HOW DOES THE BRAIN REPRESENT SPACE?

INSIGHTS FROM DIRECT HUMAN BRAIN RECORDINGS

JOSHUA JACOBS, PH.D.

SPACE IN THE BRAIN

SPACE IN THE BRAIN

HUMAN NAVIGATION SYSTEMS

PLACE CELLS Wilson & McNaughton (1993)

HIPPOCAMPUS

THETA OSCILLATION (~8 HZ)

K. Diba

ALLOCENTRIC MAP-LIKE REPRESENTATIONS

"STARTING AT THE LIBRARY. WALK NORTH 300', WALK 200' WEST."

EGOCENTRIC VIEWER-BASED REPRESENTATIONS

"STARTING AT THE LIBRARY. WALK TO THE CHURCH, TURN LEFT, GO 200'."

A BROADER MEMORY NETWORK

KEY QUESTIONS

How does the human brain orient during navigation?

Is the neuronal coding of location a model of how the brain represents other cognitive information?

OVERVIEW

Neuronal coding of location and direction: Place, grid, and path cells

Theta oscillations in navigation

Place cells in memory

Brain stimulation and memory reinstatement

DIRECT HUMAN BRAIN RECORDINGS

MISRA, JACOBS, ET AL., IN PRESS

Electrodes implanted for 1–3 weeks.

Hybrid micro/macro electrodes in hippocampus and medial temporal lobe. Grids and strips.

DIRECT HUMAN BRAIN RECORDINGS

NAVIGATION IN A NARROW CORRIDOR

Subjects navigate a virtual circular environment.

Deliver each passenger to their desired destination store.

JACOBS ET AL., 2010, PNAS

HIPPOCAMPAL PLACE CELL

CLOCKWISE

COUNTERCLOCKWISE

PLACE

DIRECTION-ENCODING PATH CELLS

COUNTERCLOCKWISE PATH CELL

CLOCKWISE (CW)

COUNTERCLOCKWISE (CCW)

PATH CELLS ACROSS THE BRAIN

DARK SHADING: CW & CCW PATH CELLS. LIGHT SHADING: COMPLEX PATH CELLS.

PATH-CELL DEMONSTRATION

HOW ARE PLACE-CELL REPRESENTATIONS FORMED?

Hafting et al., 2005

OPEN FIELD NAVIGATION TASK

Patients learn locations of four visible objects.

Navigate between the locations with the objects hidden.

JACOBS ET AL., 2013, NATURE NEUROSCIENCE

HIPPOCAMPAL PLACE CELLS

IDENTIFYING GRID CELLS

Measure the firing rate at each location in environment.

Compute each cell's gridness score, which measures six-way-symmetric activity (Hafting et al., 2005).

Assess significance using a shuffling procedure.

HUMAN ENTORHINAL GRID CELL (1)

HUMAN ENTORHINAL GRID CELL (2)

REGIONAL DISTRIBUTION OF GRID CELLS

REGION KEY: EC, ENTORHINAL CORTEX; PHG, PARAHIPPOCAMPAL GYRUS; CC, CINGULATE CORTEX.

EXAMPLE CINGULATE GRID-LIKE CELL

ANALYSIS OF ALTERNATE SYMMETRY PATTERNS

P VALUE FROM A BINOMIAL TEST COMPARING THE PREVALENCE OF SYMMETRIC CELLS TO CHANCE LEVELS

DO ENTORHINAL NEURONS REPRESENT MULTIPLE LOCATIONS?

Identify neurons that activate at similar locations across an environment.

Work with my Ph.D. student Jonathan Miller

PATH INVARIANT CELL

PATH INVARIANT CELLS 2 & 3

REGIONAL ANALYSIS

Hippocampal representations emerge from grid and path cells

Place

ENTORHINAL, PARAHIPP.

Grid-like

HIPPOCAMPUS

IS PLACE CELL ACTIVITY REINSTATED DURING MEMORY RETRIEVAL?

MILLER, ET AL. (SCIENCE, 2013)

EPISODIC MEMORY TASK IN A SPATIAL ENVIRONMENT

PHASE 1

Navigate between stores.

Pick up an item at each store.

PHASE 2

Freely recall the items

EPISODIC MEMORY TASK IN A SPATIAL ENVIRONMENT

DIRECTIONAL PLACE CELLS

PLACE-CELL REINSTATEMENT

Measure neural activity during recall.

Compared recall activity to place cells from navigation.

Compute cosine similarity between recall vector and each location.

EXCLUDED RECALLS LAST PRESENTED ITEM AND ITEMS RECALLED WITHIN 1.5S.

PLACE-CELL REPRESENTATIONS OF ITEM PICKUP LOCATIONS ARE REINSTATED DURING RECALL

INDIVIDUAL PLACE CELLS SHOW REINSTATEMENT

BRAIN STIMULATION AND MEMORY

BRAIN STIMULATION AND MEMORY

Penfield (1938) found that temporal-lobe stimulation caused memory recall.

OUTSTANDING QUESTIONS

Which memory is recalled by stimulation?

Why does inhibition cause memory recall? (Logothetis, 2010).

Jacobs, Lega, & Anderson, 2012

twenty three, twenty four, twenty five, twenty six,

DOCTOR

"How do you feel? Does it feel like a seizure"

PATIENT

"No - but why am I, like remembering all these things from high school?"

DOCTOR "Is it bad?"

PATIENT "It's just weird."

HIGH-SCHOOL MEMORY TASK

VISUALIZE THE ANSWER

(3-SEC)

READ A QUESTION (1-SEC)

Who was your high school's football coach?

SPEAK THE ANSWER (1-SEC)

HIGH-SCHOOL MEMORY TASK

Question group	Example
HS person	Who was your HS gym teacher?
HS nonperson	What were your HS colors?
non-HS person	Who is your current epilepsy doctor?
non-HS nonperson	What city has the Golden Gate bridge?

NEURAL ACTIVITY FOLLOWING QUESTION ONSET

Data from my lab showed that the "high gamma band" (65–128 Hz) positively correlates with neuronal spiking

MANNING, JACOBS, ET AL., 2009; JACOBS ET AL., 2010

HIGH SCHOOL-RELATED ECoG ACTIVITY

GRAY SHADING DENOTES P<0.01; BLACK DENOTES P<10-6

IMPLICATIONS

ILLUSTRATION OF A THEORIZED HIGH-SCHOOL BRAIN REGION.

SMALL CIRCLES, CORTICAL COLUMNS. LARGE CIRCLE, STIMULATING ELECTRODE. Stimulation recreates activity from normal cognition.

Stimulation inhibits local neurons and activates afferent networks (Logothetis et al., 2010).

Neocortex encodes memory attributes like "high school"-ness (e.g., Norman & O'Reilly, 2002).

THE HUMAN NAVIGATIONAL SYSTEM

SIMILARITIES TO RODENTS

Hippocampus encodes specific locations.

Entorhinal cortex supports coarser representations.

DISTINCTIVE FEATURES

Links between allocentric and egocentric systems.

Path and grid cells represent position within corridors.

Grid cells in cingulate.

Slow traveling "theta" oscillations in hippocampus.

Predicting memory encoding in Treasure Hunt

Item presentation

Retrieval

100 memory encoding events per hour

ACKNOWLEDGEMENTS

DARPA RAM TEAM

University of Pennsylvania

Emory University

Dartmouth-Hitchcock Medical Center

Columbia U. Medical Center

Mayo Clinic

Thomas Jefferson University

NINDS

University of Texas, Southwestern

FUNDING

National Institutes of Health (R01-MH061975, R01-MH104606)

DARPA

Brain and Behavior Research Foundation

