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Detecting Spatial Patterns in Biological Array Experiments

DAVID E. ROOT, BRIAN P. KELLEY, and BRENT R. STOCKWELL

Chemical genetic screening and DNA and protein microarrays are among a number of increasingly important and widely used
biological research tools that involve large numbers of parallel experiments arranged in a spatial array. It is often difficult to en-
sure that uniform experimental conditions are present throughout the entire array, and as a result, one often observes system-
atic spatially correlated errors, especially when array experiments are performed using robots. Here, the authors apply tech-
niques based on the discrete Fourier transform to identify and quantify spatially correlated errors superimposed on a spatially
random background. They demonstrate that these techniques are effective in identifying common spatially systematic errors
in high-throughput 384-well microplate assay data. In addition, the authors employ a statistical test to allow for automatic de-
tection of such errors. Software tools for using this approach are provided.
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INTRODUCTION

There has been tremendous growth in the use of large arrays of
simultaneous experiments for chemical and biological research.
Chemical genetic screening and DNA and protein microarrays are
among a number of increasingly important and widely used tech-
niques that involve large numbers of experiments in a spatial ar-
ray.1,2 Such arrays may consist of spots printed on slides or wells in
microplates. Each location in an array is usually intended to act as
an independent trial under identical conditions. In practice, it is dif-
ficult to achieve identical experimental conditions, and one often
observes systematic errors that are spatially correlated. For exam-
ple, microplates often exhibit increased or decreased intensities in
wells at edges, in rows, or in “checkerboard” patterns. Spatial er-
rors may cause experimental errors such as misidentifying active
compounds as inactive and vice versa. Spatial errors are easy to
identify with the naked eye when they are large compared to the
signal size or the random background variability, that is, noise.
However, patterned errors may be overlooked when patterns are
obscured by random error or when there are too many plates or ar-
rays to permit a thorough visual inspection of each one. Here, a
simple means of identifying, quantifying, and compensating for
systematic errors in array experiments using the discrete Fourier
transform (DFT) is presented.3

Array experiments often use automation that contributes to the
occurrence of spatially patterned artifacts. Robots are programmed
to perform experiments in spatially referenced sequences, such
that small variations in equipment performance can cause large
systematic errors. For example, when reagents are transferred into
microplate wells or when microarray slides are printed, correlated
but slight differences between pipette tips, pumps, or pins generate
systematic errors. Other types of experimental conditions unre-
lated to robotics may also vary across spatial dimensions. In
microplates, for example, it is common to observe greater evapora-
tion at the edges of a plate and poor gas exchange in the interior of a
plate.

MATERIALS AND METHODS

A DFT is a function that decomposes a series of data (signal)
into sine waves and expresses the signal in terms of sinusoidal fre-
quency components. The result of the DFT operation is itself
called a DFT and is a frequency representation of the data consist-
ing of the amplitude and phase of each frequency component. The
DFT contains the same information as the original data in that the
original data can be exactly reconstructed given only the DFT. This
inverse transform is called the inverse DFT.

The DFT is used in periodogram analysis in which the power
density spectrum of a data series is estimated. The power density
spectrum shows the energy contained in each frequency compo-
nent represented in the data. If particular frequencies dominate the
original data, the Fourier transform will have large amplitudes at
those frequencies. For spatially arrayed data, these frequencies
represent spatial periodicities such as peaks and valleys occurring
at every other array position, every third position, and so on. Using
periodogram analysis, DFTs have been used extensively for locat-
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ing and removing spatial and temporal signals in image and signal
processing.4,5 Our software (VisTa) incorporates one of the many
freely available software packages for computing the DFT.6 The
periodogram of a particular frequency i is computed from the DFT
at frequency i as follows:

periodogram
dft dft

Ni = −| |1
2

where N is the number of discrete frequencies. For the standard
DFT and periodogram, the number of frequencies, N, in the trans-
form equals the number of spatially arrayed experiments or wells.
The array average is subtracted from the data so that the data repre-
sent the deviations from the average value. The result of this step is
that the “zero-frequency” component of the periodogram is zero;
otherwise this component could be very large and it does not relate
to patterning (variation) in the data. Random, spatially
uncorrelated error produces an exponential distribution of ampli-
tudes in the periodogram, whereas spatially systematic error pro-
duces amplitude outliers from this distribution. To reproduce a spa-
tial pattern in a test array, anomalously high-amplitude
components of the DFT are selected and the inverse DFT is per-
formed on just these overrepresented frequency components. The
result is a spatial pattern extracted from the original data. This re-
construction shows which wells have correlated intensity, and their
amplitudes indicate the severity of the pattern when compared to
the amplitudes in the original data.

Experimental 384-well microplate data are from luminescence-
and fluorescence-based assays on cultured cells. These plates con-
tained control experiments in columns 1, 2, 23, and 24. These col-
umns were removed from the data array to leave only the randomly
arrayed experiments prior to periodogram analysis. Reconstructed
spatial patterns were generated from outliers in the histogram of
periodogram amplitudes (see, e.g., Fig. 1B) as identified by visual
comparison to random plates.

RESULTS

Analysis of spatial patterns in
experimental 384-well plate data

The DFT and periodogram of experimental screening data were
generated, the qualitative pattern of spatial patterning was isolated,
and the magnitude of the spatial patterning effect was estimated us-
ing the techniques described above.

An array of microplate data is shown in Figure 1A. This plate
exhibits correlated wells in a checkerboard pattern that is difficult
to detect visually. High-frequency components were isolated from
the periodogram (Fig. 1B) and used to reconstruct the error pattern
(Fig. 1C). The axes of the periodogram in Figure 1B do not indicate
array location as in the data arrays in Figures 1A and 1C but rather
identify the frequency components of the periodogram as de-
scribed in the figure caption. Eleven high-amplitude periodogram

components were identified as outliers (by inspection) so that the
error pattern in Figure 1C is the composite of all 11 of these fre-
quencies in according to their respective amplitudes and phases in
the periodogram. The predominant pattern is a checkerboard, but
other superimposed patterning is also apparent. The high-fre-
quency components in the upper row of Figure 1B indicate that a
pattern exists with the highest possible vertical frequency, that is,
alternating low and high intensity in every other well. This is
clearly seen in Figure 1C. The horizontal error is a combination of
lower frequencies that can also be seen in Figure 1C. The checker-
board component of the pattern was then used to identify the exper-
imental problem, a robotic pipetting error, which caused most of
the spatially systematic error.

Figure 2 shows a microplate with systematic error and the re-
sulting histogram of the periodogram amplitudes. The histogram
of periodogram amplitudes for an uncorrelated random plate is
also shown for comparison. The systematic error is clearly seen in
the distribution of frequency component amplitudes when com-
pared to a distribution of random data (Figs. 2B and 2C). An in-
verse transform of just the high-amplitude peaks (Fig. 2D) shows
the affected wells and demonstrates the utility of periodogram
analysis when spatially systematic error is obscured by a random
error of similar magnitude.

Quantitating spatial patterning

To quantify the magnitude of spatial patterning in a test array,
various criteria may be used to compare the periodogram of the test
array to the periodograms of spatially random plates. One such
method is presented and demonstrated here.

To identify spatially nonrandom plates, we employ a simple test
to determine if the high-amplitude components in the observed
periodogram distribution are statistically different from a random
noncorrelated distribution. Using this test, it is found that the prob-
ability that the largest amplitude frequency component could have
been generated by a random signal having the same mean and stan-
dard deviation as the observed data. To compute this statistic, a dis-
tribution of maximum frequency-component amplitudes is gener-
ated for 100 periodograms generated from the random signals.
This distribution is observed to be Gaussian, making it simple to
determine the probability of finding the observed maximum am-
plitude. Low probability values (p-values) indicated that the ob-
served periodogram was not random and therefore contains corre-
lated signal. For example, a plate with a p-value of 0.05 indicates
that typically, 1 out of every 20 random plates exhibits that plate’s
largest amplitude frequency component. Random data generally
have p-values around or above 0.5, and plates with p-values of 0.05
have noticeable systematic signal, and p-values lower than this
have increasingly pronounced patterns. For example, the highest
magnitude outlier from Figure 2B is 13.6 standard deviations away
from the average highest amplitude generated from a series of 100
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FIG. 1. Microplate data (A) yield the periodogram (B). Two-dimensional periodograms are traditionally visualized with the zero-frequency compo-
nents (average of the signal) in the middle. The middle horizontal axis corresponds to horizontal frequencies, and the middle vertical axis corresponds to
vertical frequencies. Off-diagonal frequencies are mixtures of both horizontal and vertical frequencies. In this case, the high-amplitude outliers are along
the horizontal and vertical frequencies. This pattern is indicative of checkerboarding. Isolating these frequencies and reconstructing data with the inverse
transform of just the high-amplitude outlier frequencies yields the pattern in (C), predominantly a checkerboard pattern superimposed on a weaker, larger
scale pattern consisting of lowered values in columns 16 to 22.
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FIG. 2. Microplate with systematic error (A) and a histogram of the corresponding periodogram amplitudes (B). Panel (C) shows a periodogram de-
rived from random uncorrelated data with the same mean and standard deviation as the experimental data. In comparison, the highest amplitude outlier of
the periodogram in (B) is 13.6 standard deviations above the mean highest periodogram amplitude generated from a series of 100 random plates, which in-
dicates that the probability of (A) being a random plate is essentially zero. Panel (D) shows the inverse transform of just the indicated high-amplitude outli-
ers from the periodogram, yielding a reconstructed image of the data array containing only the overrepresented patterns.



random plates. The corresponding p-value is correspondingly in-
finitesimally small.

DISCUSSION

Periodogram analysis, widely applied in signal processing for
many years, represents a powerful tool for identifying spatial pat-
terns in array data.4,7 It was found that this type of analysis is capa-
ble of detecting many types of spatially systematic errors that occur
in 384-well microplates. The method is general in that it can ac-
commodate data with varied array dimensions, average values, and
standard deviations. There are several applications of this tech-
nique to biological array experiments. For example, it is particu-
larly useful when setting up new array experiments or testing ar-
ray-processing equipment. Uniform test plates can be produced
and analyzed to detect any spatially systematic errors and visualize
the error pattern. Such errors are particularly common with robotic
systems, and the nature of the pattern can often help identify the
source of the error. A second application is quality control for ex-
periments consisting of many arrays. This technique can be used to
detect spatially systematic errors that arise in the course of a series
of array experiments. Automated spatial error detection could be
used to detect errors as soon as they occur and halt the experiment
or warn the operator in real time. If spatial patterns do arise during
an experiment, the pattern can be visualized to help identify the
source of the error.

In our laboratory, periodogram analysis with VisTa was applied
over the course of many assays and indicated consistent edge ef-
fects in 384-well plate data. These edge biases proved difficult to
eliminate from the experiment, leading us to change our plate for-
matting such that outer wells were no longer used. Our ability to
detect this persistent but variable error allowed us to make a sub-
stantial improvement in our high-throughput process, leading to
higher quality data.

In some cases, periodogram/DFT techniques could be used to
actually compensate for spatial errors in affected data. Experimen-
tal artifacts, such as the checkerboard pattern seen in a portion of
the plate in Figure 2C, could be removed by filtering excess contri-
butions from outliers in the periodogram and reconstructing the
data array with the inverse transform. Such an approach is not gen-
erally recommended, however, because it could lead to the intro-
duction of new spatial artifacts. The true systematic error is likely
to be distributed over multiple frequency components of the
periodogram, of which only a small subset might be identified as
high-amplitude outliers in the periodogram. Removing the excess
contributions of just the highest amplitude frequency components
will then not only fail to completely remove spatial artifacts but can
introduce new periodic artifacts, even though the overall spatially
systematic error is reduced. This data correction technique is prob-
ably most appropriate in cases where the spatial error is repeated
over many arrays and can thus be most reliably separated from the
actual signal.

Identification of spatial artifacts depends on experiments being
randomly arranged on the array. If related experiments are ar-
ranged in a pattern, it may be difficult or impossible to separate
spatial errors from spatial correlations in the experimental signal.
For example, in compound screening, many library plates are cre-
ated with nonrandom selections of compounds so that plates may
show spatial correlations simply because similar compounds are
arranged together on the plate. Due to the prevalence of spatially
correlated errors in automated array experiments, we believe that
the identification of such errors should be a high priority in design-
ing these experiments. Thus, it may often be worthwhile to arrange
experiments randomly in array experiments even at some cost of
simplicity and convenience. In many array experiments, including
the examples presented here, a portion of the array is randomly ar-
ranged, but other regions of the array contain distinct experiments
with a different expected signal, such as negative or positive con-
trols. As demonstrated in the examples above, one may apply spa-
tial analysis to just the random portion of the array.

The periodogram technique is very sensitive to spatial signals
and may detect small patterns that, although correlated, are not sig-
nificant either because they arise frequently just by chance or be-
cause they are much smaller than the desired experimental signal.
Thus, an important part of adapting this technique to a particular
array experiment is to identify the best method for differentiating
unacceptable from acceptable pattern types and magnitudes for
that particular experiment. The method offered in this article for
automated error detection proves useful for common spatial arti-
facts in our 384-well microplate assays, but alternative methods
may differ greatly in their sensitivity to particular spatial errors and
might be preferable for different array experiments.

CONCLUSION

Periodogram analysis is a highly effective means of identifying
and evaluating types of spatially patterned errors commonly seen
in arrayed high-throughput screening experiments. This approach
can be used to identify and eliminate spatially systematic errors
when setting up manual or automated array experiments, perform
automated quality control on array data, and characterize spatial
errors in existing data.

The VisTa software created for this study accepts rectangular
data arrays of any size. The software, source code, and associated
documentation are freely available from the Whitehead Institute.8
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