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Abstract

Here we describe a proof-of-concept experiment designed to explore the possibility of using gene
expression-based high-throughput screening (GE-HTYS) to find inhibitors of a signaling cascade,
using platelet derived growth factor receptor (PDGFR) signaling as the example. The previously
unrecognized ability of aurintricarboxylic acid to inhibit PDGFR signaling, discovered through a
screen of 1,739 compounds, demonstrates the feasibility and generalizability of GE-HTS for the
discovery of small molecule modulators of any signaling pathway of interest.

Background

High throughput screening of small-molecule libraries is a
well-established and highly productive tool for the identifica-
tion of chemical compounds targeting a specific protein func-
tion of interest. Traditionally, the high-throughput screening
for modulators of molecular pathways involves cell-free bio-
chemical assays, or in some cases, highly specialized cell-
based phenotypic assays [1]. However, in many cases the opti-
mal target for therapeutic intervention is not known, or the
development of a suitable phenotypic read-out is not techni-
cally feasible. For example, it is becoming increasingly of
interest to modulate the activity of particular signal transduc-
tion pathways, but the components of such pathways are in
many cases only partially known. It would therefore be of
interest to develop a screening approach that could identify
inhibitors of such pathways without first defining the bio-
chemical target of candidate small molecules. Here we dem-
onstrate that it is possible to use mRNA expression levels as a
read-out to infer activity of a signal transduction pathway,

thus establishing a general approach to screening for modu-
lators of signal transduction pathways.

Endogenous mRNA expression has been previously success-
fully used as a surrogate of cellular states in high-throughput
screening for compounds inducing differentiation of acute
myeloid leukemia cells, and for identifying inhibitors of
androgen receptor-mediated transcriptional activation in
prostate cancer [2-5]. It is not obvious, however, that gene
expression signatures could be used to identify inhibitors of
signal transduction pathways that are regulated at the level of
post-translational modification (phosphorylation), as
opposed to transcriptional regulation.

To test the feasibility of using gene expression-based high-
throughput screening (GE-HTS) to identify inhibitors of a
signaling pathway, we chose platelet derived growth factor
receptor (PDGFR) signaling for a proof-of-concept study,
with particular emphasis on downstream activation of the
extracellular regulated kinase (ERK) pathway (also known as
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the p42/p44 mitogen activated protein (MAP) kinase path-
way) as a target pathway for the screen. The ERK pathway
plays a major role in the control of cell growth, cell differenti-
ation and cell survival [6]. The protein kinase cascade
Raf>mitogen/extracellular signal-regulated kinase
(MEK)>ERK, also referred to as the MAP kinase module, is
activated in mammalian cells through receptor tyrosine
kinases, G-protein coupled receptors and integrins [6]. Acti-
vated ERKs translocate to the nucleus where they phosphor-
ylate transcription factors. The ERK pathway is often
upregulated in human tumors [6], and as such is an attractive
target for anticancer therapy. Furthermore, because the path-
way has been extensively studied, many experimental tools
are available with which to interrogate the pathway. We dem-
onstrate here that indeed small molecule inhibitors of the
PDGFR/ERK pathway can be discovered using the GE-HTS
approach.

Results

Identification of a signature of PDGFR/ERK activity

In GE-HTS, a gene expression signature is used as a surrogate
of a biological state. In the present context, we sought to
define a signature of ERK activation mediated by PDGFR
stimulation. Specifically, we treated SH-SY5Y neuroblastoma
cells with the BB homodimer of PDGF (PDGF-BB), which
resulted in PDGFRp phosphorylation and subsequent ERK
activation. We selected PDGFRp over PDGFRa for our stud-
ies because of previous observations that PDGFRa might
mediate functions of other PDGF isoforms in addition to
PDGF-A [7,8]. The activation state of the members of the
PDGFp pathway can be traced by increase in their phosphor-
ylation levels shortly after introduction of the growth factor
[9]. In particular, ERK phosphorylation peaks at about 15-20
minutes after induction, and then decreases to background
levels some 20-30 minutes later [10]. Accordingly, we per-
formed gene expression profiling using Affymetrix U133A
arrays 30 minutes following PDGF stimulation, thereby iden-
tifying those genes whose expression is correlated with
PDGFR activity. In order to identify the component of the
gene expression signature that was attributable to ERK acti-
vation by PDGFR (as opposed to other pathways downstream
of PDGFR), we also pretreated the cells with the MEK inhibi-
tor Uo126 and the ERK inhibitor apigenin, and repeated the
gene expression profiling studies (Figure 1a).

To define the signature of ERK activation, we developed and
applied a rank-pairwise comparison algorithm as described
in Materials and methods. We note that the genes identified
in this manner are chosen because of their ability to reflect the
PDGF-stimulated state - not because of their necessarily
being critical effectors of PDGFR signaling. The top three
genes identified in this fashion were those for c-fos, early
growth response 1 (EGR1), and activity-regulated cytoskele-
ton-associated protein (ARC). All three genes were previously
shown to be upregulated by activation of ERK, and we further
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confirmed their regulation by reverse transcriptase (RT)-PCR
(Figure 1b) [11-13]. Two additional genes, ribosomal protein
RPL23A and ATP5B, were selected as internal controls,
because their expression was not significantly altered by
PDGFR activation.

High-throughput screening to find inhibitors of the
PDGFR/ERK pathway

Having defined a gene expression signature of PDGFR/ERK
activation, we next sought to screen a library of small mole-
cules to find compounds that would reverse the signature (for
primary screen data, see Additional data file 1). We chose
TIP5 fibroblast cells for the high-throughput screen instead of
SH-SY5Y neuroblastoma cells used to define the gene expres-
sion signature. Both TIP5 and SH-SY5Y cells have wild-type
PDGFR/ERK signaling, which makes it unnecessary to
employ mutant and/or constitutively activated PDGFR cas-
cades. TIP5 cells, however, were more adherent to 384-well
plates, making them more amenable to the screening setting.

The screen was performed as follows. TIP5 cells were plated
in 384-well plates, serum-starved overnight and compounds
then added by pin transfer. The compound library, previously
described in [2], consisted of 1,739 chemicals with previously
established biological functions. Some of the compounds
have been approved for use in humans by the Food and Drug
Administration. After a 30 minute compound-incubation
period, PDGF-BB was added. 45 minutes later, the growth
medium was discarded, and cells were lysed. RNA was then
extracted, the signature genes amplified by RT-PCR, and the
PCR amplicons quantified by single-base extension mass
spectrometry, as we previously described [2] (Figure 1c). Cells
were treated in triplicate at two concentrations (approxi-
mately 10 uM and 50 pM). Compounds were defined as hits if
the expression of two marker genes, c-fos and EGR1, normal-
ized by expression of control genes was significantly (more
than one standard deviation) lower than average expression
in all positive control wells. Compounds that inhibited the
signature of the activated PDGFR/ERK pathway in four out of
six replicas were selected as hits for further characterization.

Validation of hit compounds

Three wells met the hit selection criteria: aurintricarboxylic
acid (ATA; free acid), aurintricarboxylic acid triammonium
salt (aluminon), and quinacrine dihydrochloride (mepacrine)
(Figure 2a,b); all three were therefore selected for further
studies. Western analysis of total lysates from cells treated
with these compounds demonstrated that both ATA and its
salt (which in solution is identical to ATA), but not quinacrine
dihydrochloride, abrogated PDGF-mediated phosphorylation
of ERK (Figure 3a), thereby identifying ATA as an inhibitor of
the ERK pathway. Quinacrine dihydrochloride did not inhibit
ERK phosphorylation, but it has been previously shown to be
a non-specific inhibitor of phospholipase A2 [14]. Activated
ERK phosphorylates phospholipase A2 [15], and as a result
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PDGFR/ERK activation signature for high-throughput screening. (a) Genes whose expression is correlated with ERK activation by PDGFR. Genes (in
rows) sorted by their expression in samples (columns) with or without UQ126, apigenin, and PDGF. Red indicates high relative expression, blue low
expression. (b) RT-PCR of signature genes in four sample wells: two lanes (replicas) per condition. TIP5 cells were serum starved overnight and then
treated with PDGF. (c) Screening schema overview. SBE, single-base extension.

stimulates transcription of the c-fos and EGR1 genes, two
components of our ERK signature [16].

We then relaxed hit selection criteria, and identified nine
more potential candidates. However, further study indicated
that none of these nine additional compounds affected activa-
tion of the PDGFR/ERK pathway.

Disruption of phosphorylation of ERK by ATA was an indica-
tion that ATA inhibited the PDGFR/ERK pathway upstream
of ERK. Subsequent analysis indicated that phosphorylation
of both MEK (Figure 3b) and PDGFR (Figure 3c) was abro-
gated by ATA, thus pointing to PDGFR as a possible ATA
target.

To address the possibility that ATA might in some fashion
deplete PDGF ligand from the growth medium, TIP5 cells
were first incubated with ATA for 30 minutes. Next, the cells
were washed thrice with serum-free medium and then stimu-
lated with PDGF. As shown in Figure 3d, PDGFR phosphor-
ylation remained inhibited, suggesting that PDGF ligand was
unlikely to be the target of ATA.

The experiments described so far indicated that ATA inhibits
PDGF-mediated ERK phosphorylation by inhibiting PDGFR
phosphorylation. To localize the portion of PDGFR targeted
by ATA, we utilized a series of chimeric receptor constructs
(Figure 4a). The first chimera, TEL/PDGFR, is a naturally
occurring, leukemia-associated fusion of the oligomerization
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Hit compounds that passed hit selection criteria in the high-throughput screen. (a) Hit compounds identified in the screen. (b) High-throughput screen
expression levels of marker genes c-fos and EGR/, normalized by control gene ATP5B, in the presence of 50 1M hit compounds and PDGF.

domain of the transcription factor TEL (ETV6) to the trans-
membrane and cytoplasmic domains of PDGFR, resulting in
constitutive activation of PDGFR [17]. As shown in Figure 4b,
ATA was unable to inhibit TEL/PDGFR phosphorylation at
concentrations as high as 100 uM, indicating that ATA does
not target the transmembrane or cytoplasmic portions of
PDGFR present in the TEL/PDGFR chimera.

The next chimera, termed PER, is composed of the extracel-
lular domain of PDGFR and the transmembrane and cyto-
plasmic domains of epidermal growth factor receptor (EGFR)
[18]. ATA inhibited PER phosphorylation in PER-PC12 cells
(Figure 4c¢), thus mapping the site of ATA action to the extra-
cellular domain of PDGFR. To exclude the possibility of ATA
inhibiting any receptor tyrosine kinase extracellular domain,
we tested ATA against a third chimera, EKR, consisting of the
extracellular domain of EGFR and the transmembrane and

cytoplasmic domains of ¢-KIT [19]. ATA failed to inhibit EKR
(Figure 5a), indicating that ATA exhibits some specificity for
the PDGFR extracellular domain. Similarly, ATA failed to
inhibit insulin-like growth factor (IGF)-induced phosphor-
ylation of IGF1 receptor (IGF1R; Figure 5b), or EGF-induced
phosphorylation of EGFR (Figure 5¢) [20]. Interestingly, ATA
did inhibit stem cell factor (SCF)-mediated activation of cKIT
(Figure 5d). The cKIT and PDGFR extracellular domains have
41% sequence similarity (26% identity), whereas no signifi-
cant homology is seen between the extracellular domains of
PDGFR and EGFR or IGF1R.

We note that whereas phosphorylation of the PER chimera is
PDGF-dependent (and ATA inhibitable) in PER-PCi12 cells,
PER is constitutively active in 501 MEL and MCF7 cells, and
in those contexts PER phosphorylation is not fully abrogated
by ATA (Figure 6a,b). These experiments further point to the
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Figure 3

ATA abrogates phosphorylation of activated ERK, MEK and PDGFR. (a) ATA and aluminon, but not quinacrine dihydrochloride, abrogated PDGF-
mediated phosphorylation of ERK. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with ATA, aluminon, and
quinacrine dihydrochloride in the presence of PDGF. pERK and ERK indicate antibodies against phospho-ERK and total ERK, respectively. DMSO, dimethyl
sulfoxide. (b) ATA abrogates phosphorylation of MEK. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with
ATA and PDGF. pMEK and MEK indicate antibodies against phospho-MEK and total MEK, respectively. (c) ATA abrogates phosphorylation of PDGFR.
Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with ATA and PDGF. pPDGFRf and PDGFR indicate
antibodies against phospho-PDGFRp and total PDGFR, respectively. (d) Wash-out experiment: PDGFR phosphorylation remains inhibited upon removal
of ATA. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and then incubated with ATA. After ATA was removed by
washing, cells were induced with PDGF. pPDGFRf and PDGFR indicate antibodies against phospho-PDGFRf and total PDGFRp, respectively.

possibility of ATA inhibiting PDGF binding to the extracellu-
lar domain of PDGFR and disrupting ligand-mediated activa-
tion of the receptor.

Structure-activity relationships in the series of ATA
analogues

In order to characterize the features of the ATA molecule
required for biological activity, we analyzed a diverse set of
ATA structural analogs (Figure S1 in Additional data file 2)
available from the Available Chemicals Directory [21]. We
split compounds into three groups to test three different
hypotheses on the structure-activity relationship in the series.
The activities of methylenedisalicylic acid, salicylic acid and
3-methylsalicylic acid (Figure S1ia in Additional data file 2)
were analyzed to examine if the skeletal-triphenylmethane
structure of ATA was essential to its activity. Aurin, uranine
and phenolphthalein sodium salt (Figure Sib in Additional
data file 2) were tested to evaluate the roles the carboxyl and

hydroxyl groups on the triphenylmethane scaffold play in the
inhibitory potency of ATA. Compounds in the third group
(Figure S1cin Additional data file 2) were evaluated to test the
effect of various modifications of the phenyl rings on the
inhibitory properties of ATA. No compounds in the series
inhibited PDGFR at concentrations sufficient for ATA inhibi-
tion (less than 5 uM). In the first group, methylenedisalicylic
acid (Figure 7a), but not methylsalicylic or salicylic acids
inhibited PDGFR phosphorylation at 50 uM, suggesting that
increasing the number of substituted salicylic acid moieties
from one to three boosts the inhibitory potency of ATA. The
positions and number of carboxyl and hydroxyl groups were
essential for PDGFR inhibition, as indicated by the fact that
no compounds in the second group inhibited PDGFR at 100
uM concentration. These results corroborate earlier reports
that both the aurin triphenyl methane ring system and the
carboxylic acid groups are necessary for ATA inhibitory prop-
erties [22].
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Figure 4

ATA targets the extracellular domain of PDGFR, not the transmembrane or cytoplasmic portions of the receptor. (a) Schematic representation of TEL/
PDGFR, PER, and EKR. RTK, receptor tyrosine kinase; TK, tyrosine kinase. (b) ATA does not target the transmembrane or cytoplasmic portions of
PDGFR. Western analysis of total lysates of Ba/F3 cells expressing TEL/PDGFRp fusion protein. Cells were treated with ATA. pPDGFRf, PDGFR3, and
tubulin indicate antibodies against phospho-PDGFR, total PDGFR, and total tubulin, respectively. (c) ATA targets the extracellular domain of PDGFR.
Western analysis of total PER-PCI2 cell lysates. Cells were serum-starved overnight and treated with ATA and PDGF. pEGFR, EGFR, and tubulin indicate

antibodies against phospho-EGFR, total EGFR, and total tubulin, respectively.

In the third group, Basic Violet 3, Ethyl Violet and Victoria
Pure Blue BO inhibited PDGFR in the 5-10 uM range (Figure
7b-d). Interestingly, these three compounds exhibited less
specific patterns of receptor inhibition than ATA, inhibiting
not only cKIT, but also EGFR and IGF1R at 10-100 uM (Fig-
ure 8). Moreover, different from ATA, Ethyl Violet and Victo-
ria Pure Blue BO readily translocated across the cell
membrane, as indicated by their inhibition of cytoplasmic
TEL/PDGFR in Ba/F3 cells at 10 uM (Figure 9). Taken
together, these results suggest that the inhibitory mechanism
of Basic Violet 3, Ethyl Violet and Victoria Pure Blue BO is dif-
ferent from the extracellular receptor inhibition mechanism
of ATA.

Discussion
In this report, we describe the proof-of-concept efforts to
approach the discovery of inhibitors of signal transduction

using a novel chemical genomic approach. We discovered a
previously unknown property of the triphenylmethane deriv-
ative ATA, using GE-HTS. Having defined a signature of
PDGFR activation, we screened a library of bioactive small
molecules for compounds capable of turning off the
signature. Importantly, the screen required neither a highly
specialized signal transduction assay, nor prior knowledge of
the protein to be targeted. In principle, small molecules act-
ing upstream, downstream or at the level of PDGFR itself
would be captured by the screen.

Two compounds in the library met pre-established criteria for
hits abrogating the PDGFR/ERK activation signature. The hit
compounds reproducibly inhibited the signature in follow-up
studies, indicating that the false positive rate of the screen
was quite low. One of the hits, quinacrine dihydrochloride, is
a known inhibitor of phospholipase A2, a known regulator of
ERK signaling [14-16]. The other compound, ATA, was a

Genome Biology 2008, 9:R47
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Figure 5

ATA failed to inhibit activated EKR, IGFIR, or EGFR, but inhibited SCF-mediated activation of cKIT. (a) ATA does not inhibit activated EKR. Western
analysis of total TIP5 cell lysates. Cells were transfected with EKR plasmid, serum-starved overnight and treated with ATA, EGF and PDGF. p-cKIT,
pPDGFRp, PDGFR, and tubulin indicate antibodies against phospho-cKIT, phospho-PDGFR, total PDGFR, and total tubulin, respectively. (b) ATA
does not inhibit activated IGFIR. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with ATA and IGF. pIGFR and
IGFR indicate antibodies against phospho-IGFR and total IGFR, respectively. (c) ATA does not inhibit activated EGFR. Western analysis of total TIP5 cell
lysates. Cells were serum starved overnight and treated with ATA and EGF. pEGFR and EGFR indicate antibodies against phospho-EGFR and EGFR,
respectively. (d) ATA inhibits SCF-activated cKIT. Western analysis of total MEL501 cell lysates. Cells were serum starved overnight and treated with
ATA and SCF. p-cKIT and cKIT indicate antibodies against phospho-cKIT and total cKIT, respectively.

novel discovery, and was therefore followed up in greater
detail.

ATA is a polymeric carboxylated triphenylmethane derivate
with a molecular weight range of 422-6,500 [23], that has
displayed a wide range of biological activity in in vitro bio-
chemical assays. For example, ATA has been reported to
inhibit enzymes involved in protein-nucleic acid interactions,
including DNA and RNA polymerases, reverse transcriptase,
nucleases, primases, topoisomerases, ribonucleotide reduct-
ases, aminoacyl-tRNA synthetase, nuclear factor-kappaB and
HIV-1 integration protein [23]. In addition, ATA has also
been shown to inhibit other classes of proteins in vitro,
including phosphatases [24], NAD(H)/NADP(H)-requiring
enzymes [25], aminopropyltransferases [26], mu- and m-cal-
pain [27], delta aminolevulinic acid dehydratase [28], glu-

cose-6-phosphate dehydrogenase [29], phenylalanine:tRNA
ligase [30] and kinases, such as phosphofructokinase [31],
ERK, p38 MAP kinase, IkappaB kinase [32], inositol-1,4,5-
trisphosphate 3-kinase and inositol polypohosphate multiki-
nase [33]. In vitro inhibition of protein synthesis has also
been described [34].

Biological activity of ATA has also been observed in vivo,
although in most cases only at rather high concentrations. For
example, ATA is reported to obviate binding of interferon-
alpha to its receptor in the 12-50 uM range [35], to prevent
von Willebrand factor binding to platelet receptor glycopro-
tein Ib [36], and to block binding of gp120, the HIV coat pro-
tein, to its receptor, CD4 [23]. Similarly, ATA has been shown
to be a N-methyl-D-aspartate (NMDA) receptor antagonist
with an IC50 of 26.9 uM and was reported to antagonize
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Figure 6

ATA does not fully abrogate phosphorylation of constitutively active PER.
(@) Western analysis of total MEL501 cell lysates. Cells were transfected
with PER plasmid, serum-starved overnight and treated with ATA, PDGF,
and SCF. pEGFR, p-cKIT, cKIT, and tubulin indicate antibodies against
phospho-EGFR, phospho-cKIT, total cKIT, and total tubulin, respectively.
(b) Western analysis of total MCF7 cell lysates. Cells were transfected
with PER plasmid, serum-starved overnight and treated with ATA and
PDGF. pEGFR, EGFR, and tubulin indicate antibodies against phospho-
EGFR, total EGFR, and total tubulin, respectively.

excitotoxicity at both NMDA and non-NMDA glutamate
receptors in the 50-100 uM range [37]. ATA inhibited proges-
terone receptor at 100-500 uM [38], estradiol receptor at
100-200 uM [39], and glucocorticoid receptor complex at 50-
200 puM [23]. ATA also was reported to activate IGF1R (25-
100 uM) [22] and erbB4 (10 uM) [40]. These studies suggest
that ATA has a range of biological activities, most of which,
however, are observable only at quite high concentrations, in
many cases as high as 100 uM.

More limited activity has been reported at lower concentra-
tions of ATA. For example, at 1-5 uM, ATA was reported to
reverse the transformed phenotype of cells transfected with
basic fibroblast growth factor fused to a signal peptide
sequence (spbFGF cells) [41]. It was suggested, on the basis of
ATA fluorescence studies, that ATA binds to acidic fibroblast
growth factor, altering its physicochemical properties and
decreasing its mitogenic activity [42], although these results
were not confirmed by more direct biochemical methods. The
observed ATA interactions in this setting take place at the cell
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surface, consistent with the finding that ATA does not readily
penetrate cellular membranes. ATA is not taken up by HeLa
cells, VERO cells, rabbit reticulocytes, or a variety of bacterial
cells [43]. Accordingly, ATA did not inhibit intracellular pro-
teins, even at concentrations hundreds of times higher than
those required for inhibition in vitro [37]. Only at high con-
centrations (500 uM) was intracellular ATA fluorescence
detectable [24]. It seems most likely, therefore, that our
observed effects of ATA on PDGFR activity occur at the cell
surface.

Consistent with this notion, our analysis indicated that all sig-
naling downstream of PDGFR was inhibited by ATA, and ATA
wash-out experiments suggested that ATA did not abrogate
the signaling by binding and inactivating PDGF. Further-
more, analysis of chimeric PDGFR constructs localized the
ATA effect to the PDGFR extracellular domain. Interestingly,
modest concentrations of ATA (2-5 uM) also inhibited activity
of the related receptor tyrosine kinase cKIT, which shares
sequence homology with PDGFR in the extracellular domain,
whereas kinases lacking such homology (for example, IGFR
and EGFR) were inhibited only at concentrations of 100 pM.
It is possible that the previously described inhibition of JAK/
STAT signaling by ATA [32,44] is attributable to its inhibition
of PDGFR family receptor tyrosine kinases, known to be
upstream activators of the JAK/STAT pathway [45,46].

Conclusion

The polymeric nature of ATA may make it unattractive as a
therapeutic agent and, moreover, multiple highly potent
PDGFR kinase inhibitors have been previously reported [47].
Our work establishes proof of concept, however, for the
notion that mRNA expression signatures can be effectively
used as a read-out for the identification of inhibitors of signal
transduction, often thought approachable only through the
direct examination of protein phosphorylation states. We
note that indeed antibody-based high-throughput screens
have been reported [48], but such assays obviously require
the availability of a sufficiently sensitive and specific antibody
for this purpose. For many, if not most, proteins of interest,
such high quality antibodies are not available. The ability to
convert any biological process or cell state into a completely
generic gene expression signature that can be monitored in
high throughput and at low cost is therefore attractive.

The implementation of the GE-HTS concept described here
involves the detection of multiplexed RT-PCR signature
genes by a single-base-extension reaction followed by
MALDI-TOF (matrix assisted laser desorption ionization-
time of flight) mass spectrometry [2]. While this method was
effective in the study described here, it has several
limitations. For example, conventional RT-PCR amplification
is not easily multiplexed, and the ability to simultaneously
detect multiple amplicons by the mass spectrometric method
is limited. Lastly, the approach can become expensive if
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Figure 7

ATA analogues inhibiting PDGFR. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with (a) 5,5'-
methylenedisalicylic acid (MDA), (b) Basic Violet 3 (BV3), (c) Ethyl Violet (EV), or (d) Victoria Pure Blue BO (VPB) and PDGF. pPDGFRf and PDGFRf

indicate antibodies against phospho-PDGFRp and total PDGFRp, respectively.

extended to the ultra-high-throughput setting. We have
therefore modified the approach to allow for the efficient
amplification of up to 100 transcripts using a ligation-medi-
ated amplification method, followed by detection on polysty-
rene beads via flow cytometry, as we recently described
[3,5,49]. The present study, however, establishes that the GE-
HTS concept can be applied to screening for modulators of
signal transduction, representing a general approach to the
discovery of compounds that affect any signaling pathway of
interest.

Materials and methods

Reagents

The EKR construct [19] was kindly provided by Dr. Ullrich,
Department of Molecular Biology, Max-Planck-Institut fur
Biochemie. PER chimera [18] was a gift of Dr. Tyson and Dr.
Bradshaw, Department of Physiology and Biophysics, Uni-
versity of California, Irvine.

Chemical compounds apigenin, U0126, quinacrine dihydro-
chloride and ATA were obtained from Calbiochem [50];
Methyl Violet B base, Rhodamine 6 G tetrafluoroborate, sul-
forhodamine, Ethyl Violet, Victoria Pure Blue BO, Rhodam-
ine B, Lissamine Green B, Methyl Violet 2B, Rhodamine 6G,
(L-Asp)2Rhodamine 110 TFA, Rhodamine 110 chloride,
Eosin B, Rhodamine 123 hydrate, Rhodamine 19 perchlorate,
Acid Fuchsin calcium salt, p-Rosolic acid, Basic Violet2, Gen-
tian Violet, pararosaniline hydrochloride, and salicylic acid
were purchased from Sigma [51]; and 3-methylsalicylic acid,
5,5'-methylenedisalicylic acid, phenolphthalein sodium salt,
and Uranine K were obtained from ABCR [52].

Growth factors PDGF, EGF, and SCF were obtained from Cell
Signaling [53], R3IGF from Sigma, and interleukin (IL)3 from
R@D Systems [54].

Cell culture reagents RPMI 1640, Dulbecco's modified Eagle's
medium (DMEM), and HAM's F-10 were purchased from
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Figure 8

Basic Violet 3, Ethyl Violet, and Victoria Pure Blue BO exhibit less specific patterns of receptor inhibition than ATA. (a-c) Basic Violet 3 (BV3), Ethyl Violet
(EV), and Victoria Pure Blue BO (VPB) inhibit SCF-activated cKIT. Western analysis of total MEL501 cell lysates. Cells were serum starved overnight and
treated with BV3 (a), EV (b), or VPB (c) and SCF. p-cKIT and cKIT indicate antibodies against phospho-cKIT and cKIT, respectively. (d-f) BV3, EV, and VPB
inhibit activated EGFR. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with BV3 (d), EV (e), or VPB (f) and
EGF. pEGFR and EGFR indicate antibodies against phospho-EGFR and total EGFR, respectively. (g-i) BV3, EV, and VPB inhibit activated IGFIR. Western
analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with BV3 (g), EV (h), or VPB (i) and IGF. pIGFR and IGFR indicate

antibodies against phospho-IGFR and total IGFR, respectively.

Mediatech [55], penicillin and streptomycin from Invitrogen
[56], and fetal bovine serum from Sigma. p44/42 MAP
kinase, phospho-p44/42 MAP kinase (Thr2o2/Tyr204),
MEK1/2, phospho-MEK1/2 (Ser217/221), PDGF-BB, phos-
pho-PDGFRJ (Tyr751), phospho-EGFR (Tyr1068), cKIT,
Phospho-cKIT (Tyr719), IGF-IaR, and Phospho-IGF-IR
(Tyr1131)/insulin receptor (Tyr1146) antibodies were
obtained from Cell Signaling. EGFR and mouse c¢KIT antibod-
ies were purchased from Santa Cruz Biotechnology [57]. Alfa-
tubulin antibody was obtained from Sigma.

Cells

SH-SY5Y neuroblastoma cells were purchased from Ameri-
can Type Culture Collection [58]. The IL3-dependent pro-B
lymphoid cell line Ba/F3 and Ba/F3 cells expressing TEL/
PDGFRB [17,59] were obtained from Dr. Gary Gilliland. TIP5
primary fibroblasts [60] were a gift from Dr. Stephen Less-
nick. We thank Dr. Ruth Halaban for 501 MEL human
melanoma cells. PER-expressing PC12 cells were generously

provided by Dr. Darren Tyson. SH-SY5Y, PC12, TIP5 and
MCF?7 cells were cultured in DMEM, BaF3 cells and BaF3
cells expressing TEL/PDGFRB were maintained in RPMI
1640 medium, and 501 MEL cells were grown in Ham's 10
medium. Medium for IL3-dependent Baf3 cells was supple-
mented with 0.05 ng/ml IL3. Media for all cell lines except
PC12 contained 10% fetal bovine serum, 10 U/ml penicillin,
and 10 pg/ml streptomycin. PC12 cells were grown in DMEM
with 15% horse serum, 5% fetal bovine serum, 10 U/ml peni-
cillin, and 10 pg/ml streptomycin. All cells were grown at
37°Cin 5% CO.,.

Characterization of the activation signature for ERK/
PDGFR pathway

SH-SY5Y cells were grown to confluence and starved over-
night in serum-free medium in order to silence any sustained
effects from growth factor signaling. Prior to induction with
50 ng/ml PDGF, cells were treated with pathway inhibitors 74
uM apigenin or 50 uM Uo0126, or with dimethyl sulfoxide
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Figure 9

Ethyl Violet and Victoria Pure Blue BO inhibit cytoplasmic TEL/PDGFR.
Western analysis of total lysates of Ba/F3 cells expressing TEL/PDGFRp
fusion protein. Cells were treated with either (a) Ethyl Violet (EV) or (b)
Victoria Pure Blue BO (VPB). pPDGFRf and PDGFRf indicate antibodies
against phospho-PDGFRf and total PDGFR, respectively.

(DMSO) as carrier for 60 minutes. Total RNA was isolated 30
minutes after PDGF addition. Experiments were performed
in duplicate. The RNA was processed and hybridized with
Affymetrix U133A GeneChips as described in [61].

To define the ERK/PDGFR activation signature, a pair-rank-
ing algorithm was used. Genes were ranked according to their
raw expression values on each chip. Ten genes with maximum
change in ranking were selected for each one of three pairs of
conditions: cells with PDGF versus cells without PDGF, cells
with PDGF versus cells with PDGF and apigenin, and cells
with PDGF versus cells with PDGF and U0126. Three genes
common to all three conditions were selected as a signature of
the activated ERK/PDGFR pathway. The signature was then
trimmed from three to two genes based on their relative
strength of expression in TIP5 cells.

Screening methods

TIP5 cells were grown to confluence and starved overnight
with 20 pl serum-free medium per well of 384-well plates. We
added 20 pl of compounds diluted in media so that the final
concentration of compounds would be approximately 10 pM
in three out of six replicas, and 50 uM in three remaining rep-
licas. Media containing carrier (DMSO) was added to control
wells instead of compounds. The compound library was
composed of 1,739 chemicals either approved for use in
humans by the Food and Drug Administration or extensively
biologically characterized [2,62] (the full list of tested com-
pounds is available in these publications). After 30 minutes of
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compound treatment, cells were induced with 40 ul of PDGF
diluted in media (final PDGF concentration 40 ng/ml). PDGF
was added to half of control wells to measure PDGF response;
only media was added to the remaining control wells. After 40
minutes of PDGF induction, media was discarded, cells were
lysed and RNA was extracted and quantified as described in

[2].

Briefly, 15 ul of lysis solution containing a hypotonic deter-
gent, dithiothreitol and RNAse inhibitor were added to
medium-free cells for 15 minutes. The lysates were trans-
ferred to a 384-well oligo-dT-coated plate and incubated with
6 pl of 2.5x binding buffer. After 30 minutes of incubation
lysates were discarded and reverse transcription was carried
out in a 5 pl Moloney murine leukemia virus (M-MuLV) RT
reaction at 37°C for 2 h.

After incubation, the RT mixture was discarded and multiplex
PCR was carried in a 5 ul volume. The resulting mixture was
treated with shrimp alkaline phosphatase and the single-base
extension reactions were carried out in 9 pl reaction volumes
with 1x Thermosequenase buffer, 2.7 uM of each primer, 0.2
mM of each ddNTP and 0.58 units per reaction of Thermose-
quenase as described in [2].

The lysis buffers, 384-well custom-coated oligo-dT plates,
and M-MuLV were purchased from Pierce [63] and were used
according to a modified version of the Express Direct mRNA
Capture and RT-PCR system. The shrimp alkaline
phosphatase, Thermosequenase buffer, ddNTP and Ther-
mosequenase were obtained from Sequenom [64].

The primers used for multiplex PCR reactions were: EGR1, 5'-
AGC GGA TAA CAC CTC ATA CCC ATC CCC TGT-3' and 5'-
AGC GGA TAA CTG TCC TGG GAG AAA AGG TTG-3'; c-fos,
5'-AGC GGA TAA CGC TTC CCT TGA TCT GAC TGG-3' and
5'-AGC GGA TAA CAT GAT GCT GGG AAC AGG AAG-3';
ATP5B, 5'-AGC GGA TAA CCA AAG CCCATG GTG GTT ACT-
3' and 5'-AGC GGA TAA CGC CCA ATA ATG CAG ACA CCT-
3'; RPL23A, 5'-AGC GGA TAA CAA GAA GAA GAT CCG CAC
GTC-3' and 5'-AGC GGA TAA CCG AAT CAG GGT GTT GAC
CTT-3"

The following primers were used for single-base extension
reactions: EGR1, 5'-TTC CCC CTG CTT TCC CG-3'; c-fos, 5'-
TGC CTCTCCTCA ATG ACC CT-3'; ATP5B, 5'-GAC TGT GGC
TGA ATA CTT CA-3'; RPL23A, 5'-GTC TGC CAT GAA GAA
GAT AGA A-3'.

To select compounds that inhibited expression of the pathway
signature, the following procedure was performed. For each
compound on each plate four ratios were determined: expres-
sion of EGR1 versus expression of ATP5B(Vygg, atpsp)s EGR1
versus RPL23A (Vggry/rp1aga)s €f0s versus ATP5B (Vo
atpsp)s and c-fos versus RPL23A (V. g,/rp1254)- For each plate
a median (p) and standard deviation (o) were determined for
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each of four ratios. A compound was considered a plate hit if
each of the four ratios for this compound were at least one
standard deviation smaller than the median (V < (u - o):
VEGR1/ATPsB < MEGR1/ATP5B ~ OEGR1/ATPsB> VEGR1/RPL23A < HEGR>1/
RPL23A~ OEGR1/RPL23A} ¥ c-fos/ATP5B < He-fos/ATP5B ~ Oc-fos/ATP5BS and
Ve fos/RPL2gA < Me-fos/RPL23A = Oc-fos/RPLoga)- Compounds that
were plate hits in four out of six replicas were selected for fur-

ther consideration.

Western blotting and transfection

For transfection experiments, 501 MEL cells or TIP5 cells
were grown overnight to 50% confluence and transfected
using Fugene 6 transfection reagent (Roche [65]) as recom-
mended by the manufacturer. Then 24 h after transfection,
medium was exchanged for a serum free one, and cells were
serum starved overnight.

Otherwise, adherent cells (TIP5, MEL 501) were grown to
confluence, serum starved overnight, and treated with com-
pounds and growth factors as indicated. Cells growing in sus-
pension (BaF3 cells and BaF3 cells expressing TEL/PDGFR
protein) were grown to 106 cells/ml and treated with com-
pounds as indicated. After treatment media was removed,
adherent cells were scraped with Sample Buffer from Cell Sig-
naling, and suspension cells were pelleted and resuspended
in Sample Buffer. The resulting lysates of approximately 1 x
105 cells were boiled, chilled, run on 4-15% gradient gels from
BioRad [66], transferred to a polyvinylidene difluoride mem-
brane from Millipore [67], blocked, probed and visualized as
recommended by the antibody manufacturers.

Sequence alignment

Comparative sequence analysis between PDGF (UniProtKB/
Swiss-Prot entry P09619), cKIT (UniProtKB/Swiss-Prot
entry P10721), EGFR (UniProtKB/Swiss-Prot entry P00533),
and IGFR (UniProtKB/Swiss-Prot entry P08069) was per-
formed with BLAST 2 SEQUENCES [68].

Averaging and normalization of high-throughput
screen expression levels of marker genes c-fos and
EGRI for Figure 2b

Each primary screen replica plate contained 16 wells with
PDGF and carrier DMSO as a positive control for PDGF acti-
vation (called PDGF in Figure 2b), and 16 wells with carrier
only as a negative control for PDGF activation (called No
PDGF in Figure 2b). The expression levels of marker genes
normalized by expression of control gene (ratios c-fos/ATP5B
and EGR1/ATP5B) were averaged for 16 PDGF wells to have
a single value for the positive PDGF control per plate, and for
16 No PDGF wells to have a single value for the negative No
PDGF control per replica plate. Only one well was allocated
for each hit compound on a single replica plate.

To compare data between replica plates in Figure 2b, the
ratios c-fos/ATP5B and EGR1/ATP5B were adjusted to be
equal to 1 for positive PDGF control. This means that on each
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replica plate the marker/control ratios in all wells were
divided by the corresponding value for the positive PDGF
control for this plate. The procedure was performed inde-
pendently for both c-fos/ATP5B and EGR1/ATP5B ratios. As
a result of this procedure, the c-fos/ATP5B and EGR1/ATP5B
ratios for the hit compounds and for the No PDGF control on
each plate were divided by PDGF control c-fos/ATP5B and
EGR1/ATP5B ratios for this plate. The resulting adjusted val-
ues were then averaged between three replica plates.

Data
The data have been deposited in the Gene Expression Omni-
bus [69] with accession number GSE7403.
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ATA, aurintricarboxylic acid; DMEM, Dulbecco's modified
Eagle's medium; DMSO, dimethyl sulfoxide; EGF, epidermal
growth factor; EGFR, EGF receptor; ERK, extracellular regu-
lated kinase; GE-HTS, gene expression-based high-through-
put screening; IGF, insulin-like growth factor; IGF1R, IGF1
receptor; IL, interleukin; MAP, mitogen activated protein;
MEK, mitogen/extracellular signal-regulated kinase; M-
MuLV, Moloney murine leukemia virus; NMDA, N-methyl-
D-aspartate; PDGF, platelet derived growth factor; PDGFR,
PDGF receptor; RT, reverse transcriptase; RTK, receptor
tyrosine kinase; SCF, stem cell factor.
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