
Columbia 
Science 
Honors  
Program 
Fall 2017 

Applied 
Neuroscience 

Biophysical Models of Neurons and Synapses 



Guest Lecture 
by Roger Traub 
 
“Why is the brain so hard to understand?” 



Art Exhibition 
by Cajal Institute 
 
January 09, 2018 
To  
March 31, 2018 
 
Class Trip 



Biophysical Models of Neurons and Synapses 
Objective: Model the transformation from input to output spikes 
Agenda: 
1.  Model how the membrane potential changes with inputs 

Passive RC Membrane Model 
2.  Model the entire neuron as one component 

  Integrate-and-Fire Model 
3.  Model active membranes 

Hodgkin-Huxley Model 
4.  Model the effects of inputs from synapses 

  Synaptic Model  
 
 

 



Why use models?  
•  Quantitative models force us to 

think about and formalize 
hypotheses and assumptions  

•  Models can integrate and 
summarize observations across 
experiments and laboratories  

•  A model done well can lead to 
non-intuitive experimental 
predictions  

•  A quantitative model, 
implemented through simulations, 
can be useful from an 
engineering standpoint       
 i.e. face recognition  

•  A model can point to important 
missing data, critical information, 
and decisive experiments 

Case Study: Neuron-Glia 
Signaling Network in Active Brain 
Chemical signaling underlying neuron-
glia interactions. Glial cells are believed 
to be actively involved in processing 
information and synaptic integration. 
This opens up new perspectives for 
understanding the pathogenesis of brain 
diseases. For instance, inflammation 
results in known changes in glial cells, 
especially astrocytes and microglia.  



Simulation of a Neuron  
Single-Neuron 

Models 

Single-
Compartment 

Models 

Integrate-and-
Fire 

Hodgkin-
Huxley Model 

Cable Theory 

Mul$-
Compartment	

Models	

To Model a Neuron:  
1.  Intrinsic properties of 

cell membrane  
2.  Morphology  

Single-Compartment Models 
describe the membrane potential 
of a single neuron by a single 
variable and ignore spatial 
variables 
 
Multi-Compartment Models 
describe how variables are 
transmitted among the 
compartments of a system   



Simulation of a Neuron  

Neuronal 
Structure 

Analogy 

Dendritic Tree Input (sums 
output signals 
received from 
surrounding 

neurons in the 
form of electric 

potential)  
Soma Processing 
Axon Output 

Synapses	
Chemical	

EPSP	

IPSP	
Electrical	

Input to Neuron: 
Continuous Variable 
 
Output to Neuron: 
Discrete Variable 



Single Neuron Models 
Central Question: What is the correct level of abstraction? 

Abstract thought 
depicted in Inside 
Out by Pixar.  

•  Filter Operations 
•  Integrate-and-Fire 

Model 
•  Hodgkin-Huxley Model 
•  Multi-Compartment 

Models 
•  Models of Spines and 

Channels 



Single Neuron Models 
Artificial Neuron Model: aims for computational effectiveness 
and consists of  

•  an input with some synaptic weight vector 
•  an activation function or transfer function inside the 

neuron determining output   
 

 
Biological Neuron Model: mathematical description of the 
properties of neurons  

•  physical analogs are used in place of abstractions such 
as “weight” and “transfer function”  

•  ion current through the cell membrane is described by a 
physical time-dependent current I(t)  

•  Insulating cell membrane determines a capacitance Cm  
•  A neuron responds to such a signal with a change in 

voltage, resulting in a voltage spike (action potential)  
 

Oj = f ( wijei )∑



Simple Model of a Neuron  
Attributes of Artificial Neuron:  

 1. m binary inputs and a single output (binary) 
 2. Synaptic Weights mij 
 3. Threshold µi 

Inputs 

Weighted 
Sum 

Threshold 

Output 



Modeling Neural Membranes as 
Capacitors 

Internal 
conducting 
solution 
(ions) 

External 
conducting 
solution 
(ions) 

Thin 
insulating 
layer 
(membrane, 
4 nm ) 



Modeling Neural Membranes as 
Resistors 

Internal 
conducting 
solution 
(ions) 

External 
conducting 
solution 
(ions) 

Ion channels 
(voltage-
gated and 
chemically-
gated) 



Passive RC Membrane Model 

The RC membrane 
model represents the 
passive electrical 
properties of a neuron: 

1.  R is Resistor 
(Ion Channels)  
2.  C is Capacitor 

  (Cell Membrane) 



Capacitors 

εo = electrostatic

C = Q
V
= εo

A
d



Resistors 

R = V
I
= ρ

L
A

For the same current, a larger R produces a larger V.  



Ion Channels as Resistors 



Circuits Primer 
Value Equation 

Current I = Coulombs/ second or Amperes 
(A)  

Ohm’s Law V = IR 

Capacitance C = Q/V = Coulombs/Volts (F) 

Voltage across capacitor V = Q/C 

Changing the voltage in a capacitor ΔV = ΔQ/ C 

We change the charge by passing 
current 

Ic = ΔQ/Δt 

The change in V depends on the 
duration of Ic 

ΔV = IcΔt/C 



Kirchhoff’s Current Law  

Current flows through the path of least resistance 
 and IT = I1 + I2  
  
  



Electrical Model of the Cell Membrane 
Total current is the sum of the currents of each component.  

  
  



Current in RC Circuits  

The RC model of a neuronal membrane has voltage that 
changes exponentially over time.  

  
  



Electrical Recordings in Paramecium  



Modeling Neural Membranes 

V

Rm = rm/ A 
rm ~ 1 MΩ mm2 

(Specific 
Membrane 
Resistance)  

Q = Cm V  
Cm = cm A 
cm ~ 10 nF/ mm2 

(Specific Membrane 
Capacitance)  

dV
dt

=
dQ
dt

Cm 	- im = 

Membrane Current due 
to Ions (“Leak Current”) 

im = gi
i
∑ (V −Ei ) = gL (V −EL ) =

(V −EL )
rm

Membrane Current with Leak Conductance Term  



Compartment Membrane Model 

V

Rm = rm/ A 
rm ~ 1 MΩ mm2 

(Specific 
Membrane 
Resistance)  

Q = Cm V 
Cm = cm A 
cm ~ 10 nF/ mm2 

(Specific Membrane 
Capacitance)  

Ie 
External 
current 
injection 

Membrane Time Constant 
τm = rmcm 

cm
dV
dt

= −
(V −EL )

rm
+
Ie
A

dV
dt

= −(V −EL )+ IeRmτm 



Integrate-and-Fire Neuron Model 
•  Proposed in 1907 by Louis Lapicque  
•  Model of a single neuron using a circuit consisting of a 

parallel capacitor and resistor  
•  When the membrane capacitor was charged to a certain 

threshold potential 
Ø  an action potential would be generated  
Ø  the capacitor would discharge 

•  In a biologically realistic neuron model, it often takes 
multiple input signals in order for a neuron to propagate a 
signal.  

•  Every neuron has a certain threshold at which it goes from 
stable to firing.  

•  When a cell reaches its threshold and fires, its signal is 
passed onto the next neuron, which may or may not cause 
it to fire.  

•  Shortcomings of Model:  
Ø  an input, which may arise from pre-synaptic neurons 

or from current injection, is integrated linearly, 
independently of the state of post-synaptic neuron 

Ø  no memory of previous spikes is kept  



Generating Spikes: Integrate-and-Fire Model 

A.  The equivalent circuit with membrane capacitance C and membrane 
resistance R. V is the membrane potential and V rest is the resting 
membrane potential.   

B.  The voltage trajectory of the model. When V reaches a threshold 
value, an action potential is generated and V is reset to a sub-
threshold value.  

C.  An integrate-and-fire model neuron driven by a time-varying current. 
The upper trace is the membrane potential and the bottom trace is 
the input current.  



Which column represents real data? 



Spiking Patterns of Neurons 



Comparison of I & F Model to Data 

Real neuron exhibits spike-rate adaptation and refractoriness 
 
Spike-Frequency Adaptation: When stimulated with a square pulse or 
step, many neurons show a reduction in the firing frequency of their 
spike response following an initial increase.   
Sensory Adaptation: A change in responsiveness of a neural system 
when stimulated with a constant sensory stimulus. 
Refractoriness: Property of neuron not to respond on stimuli (Amount 
of time it takes for neuron to be ready for a second stimulus once it 
returns to resting state following excitation)  
 



Making the I & F Model More Realistic 

dV
dt

= −(V −EL )− rmgsra (V −EK )+ IeRmτm 

τm 

dgsra
dt

= −gsra
Spike-Rate Adaptation 

If V > V threshold,  
Spike and Set gsra = gsra + Δgsra 
Reset: V = V reset 
 
How would we add a term to model for 
refractoriness?  



I & F Model with Spike-Rate Adaptation 

Cortical Neuron Integrate-and-Fire 
Model with  
Spike-Rate 
Adaptation 



Modeling Active Membranes 
External 
current 
injection 

Ie 

τm
dV
dt

= −(V −EL )− rmg1(V −E1)...+ IeRm

g1 = g1,maxP1
g 1,max represents maximum possible 
conductance  
 
P 1 represents the fraction of ion channels open  



Example 1: Delayed-Rectifier K+ Channel 
gK = gK ,maxPK

PK = n
4

4 = indicates 4 independent 
subunits are necessary for K+ 
channel to open 

V1 = opening rate 
n = fraction of channels open 
1 – n  = fraction of channels closed 
V2 = closing rate 
 
 

dn
dt
=αn (V1)(1− n)−βn (V2 )n



Example 2: Transient Na+ Channel 

gNa = gNa,maxPNa

PNa =m
3h

m = Activation 
3 = indicates 3 independent 
subunits are necessary for Na+ 
channel to be activated 
h = Inactivation 
 

dm
dt

= −(αm +βm )m+αm

dh
dt
= −(αh +βh )h+αh



Hodgkin-Huxley Model 

Alan Hodgkin, Andrew Huxley, John Eccles 
Nobel Prize in Physiology (1963) for discovery 
of mechanisms of the giant squid neuron cell 
membrane   



Variable Conductance 

Experiments illustrated that gK and gNa varied with time t 
and voltage V. After stimulus, Na responds much more 
rapidly than K.  



Hodgkin-Huxley Model  

Ie 
External 
current 
injection 

cm
dV
dt

= −im +
Ie
A

im = gL,max (V −EL )+ gK ,maxn
4 (V −EK )+ gNa,maxm

3h(V −ENa )

EL = -54 mV 
EK = -77 mV 
ENa = +50 mV 



Hodgkin-Huxley Model Dissected 

Action Potential (Spike) 

Membrane Current 

Na+ Activation (m) 

Na+ Inactivation (h) 

K+ Activation (n) 



Synapse Primer 

Synaptic 
Plasticity 

Short-Term 
Plasticity 

Short-Term 
Facilitation 

Short-Term 
Depression 

Long-Term 
Plasticity 

Long-Term 
Potentiation 

Long-Term 
Depression 



Synapse Primer 
Short-Term Synaptic Plasticity: 
(STP) Dynamic synapses, a phenomenon in which synaptic 
efficacy changes over time in a way that reflects the history of 
pre-synaptic effect 
  
Short-Term Depression: 
(STD) Result of depletion of neurotransmitters consumed 
during the synaptic signaling process at the axon terminal of a 
pre-synaptic neuron 
 
Short-Term Facilitation: 
(STF) Result of influx of calcium into the axon terminal after 
spike generation, which increases the release probability of 
neurotransmitters  
  



Excitatory and Inhibitory Synapses 

Type I Synapse: 
Found in dendrites 
and result in an 
excitatory response in 
the post-synaptic cell 
 
Type II Synapse: 
Found on soma and 
inhibit the receiving 
cell’s activity 



Excitatory and Inhibitory Synapses 

Excitatory Synapse Inhibitory Synapse 
1.  Input Spike 
2.  Neurotransmitter 

release 
3.  Binds to Na 

channels, which 
open 

4.  Na+ Influx  
5.  Depolarization due to 

EPSP (excitatory 
post-synaptic 
potential) 

Example: AMPA Synapse 
(allows both Na+ and K+ 
to cross membrane)  

1.  Input Spike 
2.  Neurotransmitter 

release 
3.  Binds to K channels 
4.  Change in synaptic 

conductance 
5.  K+ leaves cell 
6.  Hyperpolarization 

due to IPSP 
(inhibitory post-
synaptic potential) 

Example: GABA 
Synapse, Glycine 
Synapse  



Modeling a Synaptic Input to a Neuron 

dV
dt

= −(V −EL )− rmgsra (V −EK )+ IeRmτm 

gs = gs,maxPrelPs
P rel is the probability of post-synaptic channel opening 
(fraction of channels opened) 
P s is the probability of neurotransmitter release given an input 
spike 



Basic Synapse Model 
Assume Prel = 1  
Model the effect of a single spike input on Ps 
Kinetic Model: 
 

 1. Closed è Open 
 

 2. Open è Closed  

αs 

βs 

dPs
dt

= αs (1 – Ps) – βs Ps  

αs = Opening Rate 
Ps = Fraction of channels closed 
βs  = Closing Rate 
Ps = Fraction of channels open 



What if there are multiple input spikes? 
Biological synapses are dynamic 
Linear summation of single spike inputs is 
not correct 

A.  Example of Short-Term Depression 
 
B.  TTX Blocks Sodium Channels and 

Reduces synaptic transmission and 
enhances short-term depression 

 
C.  Hypothetical regulation of short-term 

depression by the modulation of 
activity-dependent attenuation of 
presynaptic spike amplitude. TTX 
attenuates spike train and enhances 
depression. Reduced inactivation 
opposes both pre-synaptic attenuation 
and short-term depression.  



Modeling Dynamic Synapses 
Recall the definition of synaptic conductance: 
 gs = gs,maxPrelPs

Idea: Specify how Prel changes as a function of 
consecutive input spikes 
    

τP
dPrel
dt

= Po −P rel

Between input spikes, Prel 
decays exponentially back to 
Po  

If Input Spike: 

Prel ~ fDPrel
Prel ~ Prel + fF (1−Prel )

Depression: Decrement Prel 
 
Facilitation: Increment Prel 



Effects of Synaptic Facilitation and Depression 



Consequences of Synaptic Depression 



Synapse Networks 

τm
dV
dt

= −(V −EL )− rmgs,maxPs (V −Es )+ IeRmEach 
Neuron:  

Synapses: Alpha Function model for Ps  



Next Time: 
Tour of Laboratory of Paul Sajda 


