preictal" itive
2 il S 05:50:51
RS
O
o
o "Interictal" III

| | | | | | | |

23:51 00:31 01:11 01:51 02:31 03:11 03:51 04:31 05:11 05:51
Time
Hypothesis: Null Hypothesis:

Patient has seizure.

Patient does not have
seizure.

Reality: Patient does not have
seizure.

Type | Error (model predicts
seizure but patient does NOT
have seizure)

False Positives

Correct Outcome (model
predicts no seizure and patient
does NOT have seizure)

True Negatives

Reality: Patient has seizure.

Correct Outcome (model
predicts seizure and patient
does have seizure)

True Positives

Type Il Error (model predicts
no seizure but patient does
have seizure)

False Negatives




Next Time:
Biophysical Models of Neurons

Please bring laptops for
programming demo with
SpikerBoxes



