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Biophysical Models of Neurons and Synapses

Objective: Model the transformation from input to output spikes

Agenda:
1. Model how the membrane potential changes with inputs

Passive RC Membrane Model

2. Model the entire neuron as one component
Integrate-and-Fire Model

3. Model active membranes
Hodgkin-Huxley Model

4. Model the effects of inputs from synapses
Synaptic Model



Why use models?

Quantitative models force us to
think about and formalize
hypotheses and assumptions
Models can integrate and
summarize observations across
experiments and laboratories
A model done well can lead to
non-intuitive experimental
predictions
A quantitative model,
implemented through simulations,
can be useful from an
engineering standpoint

I.e. face recognition
A model can point to important
missing data, critical information,
and decisive experiments
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Case Study: Neuron-Glia
Signaling Network in Active Brain
Chemical signaling underlying neuron-
glia interactions. Glial cells are believed
to be actively involved in processing
information and synaptic integration.
This opens up new perspectives for
understanding the pathogenesis of brain
diseases. For instance, inflammation
results in known changes in glial cells,
especially astrocytes and microglia.



Simulation of a Neuron

To Model a Neuron:
1. Intrinsic properties of

Single-Neuron
Models

cell membrane ] Singrlte— t
ompartmen
2. Morphology Models

Single-Compartment Models
describe the membrane potential
of a single neuron by a single
variable and ignore spatial
variables

Multi-Compartment Models
describe how variables are
transmitted among the
compartments of a system

Multi-
Compartment
Models

| Integrate-and-

Fire

Hodgkin-
Huxley Model

Cable Theory




Simulation of a Neuron
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Single Neuron Models
Central Question: What is the correct level of abstraction?
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Single Neuron Models

Artificial Neuron Model: aims for computational effectiveness
and consists of
« an input with some synaptic weight vector
« an activation function or transfer function inside the
neuron determining output

O, = f(Ewl.jei)

Biological Neuron Model: mathematical description of the
properties of neurons
« physical analogs are used in place of abstractions such
as “weight” and “transfer function”
* ion current through the cell membrane is described by a
physical time-dependent current /(t)
 Insulating cell membrane determines a capacitance C,,
« A neuron responds to such a signal with a change in
\ voltage, resulting in a voltage spike (action potential)




Simple Model of a Neuron

Attributes of Artificial Neuron:
1. m binary inputs and a single output (binary)
2. Synaptic Weights m;
3. Threshold p;

Inputs 2—3-\;-:‘ Z «—»—@ > Output

M

Weighted  Threshold
Sum



Modeling Neural Membranes as

Capacitors

External
conducting
solution
(ions)
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Modeling Neural Membranes as

Resistors

External
conducting
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(ions)
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Passive RC Membrane Model

I

The RC membrane
model represents the
passive electrical
properties of a neuron:
. 1. R is Resistor
(lon Channels)
2. C js Capacitor
l (Cell Membrane)




Capacitors

Conductive plate:
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Resistors

T2 Th=-3r

For the same current, a larger R produces a larger V.




lon Channels as Resistors

Rl For ion channels is better to

think in terms of conductance
- #
Rl = l/ gl

As the # of Rs in parallel
increases RT decreases!

R:
Ll l/RT = l/Rl +1/Rz
# | > é More (open) channels in the

RZ membrane more conductance

gr= Qi -I-gz

—

R: R:
# —> —> q Rr=R:i+ R:

Long, thin parts of a neuron have
large resistance!




Circuits Primer

duration of |

Value Equation
Current | = Coulombs/ second or Amperes
(A)
Ohm’s Law V=IR
Capacitance C = Q/V = Coulombs/Volts (F)
Voltage across capacitor V=Q/C
Changing the voltage in a capacitor AV =AQ/C
We change the charge by passing |. = AQ/At
current
The change in V depends on the AV = | At/C




Kirchhoff’s Current Law

Current flows through the path of least resistance
andl: =1, +1,



Electrical Model of the Cell Membrane

Total current is the sum of the currents of each component.

: Capacitive
Ionic
membrane
membrane
current

current I

I j
Membrane current * =1 + I

In



Current in RC Circuits

V changes instantaneously
with I

V changes linearly in time

with I

V changes exponentially
with a time constant = RC

The RC model of a neuronal membrane has voltage that
changes exponentially over time.



Electrical Recordings in Paramecium

Passing current and recording the membrane
potential from a paramecium

Gurteni-pating elechiode Negative current makes the
membrane potential more negative
hyperpolarization

' ;e.c;rding electrode

Positive current makes the
membrane potential more positive
depolarization

“electrotonic potential”




Modeling Neural Membranes

Membrane Current due
to lons (“Leak Current”)

| i-c dV _ dQ
dt dt
R.=r/A Q=C, V
r., ~1MQ mm? C,=c,A
(Specific c,, ~ 10 nF/ mm?
Membrane (Specific Membrane
Resistance) Capacitance)

Membrane Current with Leak Conductance Term

- _ _ _ =(V—EL)
i, gg,w E)=g(V-E)=—

m




Compartment Membrane Model

External Cell membrane Membrane Time Constant
current '€ Nl I =r.c
injection /& moomm
I Cmd_V=_(V—EL)+Ie
dt r, A
R.=r/A Q=C, V
r., ~1MQ mm? C,=c,A
(Specific c,, ~ 10 nF/ mm?
Membrane (Specific Membrane
Resistance) Capacitance)
A%
Tm —=—(V-E)+IR_



Integrate-and-Fire Neuron Model
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Proposed in 1907 by Louis Lapicque

Model of a single neuron using a circuit consisting of a
parallel capacitor and resistor

When the membrane capacitor was charged to a certain
threshold potential

» an action potential would be generated

» the capacitor would discharge

In a biologically realistic neuron model, it often takes
multiple input signals in order for a neuron to propagate a
signal.

Every neuron has a certain threshold at which it goes from
stable to firing.

When a cell reaches its threshold and fires, its signal is
passed onto the next neuron, which may or may not cause
it to fire.

Shortcomings of Model:

» an input, which may arise from pre-synaptic neurons
or from current injection, is integrated linearly,
independently of the state of post-synaptic neuron

» Nno memory of previous spikes is kept




Generating Spikes: Integrate-and-Fire Model
A B C

° \ action of
| potential

CI- <R -40f
threshold | | E -GWM
Bk

= Vrest ‘( :..C" :}[\ /\ /\./\ /\.AM

10 ms reset 0 100 200 300 400 500

A. The equivalent circuit with membrane capacitance C and membrane
resistance R. Vis the membrane potential and V , ., is the resting
membrane potential.

B. The voltage trajectory of the model. When V reaches a threshold
value, an action potential is generated and Vis reset to a sub-
threshold value.

C. An integrate-and-fire model neuron driven by a time-varying current.
The upper trace is the membrane potential and the bottom trace is
the input current.



Which column represents real data?




Spiking Patterns of Neurons

regular spiking (RS) intrinsically bursting (IB) chattering (CH) fast spiking (FS)
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Comparison of | & F Model to Data

A Model B
400 ~ First

risi (Hz)

O Ogteady- |
state rate M N A\ \,A\

J ]

> .
le (NA) Cortical neuron response to
constant current injection

Real neuron exhibits spike-rate adaptation and refractoriness

Spike-Frequency Adaptation: When stimulated with a square pulse or
step, many neurons show a reduction in the firing frequency of their
spike response following an initial increase.

Sensory Adaptation: A change in responsiveness of a neural system
when stimulated with a constant sensory stimulus.

Refractoriness: Property of neuron not to respond on stimuli (Amount
of time it takes for neuron to be ready for a second stimulus once it
returns to resting state following excitation)



Making the | & F Model More Realistic

T

Tm

m

av _ -(V-E,)-r8, V-E)+1,R

dt

ag... 0 Spike-Rate Adaptation
dt sra

If V >V threshold:
Splke and Set gsra = gsra + Agsra
Reset: V=V

How would we add a term to model for
refractoriness?



| & F Model with Spike-Rate Adaptation

Wit N\“_W////f\

Cortical Neuron Integrate-and-Fire
Model with

Spike-Rate
Adaptation



Modeling Active Membranes

External — [o
current ‘e A 2
injection :
dV
Tmz=—(v )I gl(V E) +IR

g = 8 max ]

g 1.max F€presents maximum possible
conductance

P ,represents the fraction of ion channels open



Example 1: Delayed-Rectifier K* Channel

— N =
8x = 8k ,maxP K | i ’/,'
- \ (+ sensor | '|
PK — n K+ . Y aqueous QM/A
filter ¥ pore L
4 = indicates 4 independent I g “‘]
subunits are necessary for K* ( N | |
channel to open = i

an _ o (VY1=n)-B.(V,)n
dt

V, = opening rate

n = fraction of channels open

1 — n = fraction of channels closed
V, = closing rate



Example 2: Transient Na* Channel

Ena = 8 Na,maxP Na ) X oo on
N\D
P — 3h v inactivation
Na ~— m . _ gate
m = Activation ‘ -
3 = indicates 3 independent 0 1 o—
subunits are necessary for Na* G,

channel to be activated
h = Inactivation

extracellular | . Intracellular

dm _ —(a,+p, )Im+a,
dt

@ =—(a, +p,)h+a,
dt



Hodgkin-Huxley Model

Alan Hodgkin, Andrew Huxley, John Eccles T IR
Nobel Prize in Physiology (1963) for discovery V4 VAR
of mechanisms of the giant squid neuron cell '
membrane \ 9

Giant
axon



Variable Conductance

10 -
| 14 |
8- 12
i 10,
6 ]
| 81
g_K | g Na |
4 67,
| 4
2- ]
| |
0 1 2 3 4 5 0 1 2 3 4 5

msec msec

Experiments illustrated that g, and g, varied with time ¢
and voltage V. After stimulus, Na responds much more
rapidly than K.



Hodgkin-Huxley Model

External — o V
current le X@ i %
injection . 1
- —Cml \ P
" L K Na
v __. 1,
C —=-—1 —
m m
dt A

im = gL,maX(V - EL)+ gK,maxn4(V - EK) + gNa,maXm3h(V — ENa)

E, =-54 mV
Ey, = +50 mV



Hodgkin-Huxley Model Dissected
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Synapse Primer

Synaptic
Plasticity

Short-Term

Plasticity

Long-Term
Plasticity

Short-Term
Facilitation

Short-Term

Depression

Long-Term
Potentiation

Long-Term
Depression




Synapse Primer

Short-Term Synaptic Plasticity:

(STP) Dynamic synapses, a phenomenon in which synaptic
efficacy changes over time in a way that reflects the history of
pre-synaptic effect

Short-Term Depression:

(STD) Result of depletion of neurotransmitters consumed
during the synaptic signaling process at the axon terminal of a
pre-synaptic neuron

Short-Term Facilitation:

(STF) Result of influx of calcium into the axon terminal after
spike generation, which increases the release probability of
neurotransmitters



Excitatory and Inhibitory Synapses

Type |
Spine Prominent
apparatus Round synaptic presynaptic
vesicles N\ dense projections Type I Sy na pse .
.

\/
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Excitatory and Inhibitory Synapses

Excitatory Synapse Inhibitory Synapse

1. Input Spike 1. Input Spike

2. Neurotransmitter 2. Neurotransmitter
release release

3. Bindsto Na 3. Binds to K channels
channels, which 4. Change in synaptic
open conductance

4. Na* Influx 5. K+ leaves cell

5. Depolarization due to | 6. Hyperpolarization
EPSP (excitatory due to IPSP
post-synaptic (inhibitory post-
potential) synaptic potential)

Example: AMPA Synapse | Example: GABA

(allows both Na* and K* | Synapse, Glycine

to cross membrane) Synapse




Modeling a Synaptic Input to a Neuron

le

Synaptic
conductance
T CZ—V =—(V-E,)-rg. V-E)+IR
A

gs = gs,maxl)rell)s

P .., is the probability of post-synaptic channel opening
(fraction of channels opened)

P .is the probability of neurotransmitter release given an input
spike



Basic Synapse Model

Assume P, = 1

Model the effect of a single spike input on Py
Kinetic Model:

a

1. Closed -)S Open

Bs
2. Open = Closed

dPS — U (1 _ Ps)_BsPs

dt .
d, = Opening Rate
P, = Fraction of channels closed
B, = Closing Rate

P, = Fraction of channels open



What if there are multiple input spikes?

Biological synapses are dynamic
Linear summation of single spike inputs is

not correct

Control +10nM TTX

M Al 7 : e[
/‘] //}// L/ ]ﬂ/ ‘ Vf V \/ \v/ph \{/\C\SJ”“ fffffff e
| =" =
. \:
i et High [Na'ﬁe\\v{/
T // a
‘/ N ” |
N/ 2O_mlwnA V mlwnA

A.

Example of Short-Term Depression

. TTX Blocks Sodium Channels and

Reduces synaptic transmission and
enhances short-term depression

Hypothetical regulation of short-term
depression by the modulation of
activity-dependent attenuation of
presynaptic spike amplitude. TTX
attenuates spike train and enhances
depression. Reduced inactivation
opposes both pre-synaptic attenuation
and short-term depression.



Modeling Dynamic Synapses

Recall the definition of synaptic conductance:

S
gs = gs,maX})relP A%Q J_C %;

Idea: Specify how P, changes as a function of
consecutive input spikes

Between input spikes, P

dP rel
T, rel — P-P decays exponentially back to
dt P,
If Input Spike:
P, ~f,P, Depression: Decrement P,

rel

rel +fp(1 Pe,) Facilitation: Increment P

rel



Effects of Synaptic Facilitation and Depression

Facilitation Depression
1.0
==+ (Prel) - 60
084 — (b
"3 0.6+ - 40
X 0.4-
- 20
0.2, 3
0+ 0 0+ T T T T
20 40 60 80 1:)%\ 0 20 40 60 80 100
Average r (Hz) Average r (Hz)
release Input Rate  transmission Input Rate

probability rate

(zH) K(®d)



Consequences of Synaptic Depression
. Input rates r

15+ | / \

10 —
25 Hz 100 Hz 10 Hz 40 Hz

5 —

(Prel)r (Hz)

|
I T T | I |
0 200 400 600 800 1000 1200
t (ms)

Steady-state transmission rates  Transient inputs are amplified
are similar for different rates  relative to steady-state inputs

Change 1n transmission rate o« Ar/r



Synapse Networks

Excitatory synapses (E, = 0 mV) Inhibitory synapses (E, = -80 mV)

I ~ 0 . ~ 0
> .20 ‘ ~ 20 )
é -40 é -40 S hr |
< 60 < w1, L1 ynchrony!
®® 20 4 60 80 100 %0 % @ s 80 10 > (for
— 0 ) — 0 . . .
ke S 2 L > inhibitory
< 40 < 40 > synapses)
> 60 = -so:/ /
| | . . /
%% 20 20 60 80 100 %20 40 60 80 100
t (ms) t (ms)

Each T d—V = _(V - EL) - rmgs,maxPs (V B ES) + IeRm

Neuron: " (t

Synapses: Alpha Function model for P,



Next Time:
Tour of Laboratory of Paul Sajda




