
mutant libraries for several model organisms permits the large-scale 
investigation of phenotypic sensitivities across the entire genome, 
which can be extended through the use of complementary DNA and 
RNA interference libraries5,6. However, genetic perturbations are labor 
intensive, cannot resolve protein functions that differ between con-
texts, and generate secondary effects by modulating the target protein’s 
own abundance. Because chemical perturbagens avoid many of these 
concerns, genetic screens can be complemented by ‘chemical genetics’ 
studies that use organic molecules as perturbers7.

Although single perturbations are effective at determining which 
components in a system are essential for a phenotype, functional con-
nections between components are best identified either by direct interac-
tion data or through combination effects8. For example, paired genetic 
mutations can distinguish whether two nonessential genes have serial or 
parallel functionalities9,10, and analyses across larger sets of perturbations 
can resolve the system into functional modules and pathways11,12. With 
the arrival of genome-scale mutant libraries, comprehensive combina-
tion genetic experiments are now being undertaken in model organ-
isms such as yeast8, nematodes13 and bacteria14. This approach has also 
been extended to chemical-gene interactions15–17 and purely chemical 
combinations18,19, thus marking the advent of a new area of investigation: 
combination chemical genetics.

Combination chemical genetics (CCG) can be defined as the system-
atic testing of multiple perturbations involving chemical agents and can 
include purely chemical combinations or mixed chemical and genetic 
perturbations. Classical and chemical genetics are generally divided 
into ‘forward’ screens, in which uncharacterized perturbers are tested 
against a chosen phenotype to identify genes affecting that phenotype, 
and ‘reverse’ studies, in which a specific gene or protein is modulated 
and multiple phenotypes are monitored to determine the effects of that 
target7,20. Studies involving combined perturbations can be similarly 
classified (Fig. 1) with the mechanistic focus shifted from individual 
targets to interactions between them. Here we present an overview of 
this emerging field and discuss uses of CCG for both scientific under-
standing and medical discoveries.

An important challenge facing the life sciences is to quantitatively describe 
the bewildering complexity of living organisms1, both to appreciate the 
elegance of nature and to make medically relevant predictions. The scope 
of this complexity is vast. Even the function of a single mammalian 
cell typically involves coordinated activities among over 20,000 genes, 
100,000 proteins2, and thousands of small-molecule lipids, carbohydrates 
and metabolites, each of which may be expressed at differing levels over 
time. These components interact in physical complexes and functional 
modules that operate at many levels of organization1. The systems biol-
ogy approach to understanding such processes involves constructing 
large-scale models of cellular function, using networks of metabolic and 
signaling pathways extended and buttressed by incorporating interaction 
data obtained from physical binding experiments3.

Systems biology models are refined by exposing a system to experi-
mental perturbations and assessing responses for consistency with 
model predictions3. A striking example of this approach was the con-
struction of a detailed model of the pathways controlling sea urchin lar-
val gut development that could predict specific abnormal phenotypes 
(for example, gut duplication) upon mutation4. Genetic perturbations 
are attractive because they make it possible to manipulate individual 
macromolecular components with little ambiguity about which tar-
get has been directly affected. Moreover, the advent of comprehensive 
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sory neurons, among the few types of neurons that turn over in vivo30. The 
study found that jun kinase (JNK) inhibitors could prevent this cell death 
by means of a new functional role for the target, and it validated this new 
signaling function for JNK both in vitro and in vivo. As another example, 
after discovering inhibitors of the yeast transcription factor component 
Hap3p in forward screens using immobilized small-molecule arrays, 
the new inhibitor haptamide B was mechanistically characterized using 
whole-genome transcriptional profiling of wild-type and knockout yeast 
cells31. Finally, a compendium of expression profiles was used to func-
tionally characterize small-molecule treatments32, which demonstrates 
that transcriptional profiling is one of the most effective tools for reverse 
chemical genetics.

Experiments that test many compounds against a comparable num-
ber of phenotypes can be used to integrate both forward and reverse 
approaches in a single study. For example, 100 diverse drugs and research 

Chemical genetics
Research in chemical genetics developed over time as a field derived from 
classical genetics, and most of the methods and terminology used reflect 
that history. Genetic knockouts have their counterparts in chemical 
‘knockdowns’, and studies can be designed to be either forward or reverse 
depending on the direction of learning that underlies their motivation7,20. 
Forward studies involve testing many chemical probes against one or a 
few phenotypes in order to identify active agents, and reverse studies per-
form multiple phenotype measurements on a few related chemicals to 
characterize their function. In both cases, chemical agents can be ana-
lyzed across a panel of phenotypic assays to identify either broad activity 
or selectivity between the phenotypes. The essential tools for chemical 
genetics include large, diverse libraries of chemicals with both known and 
unknown biological targets21 (Table 1). These can comprise approved 
drugs22 and mechanistically characterized chemical probes23, which are 
often informed by chemical-protein associations from the literature24.

Chemical perturbations provide information that is distinct from and 
complementary to the information provided by genetic mutations, given 
the differences between how they modulate protein functions7. The advan-
tages of chemical perturbations are that they (i) can target a single domain 
of a multidomain protein, (ii) allow precise temporal control that is critical 
for rapidly acting processes, (iii) can target orthologous or paralogous 
proteins, enabling comparisons between species or redundant functions, 
and (iv) do not directly alter the concentrations of a targeted protein, thus 
avoiding indirect effects on multiprotein complexes. Small molecules also 
lend themselves more readily to combination interventions, making them 
especially useful for integrating systems and chemical biology9,19.

The main challenges with using small molecules are that they are 
generally pleiotropic—they have multiple dose-dependent molecular 
targets that are often not fully characterized, which leads to unexpected 
activities. Some small molecules also have additional liabilities that can 
hamper their use, such as in vitro aggregation, poor solubility, difficulty 
traversing biological membranes and reactive or toxic functionalities. 
Moreover, compounds are subject to metabolic modifications in vivo that 
can substantially alter their activities and toxicities. Such liabilities can be 
minimized in many cases, but suitable precautions need to be taken; for 
example, multiple structurally distinct probes sharing a known target can 
be used to distinguish off-target from on-target effects. Finally, despite 
the impressive size of chemical databases (Table 1), the known targets of 
bioactive libraries still cover only a small fraction of the proteome22. This 
deficiency is due to the difficulty of finding biological targets, constraints 
such as cellular compartmentalization or varying protein levels that make 
some targets inaccessible, and the limited structural diversity of libraries 
generated by combinatorial chemistry25.

Forward chemical genetic approaches have recently yielded medically 
relevant and biologically informative insights. For example, comparing 
activity profiles across ~70,000 compounds revealed that modulating 
the activity of mitochondrial voltage-dependent anion channels causes 
the selective death of RAS-transformed tumor cells26, and subsequent 
mechanistic studies27 showed that three such compounds achieve this 
selectivity through a new, non-apoptotic cell death process. Similarly, 
gene expression profiles in cancer cell lines identified genetic markers 
for acute myelogenous leukemia that were then used for a chemical 
genetic screen across a diverse set of 1,739 compounds, to find 8 drug 
candidates that induced favorable cell differentiation signatures28. As 
a final example, a cell-based screen of small-molecule libraries identi-
fied chemicals that induce stem cell self renewal through modulating 
specific combinations of targets29.

Reverse chemical genetics studies have been similarly revealing. For 
example, a number of annotated compounds were screened for their abil-
ity to prevent the enigmatic cell death process that occurs in olfactory sen-
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Figure 1 Combined perturber studies in the context of forward and reverse 
genetics. (a) In classical and chemical genetics, “forward” screens use 
many uncharacterized perturbers and a known phenotype to discover 
genes or proteins that affect that phenotype, and “reverse” studies test 
many phenotypes using a perturbagen with a known target to determine 
which phenotypes are affected by that target. In both cases, the questions 
under investigation center on the function of individual genes or proteins. 
(b) For combination chemical genetics, the focus of investigations shifts 
from individual targets to interactions between them or conditional target 
dependencies, and the perturbations are applied as combinations. Here 
forward screens use combinations of many perturbagens to discover 
interactions, and reverse studies involve modulating a known interaction with 
a set of probes targeting its components to determine which of many tested 
phenotypes are affected by that interaction. Figure adapted from ref. 20.
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other cellular networks38.
When working with chemicals, the effects of varying the concentra-

tions need to be considered39 (Fig. 2). Chemical agents generally transi-
tion from inactive to a fixed effect level as the dose increases, and the 
rate of transition depends on the mechanistic interaction between the 
perturber and its target (for example, whether the chemical is a competi-
tive or allosteric inhibitor). Introducing a second agent can cause synergy 
or antagonism either by boosting the high-dose response to a different 
effect level or by shifting the transition to a higher or lower concentration. 
Many chemical perturbers also affect multiple targets, in some cases at 
distinct doses, leading to several transition levels in their response curves 
and further complicating any combination analysis. Chemical responses 
can be measured for drug-gene interactions using serially diluted dose 
series experiments with and without the genetic perturbation. For chemi-
cal combinations, however, the optimal dosing ratio between the agents 
is unknown, so it is useful either to test the combination as a fixed dose-
ratio series, where component drugs are mixed at a high concentration 
and the mixture is diluted serially, or to use a factorial “dose matrix” test-
ing all pairs of serially diluted single-agent doses. The results from a dose 
matrix experiment can be visualized as a three-dimensional response 
surface, or from the top using color to represent the different effect levels. 
By focusing on a chosen effect contour with an “isobologram,” it is pos-
sible to visualize how much dose shifting has occurred at that level owing 
to synergy or antagonism between the agents.

Determining synergy for chemical combinations is also more compli-
cated39. The genetic interaction models have their counterparts (Fig. 2) 
in Bliss independence (multiplicativity) and Gaddum’s non-interaction 
(masking). For medical applications, however, the most relevant refer-
ence is Loewe additivity, which is the dose-additive expectation for a drug 
combined with itself, usually compared to observed synergies via a com-
bination index40. Although all three reference models are indistinguish-
able when one of the perturbations has no effect alone, there has been 
considerable disagreement concerning which null-interaction model is 
most generally applicable to biological contexts19,37,39. For now, it seems 
that genetic interactions in proliferation assays find mostly multiplicative 

probes were tested in cancer cells across ~100 phenotypes (for 11 cancer-
relevant proteins, each with ~10 microscopic measurements of stains 
or fluorescent antibodies tested at 12 concentrations of each drug)33, 
and the resulting dataset was used both for assigning targets to pre-
viously uncharacterized drugs and for measuring the functional 
responses to drugs with remarkable detail. Also in this category is 
the Connectivity Map project34, which is systematically collecting 
whole-genome expression profiles across multiple tumor cell lines 
for a large number of chemical agents, with both a forward goal of 
identifying chemicals with desirable selectivity across a multigene 
expression phenotype and a reverse objective of mechanistically 
characterizing drug responses.

Combined perturbers
Combined perturbation studies are inherently more complex than 
those based on single agents. In particular, the interaction needs to 
be compared to the individual single-agent effects in order to deter-
mine whether there is “synergy,” where the agents cooperate toward a 
phenotype, or “antagonism,” where they impede each other’s activity. 
Systematic combination experiments also require quantitative mod-
els that represent the expected combination effects, against which 
synergy and antagonism can be measured.

Historically, interactions between genes have been described as 
epistatic relationships deriving from statistical concepts35. In these 
models, the fitness of a double mutant in the absence of a genetic 
interaction is expected to be the product of the individual fitness 
measurements of the corresponding single mutants. Another defini-
tion of epistasis derives from the work of Bateson and is typically used 
to describe situations in which the activity of one gene masks effects 
at another locus, allowing inferences about the order of gene action. 
Classical examples of Bateson-type epistasis analysis include stud-
ies of signaling pathways that control the yeast cell cycle, nematode 
pheromone responses and sex determination in Drosophila melano-
gaster35. More recently, defining the nature of genetic interactions 
has been expanded36,37 and modeled in the context of metabolic10 or 

Table 1  Perturbation sets for combination chemical genetics
Chemical sets Number of probes Number of targets Notes

Existing drugs 1,357 324–1,048 Drugs approved in the United States22

Drugs and probes 4,765 4,447 DrugBank23 (www.drugbank.ca/, on 2008.08.18)

Bioactives 37,349 6,128 PubChem actives100 (http://pubchem.ncbi.nlm.nih.gov/)

Literature 128,120 1,320 WOMBAT24,100 (version 2006.1)

Registered chemicals >3.7 × 107 – CAS101 (http://www.cas.org/, on 2008.08.18)

Genetic libraries Number of probes % of genome Notes

Bacteria, E. coli ~3,900 93% KO77, ORF78

Bacteria, S. aureus ~2,600 95% ORF79

Bacteria, Brucella ~3,000 90% ORF80

Bacteria, Campylobacter ~1,600 98% ORF81

Bacteria, F. tularensis ~1,500 96% ORF82

Fungi, S. cerevisiae ~6,100 98% KO15, OX89, ORF102

Fungi, S. pombe ~5,000 95% KO (http://www.bioneer.com/), ORF83

Fungi, C. albicans ~2,800 45% KO84

Fungi, C. glabrata ~500 10% KO85

Worm, C. elegans ~11,000 50% RNAi87

Fly, Drosophila ~13,000 95% RNAi88, ORF (http://www.fruitfly.org/)

Vertebrate, Mus musculus ~11,000 50% RNAi6, shRNA5

Vertebrate, Homo sapiens ~22,000 90% RNAi6, ORF103

KO, knockout; OX, overexpression; ORF, open reading frame; RNAi/shRNA, RNA interference.
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from genome-wide competitive growth in a single culture43. Mutant 
libraries are being developed for a number of other model organ-
isms, and the construction of large RNA interference (RNAi) probe 
sets and open reading frame (ORF) libraries (Table 1) has opened up 
still more organisms for systematic genetic testing. Using these tools, 
“chemogenomic” chemical sensitivity screens can be carried out that 
can test large sets of cells with mutated, silenced or overexpressed 
genes against panels of chemical perturbations.

effects37, whereas chemical combinations are 
dominated by masking responses19. Ultimately, 
comparisons between genetic and chemical 
effects should be made using a single null-effect 
reference that is mechanistically appropriate to 
a common measured endpoint.

Going beyond simply measuring synergy or 
antagonism, dose matrix responses to chemi-
cal combinations can also provide detailed 
mechanistic information. Although modeling 
combination effects for theoretical networks 
of reactions has historically proven difficult41, 
largely because the combination index at a 
chosen effect level can be very sensitive to the 
assumed kinetic parameters in each reaction, 
more recent efforts focused on the dynamic 
responses of multiply inhibited simulated net-
works across different effect levels have yielded 
more stable predictions19,42. When performed 
in dose matrices, such simulations produce a 
variety of synergistic and antagonistic responses 
whose surface shapes contain information on 
the topological connectivity between inhibited 
targets19 (Fig. 3). Experimental dose matrices 
can be morphologically compared to responses 
from many simulations like these, each of which 
represents a mechanistic hypothesis about how 
the targets are connected in the network under 
study, to determine which hypotheses are most 
consistent with the data.

The experimental designs for CCG studies 
bear a direct resemblance to those used for clas-
sical and chemical genetics (Fig. 4). Tests in each 
phenotype become either paired-dose series or 
full-dose matrices, depending on whether the 
perturbers can be continuously dosed, and in 
each case the combination data are used to 
derive a score quantifying synergy or antago-
nism between the perturbers. By analogy with 
chemical genetics, forward CCG studies involve 
testing multiple combinations against one or a 
few phenotypes in order to identify synergistic 
interactions or conditional sensitivities, and 
reverse studies perform multiple phenotype 
measurements on combinations aimed at a few 
related interactions to characterize their func-
tion. Both approaches can be integrated by col-
lecting profiles across many combinations for 
many phenotypes, thus enabling large-scale 
profile comparisons in either direction.

Chemogenomics
The most advanced area of combined chem-
ical genetics involves the joint application of chemical and genetic 
perturbations. The budding yeast Saccharomyces cerevisiae has 
dominated this field, owing to the comprehensive genetic tools that 
have been developed. These resources include a systematic gene dele-
tion set, where precise start-to-stop mutant strains were constructed 
for ~6,000 genes (homozygous for inessential and heterozygous 
for essential genes)15. The strains were constructed with molecu-
lar tags to permit individual mutant sensitivities to be extracted 

Figure 2 Measuring synergy for chemical combinations. (a) Continuous perturbations with sigmoidal 
response curves can cooperate either to boost the high-dose effect to new levels or to shift the effective 
concentration to lower doses, and the optimal dosing ratio is usually not known. A factorial dose matrix 
design can capture all of these possibilities. (b) The resulting interaction can be analyzed using the 
full three-dimensional response surface or using an isobologram to measure linear dose shifting at 
a chosen effect level via a combination index CI. For this example, we show a strongly synergistic 
antibiotic combination that targets folate metabolism enzymes19. (c) Synergy reference models will 
differ depending on the null-effect assumption. Bliss independence (multiplicative epistasis) or 
Gaddum’s non-interaction (Bateson masking) are generally used to analyze genetic epistasis, and Loewe 
dose additivity is most widely used for drug combinations. The multiplicative model produces stronger 
effects than either of the single agents at high combined doses, whereas masking simply follows the 
strongest single agent at corresponding doses. In dose-additive combinations, the agents cooperate in 
the same way as increasing the dose of a single drug. All three models can be adapted for analyzing 
pairs of agonists and generalized for three or more agents.
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small interfering RNA screens with commonly 
used antineoplastics in tumor cell lines have 
identified potential targets for cotherapeutic 
cancer treatment50. Whole-genome expression 
signatures have also been used as a phenotype 
to identify a beneficial interaction between 
the mTOR inhibitor rapamycin and the glu-
cocorticoid receptor as a potential therapy for 
lymphoid malignancies51.

As the number of genetic perturber 
sets expands (Table 1), chemogenomic 
approaches will provide ever larger sets of 
interaction data to aid with systems biol-
ogy modeling efforts52. The analysis of che-
mogenomic screens presents a formidable 
challenge because they involve profiles with 
thousands of combinations, where each single 
agent might have multiple states of genetic 
perturbations (knockout, knockdown, over-
expression) and many doses of chemical 
components. Such datasets will require both 
appropriate synergy analyses for each indi-
vidual response matrix19 and global displays 
and statistics for determining mechanistic 
patterns between the interactions53.

Combinations of chemicals
The usefulness of synergistic drug combinations 
has long been appreciated9,39,54,55, especially in 
the therapeutic areas of cancer and infectious 
diseases. Multitarget synergies between drugs 

can be used to overcome resistance to one of the components, to make 
use of targets that are individually insufficient for therapy and to reduce 
side effects through dose sparing56. However, although there have been 
numerous individual studies of synergistic combinations39, it is only 
recently that systematic large-scale testing of chemical combinations has 
been pursued18,19,57. Owing to the required investment in concentration 
sampling, these efforts have focused on testing integrative phenotypes, 
such as growth, that are influenced by many cellular components, rather 
than monitoring many genes simultaneously.

The first systematic CCG efforts involving pure chemical combina-
tions were aimed directly at drug discovery. Using a dedicated screening 
platform, an effort focused on cancer, inflammation and fungal assays 
identified a number of synergies as potential combination therapeutics57. 
All three assays yielded unexpected interactions involving drugs not nor-
mally administered toward the target therapy. Both the anticancer and the 
anti-inflammation synergy translated to animals57, and the latter has since 
been confirmed in a phase 2a clinical trial58. Drug discovery approaches 
of this kind must consider the possibility of synergistic toxicity and in vivo 
pharmacological interactions59 that can complicate delivery of the com-
bination to targeted tissues or cause metabolic hepatotoxicity. Synergies 
in cell-based assays can also fail to translate when tested in animals or 
humans. To avoid such concerns, it is essential to carry out counterscreens 
and preclinical investigations, which can be guided by published toxic-
ity or drug interaction data for the single agents, before considering any 
potential combination therapies for the clinic.

The use of chemical combination screens to extract mechanistic 
information is at an earlier stage. The first such screen tested all pairs 
of 21 antibiotic drugs in Escherichia coli bacterial proliferation at single 
combination dose points18. This study found a wide variety of combina-
tion effects between the drugs and was able to identify modules of drug 

Early large-scale efforts in CCG focused on discovering interactions 
between chemical and genetic perturbations in bacteria, beginning with 
statistical epistasis between random mutagenesis and chemical stresses44. 
The introduction of large-scale yeast mutant libraries, however, caused a 
rapid transition to chemogenomic screening, which had both the forward 
and reverse aspects of integrated chemical genetics. For example, a screen 
of 74 drugs and chemical probes against a panel of ~3,000 heterozygous 
yeast mutants identified sensitive strains as likely targets for most of the 
chemicals17. Another study that tested ten drugs at multiple doses against 
a comprehensive panel of yeast mutants identified multiple genes that 
conferred sensitivity to each of the drugs16. Mutant sensitivities involving 
haploinsufficient essential genes were used to identify direct targets of the 
drug, but those from homozygous deletions discovered gene products that 
act indirectly on the drug’s targets16. When such drug sensitivity profiles 
are compared with double-mutant fitness profiles involving a drug tar-
get’s pathway45, the degree of similarity can provide further information 
on the drug’s mechanism of action. As an example of reverse CCG among 
these studies, chemogenomic screening with homozygous strains pro-
duced insights on the machinery of RNA processing16. Chemogenomic 
screens in yeast cells have also been used to discover a new antineoplastic 
mechanism that induces mitotic arrest46 and to identify potential toxici-
ties related to the off-target effects of psychoactive drugs47.

Chemogenomic screening in other organisms has also advanced, 
often with a more direct focus on drug discovery applications. For 
example, screening natural compounds using a Candida albicans 
mutant set identified fungal-specific inhibitors of mRNA polyadenyla-
tion48, thereby opening a new mechanistic class for potential antifungal 
therapies. In human cells, combining RNAi perturbation with small 
molecules49 offers insights into the activity of chemical combinations 
on both normal and abnormal disease-relevant cell types. For example, 

Figure 3 The response shape in dose matrix experiments depends on target connectivity. In simulations of 
multiply inhibited metabolic networks19, the response surface morphology depended strongly on how the 
inhibited targets were connected in the network. Here we show four representative target connectivities, 
where substrates (green symbols) are metabolized by reactions (black arrows), and the reaction enzymes 
(white circles) are modulated by inhibitors (red markers). The resulting response surfaces from dynamic 
simulations are shown to the right of each such pathway. (a,b) Inhibitor pairs with parallel targets 
produced either saturated (a) or masking (b) effects in combination, depending on whether the targets 
affected independent alternatives or codependent ingredients of the final reaction. (c,d) Inhibiting serial 
targets along a pathway yielded multiplicative effects (c) for partially effective single agents, but serial 
targets in pathways regulated by negative feedback (d) produced strong dose shifting like that seen in 
our antibacterial example (Fig. 2b). Each of these cases represents a mechanistic hypothesis relating 
response shape to target connectivity, generated by the pathway simulations.
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Chemical genetic studies will benefit from continued improvement and 
extension of available chemical libraries. Efforts to catalog the druggable 
genome for existing chemicals22 have led to collections of biologically 
active compounds with known targets23,67. Ligands for protein targets 
can be identified using traditional affinity purification7, radiolabel-
ing68 and live-cell target-labeling approaches69. Yeast three-hybrid tech-
niques70 and the use of immobilized chemical or protein arrays71 can 
reveal direct drug-protein binding events, and haploinsufficiency fitness 
tests15 can associate small molecules with their target genes, which will 
be especially helpful toward characterizing the mechanisms of bioactive 
natural products72. Chemical genetics probe sets are also being extended 
by comparing response profiles across cell-based phenotypes33,67, by 
gene expression profiling28,34 and by analysis of drug activities and side 
effects73. Considerable progress has also been made with establishing 
libraries for specific target classes (for example, epidermal growth factor 
receptor kinases74). For modulating the many targets that are not covered 
by current probe sets, it remains critical to develop libraries with greater 
chemical diversity. Current efforts to this end involve assembling bioactive 
molecular fragments75, or using diversity-oriented synthesis76 to produce 
complex, natural product–like libraries.

Chemogenomics efforts are becoming increasingly complex and diverse 
with the introduction of expanded probe sets and higher content experi-
mental platforms. The resources for genome-scale genetic perturbations 

pairs whose group interactions were purely synergistic or antagonistic, 
where each module comprised drugs targeting related cellular functions. 
Another chemical genetic screen in Candida glabrata yeast19, testing all 
pairs of ten antifungal drugs in six-by-six dose matrices, confirmed the 
relationship between response matrix morphology and target connectiv-
ity expected from dynamic pathway simulations19 (Fig. 3). Also in that 
study, an analysis of synergy profiles derived from an anticancer screen 
in HCT116 cells that tested all pairs of 90 drugs and research probes 
in six-by-six dose matrices found that probes with related targets had 
more similar synergy profiles than those with disparate functions19. These 
examples illustrate how CCG using chemical combinations, especially 
with varying doses, can reveal constraints on the topology of the under-
lying cellular network and assist with identifying unknown activities of 
chemical probes in the library. It is important to note that the relevance 
of combination effects from phenotypic experiments is limited to the 
cell systems under study and that mechanistic conclusions from in vitro 
synergies can fail to translate to other contexts (for example, due to cell 
type differences or in vivo pharmacological drug interactions). In any 
case, such studies are dependent on libraries of well-characterized chemi-
cal probes with known biological targets, and it is especially valuable to 
have several chemically distinct probes targeting the same protein when 
possible in order to separate on-target (consistent responses) from off-
target (inconsistent response) effects.

Almost all of the past CCG screens involving combinations of chemicals 
have been essentially forward studies, aimed at uncovering unexpected 
synergies or interactions between drug targets. Reverse CCG studies are 
a more recent development but are increasingly undertaken, especially to 
elucidate the mechanisms of anticancer synergies. For example, whole-
genome transcriptional profiling in prostate cancer cell lines of synergies 
between taxane microtubule binders and either estramustine60 or capecit-
abine61 identified genes associated with the synergistic response that were 
not present in the single agents’ profiles. Another study testing the com-
bination of the apoptosis inducer taurolidine with tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand (TRAIL) used esophageal car-
cinoma cells and flow cytometry to characterize the synergistic responses 
in many apoptosis-related signaling proteins62. In yeast, chemogenomic 
screening performed over multiple doses of several drug combinations 
was used to map strain-specific interaction measurements onto the yeast 
genetic network and identify protein complexes that buffer the cell from 
the drug combination53. Given recent trends, we expect such studies to 
increase in frequency and complexity.

Discussion and future directions
Combination chemical genetics is an emerging field of research. 
Whether genetic and chemical perturbations are applied together or 
combinations are purely between chemicals, CCG allows the testing of 
interactions between cellular components to be studied in new contexts 
and with more detail than can be achieved with single agents or only 
genetic perturbations. 

To make the best use of available resources, CCG researchers will need 
to agree on standards for the design, data collection and analysis of experi-
ments, building on resources already established for chemical genetics. For 
example, the US National Institutes of Health (NIH) Molecular Library 
Initiative63 aims to create a publically available collection of biologically 
active compounds64 and experimental standards65. For CCG, it will be 
helpful to coordinate common probe libraries that can facilitate compari-
sons between experiments, and to agree on combination effect reference 
models for analyses across combination studies. Interaction data can be 
collected in existing public repositories (for example, BioGRID66), which 
will need to be equipped with cheminformatics tools to allow integration 
with the knowledge in chemical databases21.

Figure 4 Designing combination chemical genetics experiments. (a) The dose 
sampling possible for individual pairs depends on whether the perturbagens 
are discrete (for example, knockouts) or continuous (for example, chemicals, 
overexpression or RNAi). When the perturbers have known cellular targets, 
interactions can be described in terms of those targets. (b) Following the 
practices of chemical genetics, CCG involves many such experiments, 
either testing multiple combinations against a few phenotypes to discover 
synergistic interactions (forward) or testing a few combinations against many 
phenotypes to characterize the function of an interaction (reverse). These 
approaches can be integrated by collecting profiles across many combinations 
for a comparable number of phenotypes, allowing profiles in either direction 
to be compared for similarity or selective effects.
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approaches, synergy analysis and chemical genetic tools offers the prom-
ise of new insights into biology and a new avenue for drug discovery.
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