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Abstract

Numerous morphological variations of cell death have been described. These processes
depend on a complex and overlapping cellular signaling network, making molecular
definition of the pathways challenging. This review describes one solution to this prob-
lem for small-molecule-induced death, the creation of high-dimensionality profiles for
compounds that can be used to define and compare pathways. Such profiles have been
assembled from gene expression measurements, protein quantification, chemical–
genetic interactions, chemical combination interactions, cancer cell line sensitivity
profiling, quantitative imaging, and modulatory profiling. We discuss the advantages
and limitations of these techniques in the study of cell death.

1. INTRODUCTION

While descriptions of active cell death processes can be traced as far

back as the nineteenth century (Virchow & Chance, 1860), the modern

era of cell death research was firmly established by the description and

coining of apoptosis in 1972 (Kerr, Wyllie, & Currie, 1972). The authors

described the consistent nuclear, cytoplasmic, and organellar changes in cells

dying in a variety of physiological and pathological settings. Their descrip-

tion was entirely morphological for obvious reasons: the molecular tools to

further characterize the phenomena were not available.

Such tools began to be developed in the late 1980s and early 1990s. For

example, Robert Horvitz and colleagues uncovered the genetic basis of apo-

ptosis in Caenorhabiditis elegans and showed that these pathways were largely

conserved in mammalian cells (Ellis & Horvitz, 1986; Hengartner, Ellis, &

Horvitz, 1992; Hengartner & Horvitz, 1994; Miura, Zhu, Rotello,

Hartwieg, & Yuan, 1993; Yuan & Horvitz, 1990; Yuan, Shaham,

Ledoux, Ellis, & Horvitz, 1993). These and subsequent studies allowed a

transition from purely morphological descriptions of cell death processes

to biochemical descriptions. However, this transition has been incomplete,

and morphological descriptors remain prominent, if not predominant, in the

study of cell death. There is a growing push to move away from morpho-

logical characterizations, however, given their dependence on subjective

criteria and the recognition that morphology is not always a marker of
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unique underlying biochemistry. A panel of cell death experts recently pub-

lished formal recommendations to transition to fully biochemical descrip-

tions of cell death and provided recommended biochemical descriptors of

a number of cell death processes (Galluzzi et al., 2012).

In the past decade, however, not only have the identified morphological

varieties of cell death expanded significantly (Fig. 11.1), but the biochemical

pathways underlying these processes have been shown to be complex and

interconnected. Calling a form of cell death “caspase dependent,” for exam-

ple, does little to clarify if the signaling was conducted through the intrinsic,

extrinsic, or granzyme-mediated pathway (Taylor, Cullen, &Martin, 2008),

or even if the resultant morphology is consistent with apoptosis or with

pyroptosis, an inflammatory form of cell death dependent on the activity

of caspase 1 (Fernandes-Alnemri et al., 2007). Necroptosis, a well-accepted

form of regulated necrosis that involves signaling through the RIP family

proteins, can be activated by binding of the same death receptor ligands that

can initiate extrinsic pathway apoptosis (Degterev et al., 2008, 2005). Other

forms of caspase-independent death can be initiated via mitochondrial outer

membrane permeabilization (MOMP), the stimulus that typically initiates

intrinsic pathway apoptosis (Colell et al., 2007).

How can we fully characterize, and distinguish between, complex, inter-

connected processes that can be difficult to distinguish either morphologically

or biochemically? One solution is to vastly increase the dimensionality of

Cytotoxic
stimulus

Apoptosis
Necrosis
Autophagic cell death
Necroptosis
Parthanatos
Pyroptosis
Entosis
Ferroptosis
Netosis
Cornification
Mitotic catastrophe
Paraptosis
Methuosis
Others?

Figure 11.1 Diversity of cell death pathways. The number of characterized cell death
pathways has expanded significantly in the past decade. In a given context, the death
pathway is determined by the cytotoxic stimulus, the cell type, the microenvironment,
and the presence of cotreatments, among others. The total number of death pathways
accessible to cells remains unknown and an important question for investigation.
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themeasurements taken.These high-dimensionality profiles can then be com-

pared to each other in order to relate and distinguish between lethal processes.

Such systems have been developed and primarily implemented in the

study of the bioactivity of small molecules. Small molecules are versatile

tools for studying a range of biological processes (Stockwell, 2004) and

are particularly useful in the study of cell death. They can easily be applied

to different cellular contexts and a variety of organisms and potentially trans-

lated into in vivo studies. Concentrations can be varied to investigate the

thresholds for processes and intermediate effects of inhibiting protein func-

tion. Compounds can be applied and removed with precise temporal con-

trol, allowing for the investigation of the kinetics of events. Small molecules

can inhibit single functions of multifunctional enzymes, allowing for more

detailed investigation of processes. The utility of small molecules in cell

death is demonstrated by the widespread use of small-molecule-induced cell

death as a model for studying apoptosis. More recently, small-molecule

screens have identified compounds that are essential for defining alternative

cell death processes (Degterev et al., 2005; Dixon et al., 2012).

This review summarizes a number of the systems that have been devel-

oped to create high-dimensionality profiles for small molecules (see Fig. 11.2

and Table 11.1) and focuses on their utilization or potential utilization in the

study of cell death.

Figure 11.2 Small-molecule profiling technologies. Overview of the different method-
ologies that have been used to create profiles for small molecules. Profiles are based on
quantitative measurements of the effect of a small molecule on cells. These profiles can
be used to define a small-molecule-induced process and to compare to other processes.
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Table 11.1 Small-molecule profiling modalities

Measurement
type Throughput

Functional
measurement

Application
to
mammalian
cells

Application
to diverse
cell type

Single-cell
resolution

Accessibility
to scientific
community Reproducibility References

Gene

expression

High No Yes Yes No Very high Low Hughes et al.

(2000), Lamb

et al. (2006)

Proteomic Intermediate No Yes Yes Sometimes Low Low Dix, Simon,

and Cravatt

(2008), Mahrus

et al. (2008),

Muroi et al.

(2010), Sevecka

and MacBeath

(2006)

Gene–small-

molecule

interaction

High Yes Limited No No Intermediate Intermediate Parsons et al.

(2004, 2006)

Small-

molecule

combinations

Low Yes Yes Yes No Low High Farha and

Brown (2010),

Lehar et al.

(2007), Yeh,

Tschumi, and

Kishony (2006)

Continued



Table 11.1 Small-molecule profiling modalities—cont'd

Measurement
type Throughput

Functional
measurement

Application
to
mammalian
cells

Application
to diverse
cell type

Single-cell
resolution

Accessibility
to scientific
community Reproducibility References

Cell line

profiling

Low Yes Yes No No High Low Barretina et al.

(2012), Basu

et al. (2013),

Garnett et al.

(2012), Paull

et al. (1989),

Weinstein et al.

(1997)

Quantitative

imaging

Low No Yes Yes Yes Low Low Perlman et al.

(2004), Young

et al. (2008)

Modulatory

profiling

Intermediate Yes Yes Yes No Low High Wolpaw et al.

(2011)



2. GENE EXPRESSION PROFILING

Gene expression profiling is a powerful tool to explore cellular states,

development, and disease. Investigation of small-molecule mechanisms of

action was among the first applications of gene expression profiling (Schena

et al., 1996; Stockwell, Hardwick, Tong, & Schreiber, 1999). Given the infor-

mational richness of gene expression profiles and their widespread availability

and relative affordability, this method has developed into the most widely uti-

lized system for profiling and comparing small-molecule bioactivities.

2.1. Comparing small-molecule profiles
The initial study demonstrating the utility of comparing small-molecule-

induced gene expression profiles was performed in yeast by Steve Friend

and colleagues (Hughes et al., 2000). This landmark study was largely focused

on gene expression changes induced by genetic deletion, but it also measured

genome-wide profiles for 13 well-characterized small molecules. They clus-

tered the compounds and the gene knockouts based on their expression pro-

files and found that knockouts of genes with similar cellular function clustered

together and that the small molecules clustered with knockouts of their char-

acterized targets. Additionally, they found that the changes induced by the

small-molecule dyclonine clustered with the knockout of erg2. The target

of dyclonine was unknown at this time, and the authors provided evidence

that dyclonine in fact inhibited Erg2p.

Inspired by the success of this approach, Todd Golub and colleagues

developed the “Connectivity Map,” a compendium of gene expression pro-

files generated after treatment with 164 different small molecules, largely in

two different human cell lines (Lamb et al., 2006). They applied a nonpara-

metric, rank-based pattern matching approach to analyze the data. A unitless

“query signature” was generated based on genes up- and downregulated in a

biological process of interest. This signature was compared to the database of

gene expression profiles; the compounds in the database were ranked based

on how well they correlated to the query signature (see Fig. 11.3).

Theauthors first demonstrated that their systemhadplatform independence

byshowingthat signatures for compoundsderived fromgeneexpressionexper-

iments on other platforms had high “connectivity scores” to the compounds in

the database with the same mechanism of action. They then demonstrated the

utility in investigating the mechanism of action of an uncharacterized com-

pound.Theyqueried thedatabasewith a signaturebasedon thegeneexpression
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changes induced by treatmentwith gedunin, a small-molecule natural product

without a characterizedmechanismof action, and found that it was highly cor-

related to HSP90 pathway inhibitors. They subsequently demonstrated that

gedunin did in fact inhibit this pathway (Hieronymus et al., 2006). Lastly,

the authors demonstrated that signatures generated based on disease states, such

asobesityandAlzheimer’sdisease, couldbeused to identifycompoundscapable

of inducing or reversing these states.

2.2. Protocol for the use of the Connectivity Map database
All of the data generated by theConnectivityMap project were made publicly

available on their Web site (www.broadinstitute.org/cmap) with software

tools allowing for the uploading of a user-generated query profile and inter-

rogation of the database. Since the initial publication, the database has been

updated to include profiles generated from treatment with 1309 compounds

and a much larger expansion is planned, likely to be released prior to publi-

cation of this article. A stepwise protocol for querying the database is described

below. Further instruction and guidance are available at the project Web site.

I. Generate a query signature

A “query signature” is a unitless list of up- and downregulated genes

representing a biological process of interest, recommended to involve

anywhere between 10 and 500 genes depending on the knowledge of

the process. There are a number of ways to generate a signature. It can

be derived from independent gene expression profiling experiments, it

Comparison of  query to
database profiles
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database compounds
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Figure 11.3 Connectivity Map schematic. An outline of the process of querying the
Connectivity Map is shown. Gene expression information is generated from an indepen-
dent source, shown here as small-molecule treatment of cells. Those data are used to
generate a unitless query signature which is then compared to the database of gene
expression profiles. Small molecules in the database are ranked based on howwell their
profiles are correlated to the query signature.
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can be manually generated based on prior biological knowledge or

experiments, or it can be generated from the profiles contained within

the Connectivity Map database itself. The Web site software allows

for the use of up to three profiles for generation of a signature; how-

ever, the raw or partially processed data files can be downloaded and

used independently to generate signatures.

II. Upload signature

In order to upload a custom-generated signature, up- and down-

regulated genes must be converted to the corresponding probeset name

used in the Affymetrix HG-U133A array. This can be done using tools

available at http://www.affymetrix.com/analysis/netaffx/index.affx.

The list of probesets is then converted to a .grp file (this can be done

using Microsoft Excel).

III. Query the Connectivity Map database

Separate .grp files for up- and downregulated probesets are

uploaded and selected for use in the query.

IV. Analysis of the results

The results of a query can be viewed as a ranked list of either the

separate instances (specific compound, cell line, concentration, time

point) or as a ranked list of all instances of a specific compound, all

instances of a compound/cell line combination, or all instances of com-

pounds classified under the same ATC code. The “connectivity score”

is calculated based on the enrichment of the upregulated query genes

among the most overexpressed genes in the database instances (or

groups of instances) and the enrichment of the downregulated query

genes among the most underexpressed genes in the database instances

(or groups of instances). The instances or groups of instances are ranked

from those with the highest “connectivity score” (correlated) to those

with the lowest score (anticorrelated) (see Fig. 11.3).

V. Independent validation

The authors make clear that the Connectivity Map is best used as a

hypothesis generator. Finding based on a query must be independently

validated in separate assays.

2.3. Applications in cell death
In the 7 years since the initial publication of the Connectivity Map database,

it has been widely utilized, cited by nearly 800 scientific articles. These

include a number of interesting new insights into cell death, a selection

of which are summarized below.
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One of the initial studies that utilized the Connectivity Map found that

modulation of the antiapoptotic protein MCL1 was important for restoring

glucocorticoid-induced apoptosis in acute lymphoblastic leukemia (ALL)

cells (Wei et al., 2006). The authors first generated a query signature of genes

whose expression distinguished between glucocorticoid-sensitive and

glucocorticoid-resistant ALL samples. They used this signature to query

the Connectivity Map database and found that multiple instances of the

compound rapamycin were among the most highly ranked instances,

suggesting that rapamycin may induce a glucocorticoid-sensitive state. They

then showed in multiple cell lines derived from lymphoid malignancies that

rapamycin sensitized to glucocorticoid-induced apoptosis, but not to other

cell-death-inducing agents. They went on to show that rapamycin down-

regulated MCL1, that overexpression of MCL1 conferred glucocorticoid

resistance, and that MCL1 suppression conferred sensitivity. This study

was thus able to use an insight gleaned from the Connectivity Map to dem-

onstrate the specific dependence of glucocorticoid-induced apoptosis on

MCL1 and not on other BCL2-family member proteins. A subset of the

authors of this study used the Connectivity Map further in a subsequent

study investigating MCL1 (Wei et al., 2012). They used the Connectivity

Map to identify compounds that induce profiles similar to triptolide, a com-

pound that they had shown represses MCL1 expression, but not the expres-

sion of proapoptotic proteins. They found a number of related compounds

that also repress MCL1 and that all of these compounds were acting as tran-

scriptional inhibitors. MCL1 repression was essential for these compounds’

activity, thus suggesting a biochemical basis for the mechanism of cell death

induced by such compounds.

One of the essential challenges in cancer therapeutic development is the

identification of compounds that can induce cancer-cell-selective cell death.

Hassane and colleagues used the Connectivity Map to identify compounds

that selectively kill acute myeloid leukemia (AML) cells, and particularly

AML stem cells (Hassane et al., 2008). The authors identified a gene expres-

sion signature from the treatment of cells with parthenolide, which had

previously been shown to selectively induce death in AML cells (Guzman

et al., 2005). They used this signature as a query to search multiple gene

expression databases, including the Connectivity Map, and identified other

compounds with similar profiles. They subsequently showed that these

compounds were also able to kill AML cells, including AML stem cells,

and that this death was dependent on inhibition of NF-kB and on the gen-

eration of oxidative stress. In a different study, Stumpel and colleagues used
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the Connectivity Map to find compounds to target the particularly aggres-

sive form of ALL harboring MLL rearrangements (Stumpel et al., 2012).

They derived a query signature of genes selectively overexpressed in

MLL-rearranged cell lines and found that a number of HDAC inhibitors

produced profiles anticorrelated with the query. They went on to show that

these compounds were selectively lethal in MLL-rearranged cells compared

to MLL wild-type cells and that the compounds decreased expression of

many of the signature genes and increased methylation at their promoters.

Endoplasmic reticulum (ER) stress plays a role in activating cell

death (Rasheva & Domingos, 2009). Two recent studies have used the

Connectivity Map to further investigate the role of ER stress in small-

molecule-induced cell death. The first study investigated the difference in

the mechanisms of action of two structurally related procaspase-activating

compounds and found that at high concentrations one compound (PAC-1)

activated ER-stress-mediated apoptosis, while the other (SPAC-1) did

not (West et al., 2012). They created a signature query out of the 50 most

highly up- and downregulated genes after treatment with a high concentra-

tion of PAC-1 and found that thapsigargin, a known inducer of ER stress,

was the compound with the highest connectivity score. They then showed

that high concentration of PAC-1 caused similar ultrastructural changes as

thapsigargin and caused a similar increase in cytosolic calcium and a decrease

in ER calcium, elucidating a side effect of this compound when used at high

concentrations. A different study identified a novel, reversible ER stress

response that is regulated in part by MCL1. This process was initially

observed in response to treatment with apogossypol, a putative BCL-2

inhibitor. The authors created a query signature based on expression changes

induced by apogossypol and used the Connectivity Map to identify

20 diverse compounds capable of initiating the same process, demonstrating

its widespread occurrence.

2.4. Advantages and limitations in the study of cell death
Advantages of the use of gene expression profiles include their widespread

availability and accessibility and the high dimensionality and information

richness of the data. Gene expression profiling is already a widely available

technology. With the recent rapid decrease in cost and increase in speed of

sequencing technology, RNA-seq has replaced microarrays as the preferred

method for gene expression measurement (McGettigan, 2013). This transi-

tion is likely to continue to decrease costs and increase the quality of gene
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expression measurements. The ubiquity of these measurements has driven

the development of a host of readily available tools for the processing and

analysis of gene expression data. The Connectivity Map project made an

explicit goal to allow for platform independence, validated this aspect in

their initial publication, made all of their data publicly available, and devel-

oped Web-based tools for querying their data. Multiple successful indepen-

dent studies, including some of those described above, have further

confirmed the utility of applying independently generated expression data.

This accessibility is particularly valuable to the broader scientific community

and unique among the technologies described within this review. The high

dimensionality of a genome-wide expression profile allows the opportunity

to accurately characterize such a highly complex process such as cell death.

In addition, the content of the individual profiles are information-rich and

can be mined to identify specific genes pathways involved in a death process.

Notable disadvantages of the use of expression data in studying cell death

include difficulty detecting time-dependent, cell type-dependent, and

concentration-dependent phenomena; the high barrier to reproducing a

similar system focused on cell death; and the difficulty distinguishing

on-target from off-target transcriptional effects of small molecules. As noted

by the authors of the Connectivity Map study, for reasons of feasibility they

were forced to limit the time points of treatment, the number of different

cell types, and the concentrations used. The profiles are therefore snapshots

of a cellular state that may or may not successfully represent prior and future

states. While the relatively early time that they chose (6 h) is appropriate for

many cell death processes, others can occur more rapidly (Newman, Crown,

Leppla, & Moayeri, 2010) or much more slowly (Turmaine et al., 2000).

In addition, rapid enzymatic cascades, such as activation of preformed zymo-

gens, may occur too quickly to be accurately represented by transcriptional

changes. While the authors suggest that insights can be gained across cell

types and species, cell death processes can be active only in specific cellular

or genetic contexts and therefore not likely accessible with the use of only

two cancer cell lines. Given the cost of producing the Connectivity Map

database, it is not feasible to reproduce the system in a relevant cellular

context to study a phenomena poorly accessed in the chosen cell lines.

The Connectivity Map largely incorporated a single dose of compounds.

This limitation may mask effects only activated at higher or lower concen-

trations. It also can exacerbate the problem of distinguishing off-target

effects. Even reportedly specific small molecules can have pleiotropic actions

on cells (Campillos, Kuhn, Gavin, Jensen, & Bork, 2008; Keiser et al., 2009).
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It is not obvious or trivial to distinguish the transcriptional effects of a com-

pound that are related to the process of interest from those that are related to

an off-target effect. Thus, despite the proven value of Connectivity Map,

additional tools are needed to probe cell death mechanisms with small mol-

ecules, using measurements with high dimensionality.

3. PROTEIN QUANTIFICATION

One potential improvement over gene expression measurements

involves the direct detection of changes in protein abundance and protein

modifications. While mRNA levels are often used as a surrogate for protein

level, changes in mRNA can correlate poorly to changes in protein level

(Haider & Pal, 2013). A number of methods have been developed for

the widespread measurement of protein levels and modifications to those

proteins, basally and in response to small-molecule treatments. Changes

in protein levels and posttranslational modifications can be monitored with

two-dimensional difference gel electrophoresis (DIGE; Cecconi et al., 2007;

Unlu, Morgan, & Minden, 1997), sandwiched antibody microarrays

(Schweitzer et al., 2002), antibody microarrays analysis of dual color-labeled

proteomes (Haab, Dunham, & Brown, 2001; MacBeath, 2002), lysate

microarrays (Nishizuka et al., 2003), fluorescence-based flow cytometry

(Krutzik & Nolan, 2006), and more recently multiplexed mass cytometry

(Bodenmiller et al., 2012). The activity and small-molecule binding to indi-

vidual enzyme classes can be monitored in some cases with activity-based

protein profiling (Cravatt, Wright, & Kozarich, 2008; Leung, Hardouin,

Boger, & Cravatt, 2003). Cell-wide proteolytic events can be tracked using

labeling and mass spectrometry-based techniques (Dix et al., 2008; Mahrus

et al., 2008). All of these methods assess the effects of small molecule at the

protein level, instead of the mRNA level, which is likely more relevant to

the final phenotypic effects of small molecules.

3.1. Comparing small-molecule profiles
A limited number of studies have compared compounds based on signatures

created from protein profiles. Using lysate microarrays, Sevecka and

MacBeath compared 84 kinase and phosphatase inhibitors based on their

ability to change the phosphorylation state of 12 proteins in the EGF recep-

tor pathway (Sevecka & MacBeath, 2006). Osada and colleagues created

profiles for 19 compounds based on changes in protein levels detected by

DIGE after compound treatment of HeLa cells (Muroi et al., 2010).
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Clustering of these profiles accurately grouped compounds based on their

known mechanisms of action, similar to some of the results obtained using

gene expression data. No direct comparison to gene expression data was

made. Such a comparison would be highly valuable, and to our knowledge,

no such study has been conducted.

3.2. Application in cell death
One protein-profiling technique, proteolytic profiling, deserves further

attention due to its particular focus on cell death. Two studies introducing

this technique were published simultaneously in 2008. James Wells’ group

used an engineered enzyme to biotinylate and subsequently enrich and iden-

tify proteins with free N-termini (Mahrus et al., 2008). They applied this

technique to analyze 333 cleavage sites in 292 proteins identified in apoptosis

induced by etoposide in Jurkat cells. They found that many of these cleavage

sites were poorly predicted by in vitro caspase cleavage site selectivity mea-

surements and that cleavage sites were enriched within interacting proteins.

TheWells lab subsequently applied this technique to more comprehensively

identify cleavage events in apoptotic cells in culture (Crawford et al., 2013)

and to characterize the substrates of inflammatory caspases (Agard,

Maltby, &Wells, 2010). They also compared the profiles generated in three

different cell lines treated with three different small molecules to attempt to

identify unique fingerprints for compound mechanisms of action (Shimbo

et al., 2012).

In the second study, Cravatt and colleagues combined SDS-PAGE with

LC–MS–MS in a technique they named Protein Topography andMigration

Analysis Platform (PROTOMAP) (Dix et al., 2008). They used this tech-

nique to analyze proteolytic events induced by staurosporine treatment of

Jurkat cells, identifying 91 characterized and 170 previously uncharacterized

cleavage events. Analysis of these fragments demonstrated that many were

persistent and preserved intact protein domains, raising the possibility of

cleavage of proteins results in the generation of active fragments. More

recently, the Cravatt group updated their PROTOMAP technology to also

identify phosphorylation events (Dix et al., 2012). By identifying more than

700 cleaved proteins and 5000 sites of phosphorylation during apoptosis in

Jurkat cells, they were able to demonstrate that these two modifications are

intricately linked with phosphorylation-driving cleavage and vice versa.
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3.3. Advantages and limitations in the study of cell death
Advantages of protein-profiling methods include high dimensionality, the

direct measurement of the effector proteins rather precursor changes, the

ability to distinguish and quantify posttranslational modifications of proteins,

and the ability of some techniques to make single-cell measurements. While

the dimensionality of protein profiles is typically lower than that of gene

expression profiles, techniques are available for global monitoring of large

numbers of proteins. These profiles have the advantage that they are direct

measurements of the level of what is typically the functional entity (the pro-

tein) rather than the precursor mRNA, which is not always well correlated

to the protein level (Nishizuka et al., 2003). They also can detect modifica-

tions of proteins, which increase the dimensionality of the data and allow for

dissection of these critical events. This is particularly notable in cell death

where changes in signaling cascades and cleavage events are essential

(Kurokawa & Kornbluth, 2009).While flow and mass cytometry are limited

to fewer simultaneous measurements (mass cytometry can detect up to 34)

(Bendall et al., 2011), they have the ability to make single-cell measure-

ments. Such measurements can be highly valuable in cell death, where there

can be significant cell-to-cell variability in time-to-response and response to

lethal stimuli among cells in a clonal population (Spencer, Gaudet, Albeck,

Burke, & Sorger, 2009).

Protein profiling shares a number of the limitations of gene expression

profiling, including the difficulty in identifying changes over time and con-

centration ranges and the difficulty separating primary from off-target effects

of small molecules. Additional disadvantages include relatively high cost,

low throughput, difficulty in detecting low-abundance proteins, and reli-

ance on antibodies. While improvements in technology, particularly mass

spectrometry and labeling techniques, have improved proteome coverage,

costs are still high relative to gene expression profiling and detection of

low-abundance remains problematic (Carragher, Brunton, & Frame,

2012). A number of techniques for the simultaneous measurement of pro-

teins, including lysate arrays and flow and mass cytometry, require the use of

antibodies and are therefore clearly limited by the availability and quality of

the antibodies. Many of the protein-profiling technologies have had limited

applications to date in cell death. An exception is the proteolytic profiling

techniques employed by the Wells and Cravatt groups. These techniques

are promising and it will be interesting to see the result of their application
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to larger numbers of small molecules, particularly of inducers of non-

apoptotic cell death pathways.

4. GENE–SMALL-MOLECULE INTERACTIONS

Improvements in the generation and monitoring of gene knockouts in

model organisms and the availability of RNAi technology in mammalian

cells have led to their application in the investigation of small-molecule

mechanisms of action (Brummelkamp et al., 2006; Hoon et al., 2008;

Lum et al., 2004; Luo et al., 2008). These techniques have also been applied

to create and compare profiles for small molecules.

4.1. Chemical–genetic profiling in yeast
Charlie Boone’s lab, Guri Giaever’s lab, and Cori Nislow’s lab have devel-

oped and utilized a system called “chemical–genetic profiling” that measures

the hypersensitivity to small molecules conferred by the full collection of

viable haploid deletion mutants in yeast. The Boone lab initially compared

12 small-molecule profiles (Parsons et al., 2004) and then extended their

analysis to 82 compounds (Parsons et al., 2006). Using hierarchical clustering

and sparse matrix factorization, they showed that compounds with similar

mechanisms of action had similar profiles and were able to identify that

the estrogen modulator tamoxifen can cause increases in intracellular cal-

cium concentrations. In their initial as well as a subsequent study

(Costanzo et al., 2010), they showed that by integrating chemical–genetic

profiles with genetic interaction profiles, they could identify the mechanism

of action of previously uncharacterized compounds based on the similarity

of the profiles of a compound and the profile from the deletion of its target.

4.2. Applications of yeast profiling in cell death
Subsequent studies have used this technology in the investigation of cytotoxic

compounds. The first examined the mechanism of action of two previously

uncharacterized and structurally similar antifungal compounds (Yu et al.,

2008). By comparing their chemical–genetic profiles to those from the

studies published above, they found that one compound clustered with mito-

chondrial inhibitors while the other clustered with DNA-damaging agents.

They subsequently validated these mechanistic predictions. Spitzer and col-

leagues compared chemical–genetic profiles for compounds found to poten-

tiate the activity of the antifungal fluconazole (Spitzer et al., 2011). Comparing
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these profiles led them to identify two principle mechanisms of synergy and

allowed them to identify additional synergistic compounds. The Nislow and

Giaever group took an analogous approach to investigating themechanisms of

action of DNA-damaging agents (Lee et al., 2005). They created chemical–

genetic profiles for 12 compounds against �4700 homozygous deletion

strains. As a part of a broader analysis, they clustered the compounds and found

that compounds with similar mechanisms of DNA damage clustered together.

4.3. Chemical–genetic profiling in mammalian cells
Citing the difficulty in applying the yeast system to study cancer chemother-

apeutics due to the lack of conservation of certain drug targets, Hemann and

colleagues developed a profiling system using RNAi in mammalian cells

( Jiang, Pritchard, Williams, Lauffenburger, & Hemann, 2011). They mea-

sured the ability of 29 shRNAs (targeting either the Bcl2 family or p53 and

its activating kinases) to alter the lethality in a murine lymphoma cell line of

15 chemotherapeutic compounds, each used at a single dose. Clustering of

these profiles accurately grouped compounds according to their known

mechanism of action. They went on to show that a subset of eight shRNAs

was sufficient to accurately classify the compounds and that profiles gener-

ated with those eight shRNAs for additional compounds were able to suc-

cessfully classify both compounds with mechanisms already represented

within their database as well as compounds with unique mechanisms.

4.4. Advantages and limitations in the study of cell death
Chemical–genetic profiling systems can generate large amounts of high-

quality, functional information about the mechanism of action of a com-

pound. Each profile is information-rich and can be individually mined

for mechanistic data as well as used as a fingerprint of compound action that

can be compared to other profiles. The use of a functional assay is a key

advantage over gene expression and protein-profiling methods. Although

efflux pumps and multidrug resistance genes can be complicating (Parsons

et al., 2004), the use of a functional assay removes the difficulty in dis-

tinguishing relevant from off-target effects. Functional assays are able to give

information about what took place over the time course of the experiment,

rather than taking a snapshot of one point in the process. The yeast system is

well established and robust and the pooled barcoding systems allow for

genome-wide coverage with good throughput. There are large available

data sets including extensive gene–gene interaction data to which

281Multidimensional Profiling in Cell Death



chemical–genetic profiles can be compared (Costanzo et al., 2010;

Hillenmeyer et al., 2008). The RNAi system is less widely used but is prom-

ising for its applicability in mammalian cells. Hemann and colleagues used

only 29 genes, but pooled RNAi approaches may make it feasible to create

large numbers of genome-wide profiles (Luo et al., 2008). Their approach is

also appealing for the ability to readily generate mini-profiles focused on a

process of interest. For example, Hemann and colleagues used a set of

established apoptosis-related genes, but other choices could be made to cre-

ate a systems concentrated on a different cell death process.

The limitation of the yeast system is primarily that the technology can

only be applied in yeast. This is a particular drawback in studying non-

apoptotic cell death, which is poorly conserved even between mammals

and other metazoans (Tait & Green, 2008). While the shRNA system is

applicable in mammalian cells, it may be difficult to apply to specialized cell

types that are not easily transfected. There are also off-target concerns with

RNAi, exemplified in the Hemann study by their inability to fully repro-

duce the clusters when each clone in their eight-gene set was replaced with

a different clone targeting the same gene. Compounds in both systems are

generally used at a single dose, masking concentration-dependent changes

and raising the likelihood of using too high a concentration and increasing

the likelihood of pleiotropic effects.

5. SMALL-MOLECULE COMBINATION INTERACTIONS

Combinations of drugs are the foundation of treatment for a number

of diseases including HIV, tuberculosis, and multiple types of cancer. There

is a long history of the analysis and interpretation of the interactions between

small molecules (Keith, Borisy, & Stockwell, 2005). More recently, these

effects have been quantified and compared to help understand compound

mechanisms of action.

5.1. Profiles based on small-molecule interactions
Small-molecule interactions have been used as fingerprints both in model

organisms and in mammalian cells. Kishony and colleagues scored pairwise

interactions between 21 antibiotics as antagonistic, additive, or synergistic,

based on their combined effect on the growth of E. coli (Yeh et al., 2006).

These data allowed them to accurately group the compounds according to

their known mechanisms of action and suggest a novel mechanism for one
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poorly characterized compound. Farha and Brown took a similar approach,

screening �200 compounds capable of inhibiting Escherichia coli growth for

synergy with 14 well-characterized antibiotics (Farha & Brown, 2010).

They compared these profiles and were able to make mechanistic inferences

about novel compounds. Lehar and colleagues created dose matrices for

combinations of 10 sterol inhibitors in yeast (Lehar et al., 2007). Analysis

of the shape of these interaction maps allowed distinction between com-

pounds acting in the same pathway and compounds acting in different path-

ways. They performed a similar analysis on data from a screen of all

combinations of 90 characterized compounds in a human colon cancer cell

line and found that compounds with similar mechanism of action were more

likely to have similar interactions with the rest of the set.

5.2. Advantages and limitations in the study of cell death
Analysis of small-molecule combinations is valuable for its versatility and

widespread applicability. Unlike genetic changes or RNAi, it can be applied

across species and in specialized cell types. It has the potential to generate

high-dimensionality data, it typically uses a functional assay as the output,

and the profiles can be information-rich and mined for further insights.

While some studies used single doses, larger dose matrices like those used

by Lehar et al. can be used to capture dose-dependent effects. Additionally,

as demonstrated by Lehar and colleagues in their yeast experiments with ste-

rol inhibitors, focused, information-dense mini-profiles can be readily gen-

erated for specific processes of interest.

Using combinations of small molecules has several drawbacks, primarily

centered on throughput and coverage. Larger systems in which all pairwise

interactions are tested are limited by the exponential increase in the number

of required experiments. The same problem prevents the use of multiple

doses and higher-order combinations of small molecules. While with

genetic techniques it is possible to barcode and pool experiments, this is

not theoretically possible with small-molecule combinations. Additionally,

genetic approaches can achieve genome-wide coverage while chemical

interaction approaches are limited by the availability of relevant small mol-

ecules. It can require the testing of large numbers of combinations to identify

statistically significant interactions. For example, Farha and Brown detected

an interaction with only 45 of the 186 compounds tested against their

14-compound reference set.
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6. CELL LINE VIABILITY PROFILING

George Gey and colleagues first successfully cultured human tumor

cells (HeLa cells) in 1952 (Gey, Coffman, &Kubicek, 1952). Since that time,

cultured tumor cells have been a central pillar of biological investigation in

general and cell death in particular. While attempting to identify potential

chemotherapeutic agents, researchers at the NCI noted that differential cell

line toxicity was a useful marker of compound mechanism of action

(Shoemaker, 2006). Cell line viability profiling has continued today as

one of the most frequently utilized profiling methodologies.

6.1. NCI60 screen
In the late 1980s, the National Cancer Institute developed a screen of

60 human tumor cell lines from 9 different tumor types (NCI60) with

the intention of identifying disease-specific lethal compounds. The

NCI60 screen was instituted as a primary drug screening platform in the

1990s and then transitioned to a research tool in 2000. By 2005, over

350,000 compounds had been screened and compounds continue to be

screened at a reduced rate of approximately 3000 per year (Shoemaker,

2006). Early on in the screening program, it was noted that the patterns

of relative potency across the cell lines could be used as a marker of com-

pound mechanism of action. They subsequently developed their

“COMPARE” algorithm to further analyze these patterns and allow for

querying of their large database of compound sensitivities (Paull et al.,

1989). In this initial work, they demonstrated that the algorithm was able

to accurately link alkylating agents, topoisomerase inhibitors, and antime-

tabolites to other compounds from the same mechanistic class. See

Fig. 11.4 for an example of the display format and use of the COMPARE

algorithm from a recent study (Yang et al., 2012).

6.1.1 Notable applications of the NCI60 screen
One of the first successful applications of the COMPARE algorithm was in

the investigation of halichondrin B, a cytotoxic natural product without a

known mechanism of action. The NCI team found that halichondrin

B had a sensitivity profile similar to known microtubule destabilizers and

subsequently demonstrated that halichondrin B was also a microtubule

destabilizer (Bai et al., 1991). Later the database was used to investigate

the mechanism of action of recombinant anthrax lethal factor. The
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sensitivity profile was similar to the profile of PD98059, an MEK inhibitor.

Anthrax lethal factor was then shown to act as a protease that cleaves MEK1

and MEK2 (Duesbery et al., 1998).

The NCI60 screen was also valuable in identifying compounds with

unique profiles in the database, therefore suggesting that such compounds

acted through a novel mechanism of action. This was notable the case for

the proteasome inhibitor bortezomib (Holbeck & Sausville, 2004).
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Figure 11.4 NCI60 data display and COMPARE analysis. Yang and colleagues (Yang
et al., 2012) identified the highly potent cytotoxic compound 20959075. Its profile across
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total growth inhibition (TGI) from the mean of all cells lines tested. COMPARE analysis
identified maytansine, a known microtubule destabilizer, as the most highly correlated
compound in the databasewith a correlation of 0.808. Its profile is shown in the red bars.
The authors went on to show that 20959075 is in fact a microtubule destabilizer.
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Bortezomib and several analogues were tested in the NCI60 screen. Initial

COMPARE analysis demonstrated that the compounds were similar to each

other but had profiles distinct from the database compounds, supporting the

novel mechanism of action of bortezomib and its analogues. In addition, the

potency of the analogues in the cells lines correlated well to the in vitro

potency of the compounds against the proteasome, supporting proteasome

inhibition as the lethal mechanism of action of the compounds.

6.2. Use of molecularly characterized cell lines
The use of multiple cell lines can be conceptualized as a chemical–genetic

profile, akin to testing an unknown combination of an unknown number

of genetic (and epigenetic) mutations. Researchers at the NCI noted the

value in defining those mutations in order to then be able to link molecular

characteristics of the cell lines to compound activity. The advent of genome-

wide profiling techniques has enhanced this ability as it has become possible

to molecularly characterize larger numbers of cell lines. Programs have since

been initiated to greatly expand on the approach taken by the NCI60 and

profile compounds in hundreds or thousands of well-characterized cell lines.

6.2.1 Molecular characterization of NCI60 cell lines
In the mid-1990s, the NCI60 group began annotating their cell lines with

“molecular targets”—genetic mutations, mRNA levels, protein levels, and

enzymatic activity (Weinstein, 2006). In a pioneering study, Jonathan

Weinstein and colleagues developed visualization and computational tools

to analyze the relationship between cell sensitivity profiles and molecular

characteristics (Weinstein et al., 1997). In this study, they showed that they

could identify compounds that were likely multidrug resistance transporter

substrates. They also identified compounds whose activity was either depen-

dent on or independent of wild-type p53. Further studies have integrated

genome-wide expression data (Ross et al., 2000; Scherf et al., 2000), pro-

teomic profiles (Nishizuka et al., 2003; Park et al., 2010; Shankavaram

et al., 2007), and mutation data (Ikediobi et al., 2006). The NCI has made

all of their data and analysis tools available on their web site (http://dtp.nci.

nih.gov/mtargets/mt_index.html).

6.2.2 Expanded cell line databases
Three recent projects have tested small molecules in large numbers of

molecularly characterized cell lines. Garnett and colleagues tested 130 com-

pounds in an average of 368 cell lines that had been characterized by
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sequencing of 64 commonly mutated cancer genes, evaluation of 7 com-

monly rearranged cancer genes, genome-wide copy number analysis, and

genome-wide expression analysis (Garnett et al., 2012). The Cancer Cell

Line Encyclopedia (CCLE) project tested 24 anticancer drugs against 479

cell lines that were characterized genetically by sequencing of >1600 genes

and testing of 392 recurrent mutations in 33 known cancer genes, DNA

copy number evaluation, and genome-wide expression analysis (Barretina

et al., 2012). Using a subset of 242 of the cell lines in the CCLE, Basu

and colleagues profiled 354 highly selective small molecules (Basu et al.,

2013). The data from all three projects are publicly available. Basu and col-

leagues designed a Web portal for querying their database (http://www.

broadinstitute.org/ctrp).

All three of these studies were primarily focused on identifying genomic

markers that could be used to predict responsiveness to a chemotherapeutic

drug. While characterizing compound mechanism was not the central goal,

they do provide rich data sets to investigate compound activity. Garnett and

colleagues and the CCLE project did cluster their compounds based on the

cell line responses. The CCLE had a small number of compounds that shared

a common target, and these groups did cluster together. Garnett and col-

leagues had a larger number of such compounds, many of which clustered

together (MEK1/2 inhibitors, EGFR, IGFR1) although others did not

(SRC inhibitors, microtubule stabilizers). Basu et al. clustered the com-

pounds based on the most significant genomic features correlated with com-

pound activity and highlighted several compounds with common targets

that clustered together.

6.3. Advantages and limitations in the study of cell death
Cell line profiling of small molecules is the first established profiling tech-

nique and has a number of attractive features. The primary advantage is

the collection of a large amount of publicly accessible, information-rich data.

The lifespan of the NCI60 project has allowed for the profiling of an unpar-

alleled number of compounds. The three more recent projects described

above have profiled fewer compounds but in an impressive number of cell

lines with extensive molecular characterization. Similar to chemical–genetic

and chemical interaction profiling, the assays are functional and therefore

more likely to detect relevant effects, even when used at a single time point.

A recent study suggests that the concentration–response data produced by

such studies is even more information-rich than previously appreciated
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and that additional features can be mined for mechanistic information

(Fallahi-Sichani, Honarnejad, Heiser, Gray, & Sorger, 2013). The data

dimensionality depends on the number of cell lines tested, but even given

similar dimensionality, the data are likely to bemore information-dense than

a chemical–genetic profile. Single genetic changes often produce no effect

on a compound, but the complex combination of alterations represented by

each cancer cell line is much more likely to alter compound response,

resulting in fewer null values. Lastly, genomic characterization of cell lines

allows for the mining of the profiles for mechanistic information.

Limitations of cell line profiling include dependence on available cancer

cell lines and the requirement for the use of large numbers of cell lines to

achieve representation of uncommon targets and pathways. One of the driv-

ing motivations for the assembly of the larger cell line profiling projects was

the realization that 60 cell lines was insufficient to allow for the statistical

detection of some selective agents, particularly those dependent on muta-

tions found in only of fraction of cancers of a particular lineage (Sharma,

Haber, & Settleman, 2010). Unlike in chemical–genetic profiling in which

genome-wide coverage can be achieved, cancer cell line profiling is likely to

only appreciably access changes relevant to cancer. The dependence on can-

cer cell lines is particularly a limitation in the study of cell death, since inac-

tivation of cell death is one of the hallmarks of cancer (Hanahan &

Weinberg, 2011). It also limits the ability to study highly specialized pro-

cesses only accessible in specific cell types.

7. QUANTITATIVE IMAGING

As described earlier, morphology has long formed the foundation of

cell death characterization.While qualitative descriptions of morphology are

problematic, advances in microscopy and computational analysis have

allowed for the extraction of quantitative parameters from images that

can be used to create profiles to compare compounds.

7.1. High-content imaging in cell culture
The first large-scale imaging-based compound profiling system was devel-

oped by the Altschuler and Wu lab. They generated profiles for 100 com-

pounds by testing a range of concentrations in HeLa cells and after 20 h

staining with 11 fluorescent probes and imaging to capture up to 8000 cells

per well (Perlman et al., 2004). They derived 93 descriptors from the

images and used them to compare the 61 compounds for which they
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detected a significant phenotype. They showed that replicates of com-

pounds and compounds with similar known mechanisms of action clus-

tered together (with some notable exceptions including protein synthesis

inhibitors). They were also able to predict the mechanism of one poorly

characterized compound and showed that their profiles were more infor-

mative than the analysis of only the intensity of the staining. A second study

used 3 cellular stains and measured 36 cytological features from which they

derived 6 factors by combining highly correlated features (Young et al.,

2008). Using this system, they screened a library of over 6000 compounds

at a single dose and time point and did further analysis of the 211 com-

pounds that caused the largest perturbations of the 6 factors. Clustering

of these compounds accurately classified compounds with known biolog-

ical activity.

7.2. Advantages and limitations of image-based profiles
in studying cell death

Imaging systems continue to decrease in cost and increase in throughput and

quality. They are generally accessible across species and cell types that can be

cultured. Such systems are valuable for studying cell death because links can

be made between quantitative metrics and traditional cell death phenotypes.

For example, one of the factors defined by Young and colleagues combined

chromatin condensation and decrease in nuclear size and was thought to

correspond to apoptosis. Another appealing feature of imaging systems is

the possibility of obtaining single-cell data, which could make it feasible

to identify and characterize a death process that occurs in only a subset of

a cell population.

Image-based profiles are limited in that they collect observational and not

functional data, which raises the possibility that the changes observed are not

driven by the same process that leads to cell death. While factor analysis like

that performed by Young and colleagues attempts to connect biological

meaning to the extracted parameters, image-based data do not readily cor-

relate to underlying biochemistry. In fact, in cell death, morphological

changes do not necessarily represent unique biochemistry. While the addi-

tions of cellular stains increase the dimensionality and sensitivity of the data,

many compounds may not cause a significant morphological change, partic-

ularly at a chosen time point. This was demonstrated in all of the studies

described above where only a minority of compounds displayed an appre-

ciable phenotype.
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8. MODULATORY PROFILING

To address some of the deficiencies in the above-described methods

and assist in the characterization of small-molecule-induced cell death, we

recently developed a system called “modulatory profiling” that creates

information-dense, functional profiles for small molecules based on quanti-

fication of the degree to which various agents are able to perturb the death

induced by lethal compounds (Wolpaw et al., 2011).

8.1. Design and validation
To understand a process, one needs a way to perturb it. From this principle,

it follows that a rigorous description of a process could be generated from

cataloging various agents capable of inhibiting or enhancing it. To apply this

concept to cell death, we assembled a collection of 32 chemical and genetic

“modulators” of known cell death pathways and quantified their ability to

change the extent of death induced by lethal compounds in two cell lines.

We did this by testing a single, literature-derived concentration of the mod-

ulator against a 12-point dilution series of the lethal compounds and

extracted two parameters, the change in potency and the change in efficacy

(see Fig. 11.5). As a proof-of-principle, we tested 28 well-characterized

lethal compounds and showed that clustering based on their “modulatory

profiles” correctly grouped together compound replicates and compounds

with the samemechanism of action. Clustering based onmodulatory profiles

was shown to more accurately group compounds according to their

established mechanisms compared to clustering using a similar algorithm

applied to gene expression profiles or chemical structure.

To further demonstrate the value of this approach, we generated profiles

for 25 poorly characterized or uncharacterized lethal compounds and clus-

tered them with the characterized compounds (see Fig. 11.6). Three com-

pounds had profiles that clustered with known microtubule destabilizers,

and we subsequently showed that these compounds do in fact destabilize

microtubules in cultured cells. Other compounds grouped together and

based on those groupings were determined to act through nonspecific

methods, either compound reactivity or detergent-like membrane disrup-

tion. Lastly, poorly characterized and uncharacterized compounds in a clus-

ter without any well-characterized compounds were shown to act through a

nonapoptotic process that involved the mitochondria.
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Figure 11.5 Creating modulatory profiles. (A) Cells with or without modulator were
seeded into 384-well plates and lethal compounds were added in a dilution series. Via-
bility was measured after 48 h with Alamar Blue and comparative concentration–
response curves were constructed from the data. (B) Two examples of comparative dose
curves. These illustrate the two parameters extracted from each pair of curves, the change
in potency and the change in efficacy. (C) Heatmap illustrating themodulatory profiles for
a number of characterized lethal compounds. Each row represents the modulatory pro-
files for a different compound. Reproduced with permission from Wolpaw et al. (2011).
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Figure 11.6 Comparing and clustering modulatory profiles. (A) Heat map of the simi-
larity matrix showing the Spearman correlation between modulatory profiles of both
characterized and uncharacterized lethal compounds. (B) Dendrogram derived from
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8.2. Modulatory profiling protocol
A detailed protocol for performing modulatory profiling was published pre-

viously (Wolpaw et al., 2011). Below we will describe a summary of our

protocol and identify opportunities for repurposing the system to study spe-

cific cell death processes.

I. Selection of modulators, reference lethal compounds, and cell lines

We initially selected literature-reported modulators of established

cell death pathways including reactive oxygen species scavengers, cal-

cium channel blockers, protein synthesis inhibitors, and protease inhib-

itors, among others. A different set of modulators could in principle

be chosen to focus more clearly on a specific process of interest. We

used four genetic modifiers (two shRNAs and two cDNAs), which left

significant opportunity for expansion. We used a diverse group of

well-characterized lethal compounds, but alternative reference lethal

compounds could be chosen. For quality control purposes, it is advan-

tageous to select multiple compounds from the same mechanistic class.

We chose two cell lines, the human fibrosarcoma HT-1080 line and an

engineered tumorigenic line, derived from human foreskin fibroblasts

(BJ-TERT/LT/ST/RASV12). Both cell lines grow rapidly in and uni-

formly in culture, HT-1080 cells are easily manipulated with genetic

tools, and BJ-TERT/LT/ST/RASV12 have defined genetic changes

and therefore do not have mutations in poorly characterized death

pathways that may be found in a cancer cell line. Different cell lines

could be chosen in order to focus on a cell death process specific to

a certain cell type.

II. Cell plating and addition of reagents

Cells were cultured as previously described (Yang & Stockwell,

2008). Cells were trypsinized, counted, and seeded in 384-well plates

with or without a specific modulator. Lethal compounds were added

from a separate 384-well plate containing 12-point, twofold dilutions

of the compounds and DMSO-only control wells (see Fig. 11.5A).

clustering the similarity matrix shown in (A). Five broad clusters are highlighted and
lettered. In addition, microtubule destabilizers are shown in black, a cluster that includes
three previously uncharacterized compounds. Other features that are not highlighted
include clustering of characterized compounds according to their known mechanisms
of action—alkylating agents, mitochondrial poisons, topoisomerase inhibitors, histone
deacetylase inhibitors, and proteasome inhibitors. Reproduced with permission from
Wolpaw et al. (2011) and slightly altered.
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After 48 h, the cell viability dye Alamar Blue (Nociari, Shalev,

Benias, & Russo, 1998) was added and plates were read 16 h later

on a Victor 3 plate reader (Perkin Elmer). All liquid transfers were per-

formed using a Biomek FX AP384 module (Beckman Coulter). All

assays were performed at least in triplicate.

III. Calculation of changes in potency and efficacy

Background fluorescence (no cells with modulator or no cells with

lethal compound) was subtracted and values were normalized to vehi-

cle or modulator-only controls. GraphPad Prism was used to calculate

logistic best-fit curves based on four parameters—EC50, Top, Bottom,

and Hill slope. Curves with and without modulator were compared.

Changes in the Top (change in survival in very low concentrations

of compound) were appropriately not observed and therefore the

Top was set as equal to one (100% survival). We found that changes

in the Hill slope were particularly error prone and uninformative

(Kenichi Shimada and Brent Stockwell, unpublished). We therefore

used a modification of the changes in the EC50 (potency) and the

Bottom (efficacy) of these curves as the parameters with which to cre-

ate the profiles, giving each parameter equal weight (see Fig. 11.5B).

While most studies have used potency alone or a combination of

potency and efficacy (area under the curve), a recent study validated

our approach, demonstrating the utility of efficacy as a separate marker

of compound activity (Fallahi-Sichani et al., 2013). These data-

processing steps were performed primarily using MatLab.

IV. Comparing, visualizing, and clustering modulatory profiles

Potency and efficacy changes were individually normalized so that

each had a standard deviation of one (for all compounds, not for each

compound). This removed the units and gave each parameter equal

weight. Spearman correlations were then calculated for each pair of

compounds to produce a similarity matrix like the one shown in

Fig. 11.6A. This was done within the R programming environment.

The R function hclust was then used to cluster the similarity matrix,

using the group average method for defining new clusters

(Kaufman & Rousseeuw, 1990). This produced a dendrogram such

as the one shown in Fig. 11.6B.

V. Further validation and exploration of findings

Similar to other profiling methods, modulatory profiling suggests

connections and mechanisms that then must be confirmed through

independent experimental validation.
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8.3. Application of modulatory profiling to the investigation
of ferroptosis

Our lab recently described a nonapoptotic cell death process, “ferroptosis,”

induced by the small-molecule erastin and dependent on intracellular iron

(Dixon et al., 2012). This study used two focused variations of modulatory

profiling to demonstrate the uniqueness of ferroptosis. Six chemical modu-

lators of ferroptosis were tested for their ability to alter the death induced by

16 diverse lethal compounds, including two small-molecule inducers of fer-

roptosis. This analysis showed that ferroptosis modulators were largely inac-

tive against other lethal compounds, and clustering showed that the two

ferroptosis inducers were similar to each other and distinct from other lethal

compounds. A similar analysis was performed using seven shRNAs,

targeting genes that were found in a screen to be required for ferroptosis.

These hairpins were tested against seven lethal compounds (including one

ferroptosis inducer, erastin) and were only active against erastin. Clustering

also placed erastin in a unique cluster, demonstrating the uniqueness of the

genetic network required for ferroptosis.

A further study from our lab investigated the role of glutathione perox-

idase 4 (Gpx4) in ferroptosis (Yang et al., 2014). This study created a mod-

ulatory profile for Gpx4 siRNA and showed that it was similar to the profiles

of the ferroptosis-inducing compoundRSL3, providing evidence that Gpx4

is the relevant cellular target of RSL3. This demonstrates the ability of mod-

ulatory profiling to link small molecules to their targets based on the simi-

larity of their modulatory profiles, similar to what has been done in yeast by

combining genetic interaction and chemical–genetic interaction profiles.

8.4. Advantages and limitations in the study of cell death
Modulatory profiling was specifically designed for the study of small-

molecule-induced cell death and has some distinct advantages. Perhaps its

most important feature is its flexibility, as illustrated in its application to fer-

roptosis. Modulatory profiles can be readily applied to a specific cell death

process of interest, including in specialized cell types. In addition, it uses a

functional assay (changes in cell death) and therefore is more likely to iden-

tify the relevant mechanism of action of a compound. It uses a broad con-

centration range, allowing for the detection of dose-dependent effects. It

utilizes human cell lines, allowing for the study of processes not found in

lower organisms. Modulatory profiling uses a combination of genetic and

chemical modulators. Combining both modalities improves resolution,
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allows investigation in cell types that are difficult to access with genetic

methods, and allows access to processes not well targeted currently by small

molecules. The chemicals used in modulatory profiling are selected and

optimized prior to the profiling experiment. This eliminates the need for

a dose matrix like those used in small-molecule interaction profiling and

reduces the potentially enormous number of experiments required to test

all pairwise interactions among a large collection of small molecules.

Modulatory profiling is limited by the availability of appropriate modu-

lators. If relevant modulators for a given process are unknown or

unavailable, a broad-based system can demonstrate the uniqueness of that

process, but it will not be able to offer any detailed mechanistic information

or differentiate between inducers of that process. In addition, the use of

chemical modulators requires individual wells, which makes it difficult to

increase throughput. The ability to create profiles for genetic lethal agents,

as described above for Gpx4, is promising but has only been demonstrated

in specific circumstances. Its widespread applicability remains to be

demonstrated.

9. CONCLUSIONS

Over the past 15 years, technological advances and miniaturization

have decreased cost and allowed for the implementation and expansion of

high-dimensionality profiling systems for the analysis of biological processes.

As we have described, these systems take advantage of the ability to quantify

transcript and protein levels, create and test large numbers of genetic

mutants, perform large numbers of assays required for cancer cell line pro-

filing or chemical combination experiments, and extract quantifiable fea-

tures from high-content imaging data.

Cell death is an essential and diverse process with a highly complex and

interconnected underlying cellular signaling network and significant species

and cell-type specificity. High-dimensionality profiling systems are appeal-

ing in the study of cell death for their potential to create fingerprints for pro-

cesses that can be used both for comparison to other pathways and definition

of a specific pathway. While unfocused systems like genome-wide expres-

sion profiling are valuable for their universality, there is also an important

role for smaller, process-focused profiling modalities. We have used modu-

latory profiling both broadly and specifically, to try to create a map of all of

the death pathways available to the cell, but also to create focused systems to
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analyze specific pathways or contexts. Such systems should continue to play

an important role in future cell death research.
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