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Research in the life sciences is increasingly dominated by high-
throughput data collection methods that benefit from a global
approach to data analysis. Recent innovations that facilitate such
comprehensive analyses are highlighted. Several developments
enable the study of the relationships between newly derived
experimental information, such as biological activity in chemical
screens or gene expression studies, and prior information, such as
physical descriptors for small molecules or functional annotation
for genes. The way in which global analyses can be applied to both
chemical screens and transcription profiling experiments using a
set of common machine learning tools is discussed.
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Introduction
Research in the life sciences has become dominated by high-
throughput data collection methods. It is now common to
screen many thousands or millions of small molecules in
miniaturized biological tests, such as protein-targeted assays
or cell-based assays [1•]. In addition, it is common to
perform microarray-based transcription profiling, which
involves the simultaneous hybridization of thousands of
DNA sequences to spatially arrayed targets [2]. An
emerging challenge is the analysis and integration of the
large datasets generated by these disparate high-throughput
techniques.

Until recently, only a few genes or compounds postulated in
advance to be modulators of a phenotype or to have activity
of interest were selected for study. High-throughput
methods now permit use of a hypothesis-generating strategy
in which large libraries of genes or chemicals are tested for
biological effects of interest. One relies on the large size and
diversity of the initial collection to yield active genes or
compounds rather than prior knowledge of the screening
candidates or the biological processes being studied. This
strategy uncovers a large and varied set of active
compounds or genes that can then be studied with a
targeted, hypothesis-driven approach.

Ideally, the dataset from each new high-throughput
experiment is interpreted in the context of all previous
results. It then becomes part of the context in which all
future screens are analyzed. Building on previous results is
not new, but doing so takes on a new level of importance
and complexity when datasets are vast and involve

extremely inter-related information, and the relevant prior
experimental data cannot be stored and organized in the
mind of one scientist. We use the term 'global analysis' to
refer to an emphasis on greater integration and analysis of
data from all sources.

Challenges involved in the global analysis of experimental
data are illustrated by the new fields of chemical genetics
and chemical genomics [1•]. By analogy to classical genetics,
chemical genetics uses small molecules in place of mutations
as modifiers of protein function. Small molecules that
modulate a process or phenotype of interest are identified
through large-scale screening and serve as probes of the
mechanisms underlying the biological process. Chemical
genetics, like other large-scale screening approaches,
integrates information from several large datasets. The
activity profile of a library of compounds in a particular
assay is measured and correlated with structural and
chemical properties of the compounds, as well as previously
documented biological activities. Chemical genomics
involves the integration of chemical and genomic
information and technologies. One example of the
challenges of a chemical genomic approach is the integration
and analysis of both transcription profiling and chemical
screening data.

We will review work reported primarily within the last year
that is applicable to global analyses of the properties of both
small molecules and genes, focusing on: (i) selection and
evaluation of physical descriptors for small molecules; (ii)
new applications of machine learning algorithms; and (iii)
novel approaches for analyzing microarray-based
transcription profiling data.

Selecting chemical entities to screen
We restrict our discussion of chemical screens to low
molecular weight organic molecules as these compounds are
of particular interest in drug discovery efforts and in
biological research. Small molecule screens are preferred for
drug discovery because the resulting lead compounds can
be more easily developed into orally available
pharmaceuticals. Many of the tools for global analyses that
we describe can also be applied to screens involving
peptide, RNA, DNA or protein reagents.

The problem of selecting compounds to screen is a difficult
one. The total number of possible organic compounds
increases with molecular weight, thus, without a defined
molecular weight cut-off there is an infinite number of
possible compounds. Published estimates of the number of
theoretical small molecule drugs range as high as 1066, which
is close to the number of atoms in the universe [3].

One strategy for selecting compounds for screening is to
purchase or make a representative set of molecules based on
physical properties or functional groups. This approach
amounts to an attempt to select an optimally diverse subset
of the obtainable compounds for an initial screen. Jorgensen
et al, for example, developed a method for evaluating the
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diversity of a compound collection using common
subgraphs or substructural elements [4]. Xu et al, on the
other hand, developed a drug-like index to aid the selection
of compounds for screening. The index was trained on 4836
compounds from the Comprehensive Medicinal Chemistry
database [5]. Reynolds et al evaluated two stochastic
sampling algorithms for their ability to select both diverse
and representative subsets of a chemical library space [6].

Much effort has also focused on exploring and quantitating
the notion of molecular complexity and determining the
appropriate level of complexity for small molecules used in
high-throughput screens. Barone and Chanon refined a
quantitative index of complexity that uses the number and
size of the rings in the smallest set of smallest rings and the
connectivity of each atom [7•]. Alternatively, complexity can
be defined as the number of interactive domains contained
in a molecule. A molecule with low complexity has fewer
sites of interaction with a target than a molecule with greater
complexity. Hann et al devised a simple model in which
complex molecules are more selective than simple
compounds and, therefore, yield fewer hits in primary
screens [8•]. This model predicts an optimal level of
complexity for compounds used in primary screens as the
result of a trade-off between sufficient affinity for detection
versus sufficient promiscuity to yield a reasonable number
of hits. This model is consistent with recent analyses
affirming that successful lead compounds are generally less
complex than the resulting drugs [8•,9•].

Given the virtually unlimited sources of small molecules,
there has been interest in identifying characteristics of small
molecules that are useful for drugs and for creating models
that predict the probability that a given compound will be
able to function as a drug (vide infra). It is difficult to
evaluate the performance of these predictive models because
of the great variability in crucial factors, such as the choice of
the training sets of compounds and the choice of descriptors
that define the actual criteria for discrimination.
Furthermore, all empirically derived predictive models are
essentially interpolative and extrapolative. Models that are
better at assigning close structural analogs to members of
the training set (interpolation) may be worse at generalizing
more abstract properties to novel structures (extrapolation)
and vice versa. Thus, one must beware of inferring the
overall performance of a predictive model from a too limited
set of test compounds.

Nonetheless, several efforts at discriminating drugs and
non-drugs have been reported recently. Ertl et al used polar
atom surface area to predict the extent to which small
molecules exhibit a single property of drug transport (ie,
bioavailability) [10]. Anzali et al used chemical descriptors
consisting of multilevel neighborhoods of atoms to
discriminate between drugs and non-drugs with some
success. Their training and testing sets consisted of 5000
compounds from the World Drug Index and 5000
compounds from the Available Chemicals Directory (ACD)
[11]. Muegge et al developed a simple functional group filter
to discriminate between drugs and non-drugs using both the
Comprehensive Medicinal Chemistry and MACCS-II Drug
Data Report (MDDR) databases for drugs and the ACD for
non-drugs [12]. Frimurer et al used a feed-forward neural

network with two-dimensional (2D) descriptors based on
atom types to classify compounds from the MDDR and ACD
as drug-like or non-drug-like, respectively. They reported
88% correct assignment of a subset of each library that had
been excluded from the training set. They also tested their
model with a different library and claimed generalizability
to compounds structurally dissimilar to those in the training
set [13].

Drug versus non-drug comparisons emphasize
characteristics common to all drugs over those
characteristics specific to a particular receptor. Drugs share a
number of general characteristics, such as target-binding
affinity and the ability to permeate into cells, and they must
also have favorable absorption, distribution, metabolism and
excretion (ADME) properties. Models that discriminate
drugs from non-drugs tend to select for ADME properties
rather than properties that correlate with cellular biological
activity. If one is interested simply in cellular biological
activity rather than the full complement of required drug
characteristics, a correspondingly appropriate compound
training set must be selected. For example, in chemical
genetic approaches, compound libraries with enriched
protein-binding affinity are valuable, whereas compounds
with favorable ADME properties have little added value.

Finally, it has been noted that many natural products do not
conform to the canonical rules for selecting drug-like
compounds. Moreover, many natural products have been
directly developed as drugs without the need for significant
(or any) analog synthesis. This observation has inspired a
new strategy of synthesizing natural-product like
compounds using combinatorial, diversity-oriented
syntheses [14•,15•].

Descriptors
For comparisons that involve molecular properties, the
structural, physicochemical, and/or biological properties of
the molecules need to be represented in a consistent form to
permit direct comparison. A standardized representation of
a molecular feature is referred to as a 'descriptor'. The choice
of descriptors plays a crucial role in the analysis of chemical
screening data. A major challenge in descriptor analyses is
the identification of the smallest, most easily and
reproducibly calculated set of descriptors that retains all the
information required to make the distinctions and
comparisons of interest. Here, we discuss some general
considerations concerning descriptor choice, and highlight
some recent developments.

Chemical descriptors
The compounds in a database are normally identified by
their 2D structural representations, which consist of a list of
the constituent atoms, their interconnectivity and sometimes
their relevant stereochemistry. Aside from experimental
data, these 2D representations of the molecular structure
typically contain all the available information distinguishing
the compounds in the library. For each compound, a
common set of structural/physical/chemical descriptors is
generated from these 2D structures. Choosing this set of
descriptors amounts to defining the 'chemical space'
spanned by all possible descriptor representations. A
correlation between regions in this chemical space and
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bioactivity is assumed to arise from the binding of the
chemical to specific biological targets. Here, we concentrate
on the case in which there is no specific knowledge of the
presumed binding sites and there is a purely empirical
relationship between structure and activity.

There is a tremendous range in both the complexity and the
reliability of descriptors. Simple descriptors, such as atom
counts, may be obtained directly and reliably from the 2D
structural representation. At the other extreme of both
complexity and reliability are three-dimensional (3D)
descriptors that involve 3D geometry-optimization and
provide no assurance of producing a conformation with in
vivo relevance. A widely varying number of descriptor
dimensions have been employed to describe chemical
libraries, but these have all involved a reduction in
dimensions and, thus, a loss of information versus the
original representation. Removing information that does not
distinguish molecules by the properties of interest (eg,
bioactivity) decreases the computational expense involved
in computing and manipulating the descriptor
representations and the 'noise' associated with the
descriptors that do not contribute to the distinction of
interest. One family of widely used descriptors consists of
database hash keys, which were originally designed to filter
compounds quickly in substructure searches. Although
experience shows that these keys are unreliable when used
alone to represent compounds, they have proven useful
when used in conjunction with other descriptors
[16•,17•,18].

Considerable effort has been devoted to determining the
importance of 3D (conformational) information relative to
more simply and reliably obtained 2D information, but the
results seem to be highly dependent on the details of the
analysis and the nature of the correlation being sought. 3D
conformational analysis is generally avoided in the interest
of computational speed and reproducibility. Estrada et al
found a significant correlation between 2D topological
indices and the dihedral angle in a series of alkylbiphenyls,
demonstrating that 3D properties may be implicitly
represented without resorting to geometry optimization
[19]. In addition, Ertl found that 2D topological information
was sufficient to calculate a molecular surface polar area
descriptor that was essentially identical to the value
obtained with the comparable 3D calculation [10]. One
limitation of topological descriptors is that they cannot
distinguish between stereoisomers. To help address this
problem, Golbraikh et al [20] and Lukovits and Linert [21]
have introduced interesting ways of combining chirality
with 2D topological information.

The descriptors chosen to describe a compound library may
be very different from one another with respect to their
range and distribution. Godden and Bajorath used measures
derived from Shannon entropy to quantify the information
content of each descriptor within a compound library. They
extended this method to compare the distributions of a
descriptor between different libraries [22•].

Biological descriptors
There are a number of biologically relevant quantities that
can be used as independent variables in a manner directly
analogous to the chemical descriptors described above.

Biological descriptors can be used in the global analyses
of microarray-derived transcription profiling data or to
interpret the results of a screen for biological activity in
terms of previously known activities of compounds in the
library. Chromosomal location can also serve as a
descriptor. For example, Wyrick et al used chromatin
immunoprecipitation and subsequent hybridization to
genomic DNA microarrays to identify autonomously
replicating sequences (ARS) in yeast cells. Using
chromosomal location in the list of generated sequences,
these authors determined that ARSs are overrepresented
in subtelomeric and intergenic regions of chromosomes
[23••].

Properties can be calculated directly from DNA sequence
information in a manner analogous to the calculation of
physical descriptors for small molecules. For example,
enrichment of the fraction of guanine/cytosine base pairs
(GC content) in promoter regions can be calculated
directly from genomic DNA sequence. Konu et al, for
example, found that gene expression levels were
correlated with the GC content of the third nucleotide
codon position of the message [24]. One can relate the
presence of splice site sequences, promoter elements and
transcription factor binding sites to gene expression level
using similar strategies. For example, Bernstein et al
determined that binding sites for the transcription factor
Ume6p were enriched upstream of genes that are induced
in sin3 mutant yeast cells [25]. This type of global analysis
correlates genomic sequence information with gene
expression data.

Some properties, such as gene function, may be linked to
a DNA sequence through a strategy of annotation. Other
possible annotations include chromosomal location,
protein interactions and co-regulated expression groups.
Each of these descriptors can serve as an independent
variable for global analyses. Using functional annotation
categories, Bernstein et al determined that the expression
of carbon metabolite and carbohydrate utilization genes
was greater in yeast cells with a HDA1 deletion [25].

The construction of a descriptor vector for each gene used
in a microarray experiment can be envisaged. Each
sequence (eg, gene or chromosomal fragment) would
have an associated value for GC content, the number of
splice sites, the number and type of promoter elements,
the number of binding sites for each of many
transcription factors and a quantitative assignment
(perhaps binary) for each functional annotation category.
Once these vectors are constructed, they allow rapid
analysis of the relationship between active and inactive
genes for each of these descriptor categories. By applying
computational strategies described in the next section, it
is possible to extract the relationship between, for
example, the number of AP-1 binding sites in a gene
promoter and the level of induced expression in an
experiment. Moreover, such methods would permit the
detection of non-linear and combinatorial relationships
among these descriptors, eg, 'stress-response genes with
AP-1 binding sites and > 40% GC content in their
promoter are enriched in response to stimulus X'. Finally,
data from global analyses could be used to develop a
predictive model to classify untested genes.
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Data analysis
It is important to make a distinction between two
fundamentally different applications of high-throughput
screening data. Such methods may be used simply to
identify compounds exceeding a certain activity threshold
(hits) or to identify a more comprehensive correlation
between the measured activity, molecular structure and/or
previously determined biological activity or mechanism.
This distinction is important because the acceptable false
positive and false negative rates for the two approaches are
substantially different. In a 'threshold' screen, high false
negative and false positive rates are acceptable because
secondary screening of the hits is used to distinguish
between true positives and false positives. Since the
identification of true positives is the ultimate goal in a
'threshold' screening approach, false negatives are not a
concern as long as a sufficient number of true positives is
found. In a global analysis, however, the false positive and
false negative rates must be minimized because all results
are used in a quantitative or semi-quantitative analysis.
Global analyses can be quite powerful but are more
expensive in terms of time and money to perform, and may
require the use of sophisticated computational methods (vide
infra).

Analysis of screening data
Screening results typically exhibit a continuous range of
activities, usually with a Gaussian distribution. A cut-off
value is chosen for the selection of hits and the active
elements are normally confirmed in a secondary assay. The
cut-off criteria for determining hits may be based on
absolute activity (ie, 2-fold activity versus control),
distribution (ie, three standard deviations or greater from
the mean) or a desired number of compounds to be retested.
Once confirmed actives have been identified, it may be
desirable to search for additional active elements by testing
or retesting candidates that are related in form or function.
In transcription profiling screens, retesting entails
performing a search of the original gene set for genes that
are related to the active genes in terms of sequence or
function. The screen comes to its natural conclusion with the
selection of a set of actives that can be pursued in
subsequent experiments.

Global analyses
Various learning techniques have been used to generate
hypotheses and form models of relationships between
descriptors and biological activity. These techniques may be
divided into two main categories: classification and
clustering. For simplicity, we assume that the data to be
analyzed are compound descriptors and that the classes of
compounds are active and inactive.

The goal of a classifier is to produce a model that can
separate new, untested compounds into classes using a
training set of already classified compounds. Classification
routines attempt to discover those descriptors or sets of
descriptors that distinguish the classes from each other.
Neural networks, genetic algorithms and support vector
machines attempt to discover regions in descriptor space
that separate pre-defined classes. Unknown compounds that
are subsequently placed in these regions can be classified as
active or inactive [26-28]. These techniques optimize a
learning function in order to fit the given number of classes

while minimizing an error function based on the mismatch
of the classifier in the assignment of compounds. One of the
main issues of training is overfitting, in which the initial
classes are learned so narrowly that no new members are
allowed into a class. The learned model should be specific so
that it seldom misclassifies compounds from the original
training set but general enough to recognize new
compounds that should belong to a class.

Recursive partitioning and decision trees first find the best
single descriptor to split active and inactive populations into
two groups and then successively find the next best
descriptor to further divide the newly formed groups. These
are known as greedy algorithms because they select the best
solution at every step but do not necessarily find the global
optimum [29].

Statistical methods can also be used to form probability
models or estimate the likelihood of particular descriptors
forming the known classes. These approaches generally
involve the use of the training set to form a probability
model that generates both a classification and a probability
of being in a class. Simple statistical methods include
k-nearest neighbors and the Naïve Bayes classifier. Support
vector machines are also examples of statistical classifiers.

The goal in clustering a dataset is to group similar data
together. Clustering forms groups of compounds that
maximize internal class similarity while simultaneously
minimizing external class similarity. Clustering can be
accomplished by either a supervised method, where the
number of classes is known, or through unsupervised
learning, where the data are not grouped into a fixed set of
classes.

In many cases, classes produced by clustering can be used
for classification. Unknown compounds that group with
predominately active compounds have a higher probability
of also being active [30]. One drawback to this strategy is the
fact that the higher hit rate only applies to the relatively
small number of compounds that lie close to known hits.
Furthermore, models of activity are not generated from
clustering techniques and must be deduced by expert
analysis. Indeed, descriptors that cluster compounds
together may not be related to activity at all. As with
classification, there are a variety of available clustering
algorithms. These include hierarchical methods, such as
Ward's clustering, and non-hierarchical methods, such as
Jarvis-Patrick [31] and Self-Organizing Maps [32]. Examples
of statistical-based clustering include the use of Bayesian
neural network to cluster drugs and non-drugs [33] and the
use of k-nearest neighbor analysis to cluster compounds at
various stages of the screening process [34].

In a recent global analysis of both compound screening and
gene expression data, Staunton et al used a statistical
classifier to identify a correlation between gene expression
and cell sensitivity to compounds. Sixty cancer cell lines
were exposed to numerous compounds at the National
Cancer Institute, and were determined to be either sensitive
or resistant to each compound. Using a Bayesian statistical
classifier, Staunton et al showed that for at least one third of
the tested compounds, cell sensitivity can be predicted with
the gene expression pattern of untreated cells [35••]. This
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example demonstrates the power of global analyses to
identify subtle but important relationships among variables
in large-scale datasets.

Conclusion
Global analyses can be performed on data from compound
screening and transcription profiling experiments using
similar computational methods. The goal of such analyses is
to discern sometimes-subtle relationships within these
datasets and to make correlations between large sets of
multidimensional data. Recent advances are making global
analyses increasingly feasible and powerful.

There are numerous future challenges in this area. Firstly, it
will be valuable to identify robust chemical descriptors that
best define global chemical space, as well as the ligand-rich
regions therein. Standardized tests for evaluating
classification methods would enable more meaningful
comparisons. Finally, methods for automatic incorporation
of publicly accessible data into such analyses would be
enormously powerful, as the range of testable relationships
would expand dramatically.
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