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SUMMARY

Ferroptosis is a form of nonapoptotic cell death for
which key regulators remain unknown. We sought a
common mediator for the lethality of 12 ferroptosis-
inducing small molecules. We used targeted
metabolomic profiling to discover that depletion of
glutathione causes inactivation of glutathione perox-
idases (GPXs) in response to one class of com-
pounds and a chemoproteomics strategy to discover
that GPX4 is directly inhibited by a second class of
compounds. GPX4 overexpression and knockdown
modulated the lethality of 12 ferroptosis inducers,
but not of 11 compounds with other lethal mecha-
nisms. In addition, two representative ferroptosis in-
ducers prevented tumor growth in xenograft mouse
tumor models. Sensitivity profiling in 177 cancer
cell lines revealed that diffuse largeB cell lymphomas
and renal cell carcinomas are particularly susceptible
to GPX4-regulated ferroptosis. Thus, GPX4 is an
essential regulator of ferroptotic cancer cell death.
INTRODUCTION

Cells can undergo regulated forms of cell death in a variety of

contexts (Galluzzi et al., 2012), including during development

(Penaloza et al., 2006). Activation of alternative regulated cell

death mechanisms may be beneficial for treating diseases

such as cancer, in which apoptotic cell death mechanisms are

suppressed due to genetic alterations. Indeed, activation of

alternative cell death pathways may overcome the drug resis-

tance associated with existing chemotherapeutic agents,

providing new drug targets.
Regulators of apoptosis have been targeted with small mole-

cules to induce cell death in cancer cells (Cotter, 2009). Recently,

regulated, nonapoptotic cell death processes have been discov-

ered, including necroptosis (Degterev et al., 2005) and ferropto-

sis (Dixon et al., 2012).

Ferroptosis is a mode of cell death involving the production of

iron-dependent reactive oxygen species (ROS). In engineered

human fibroblast cell lines, the small molecule erastin was found

to induce preferential lethality in cells overexpressing oncogenic

HRAS (Dolma et al., 2003). Erastin-induced ferroptotic cell death

was distinct from apoptosis, necrosis, and autophagy, based on

morphological, biochemical, and genetic criteria. Ferroptosis

involves metabolic dysfunction that results in the production of

both cytosolic and lipid ROS, independent of mitochondria but

dependent on NADPH oxidases in some cell contexts (Dixon

et al., 2012).

We have reported the identification of additional small mole-

cules, named RSL3 (Yang and Stockwell, 2008a), ML162, and

DPI10 (Weı̈wer et al., 2012), that display oncogenic-RAS-

synthetic-lethality (the RSL phenotype) in engineered fibro-

blast-derived tumorigenic cell lines. Here, we sought to test

whether these and other compounds also induce ferroptosis,

and whether they could be used to elucidate a central regulator

of ferroptosis, which controls cell death by all FIN (ferroptosis

inducing) compounds.

We focused initially on erastin and RSL3. Erastin reprograms

cancer cell metabolism by modulating VDAC2/VDAC3 (Yagoda

et al., 2007) and system xc
� (Dixon et al., 2012) to trigger ferrop-

tosis, whereas RSL3-induced ferroptosis is not dependent on

these factors (Yang and Stockwell, 2008a) but results in a similar

downstream cell death phenotype. Thus, we viewed erastin and

RSL3 as ideal probes to elucidate conserved downstream regu-

lators of ferroptosis. We used metabolomic profiling to evaluate

comprehensively changes in metabolism occurring upon erastin

treatment, and chemoproteomics to identify candidate target
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proteins for RSL3, which led to the discovery of a common

pathway regulating cell death in response to all known com-

pounds that induce ferroptosis.

RESULTS

Erastin Depletes Glutathione to Trigger Selective
Ferroptosis
To investigate the global changes in metabolism induced by era-

stin, we treated HT-1080 fibrosarcoma cells with DMSO or era-

stin, and extracted polar and lipid metabolites. The metabolite

extract was subjected to liquid chromatography-tandem mass

spectrometry (LC-MS/MS) analysis to determine the quantity

149 polar and 115 lipid metabolites (Table S1 available online;

Figure 1A). Both reduced glutathione (GSH) and oxidized gluta-

thione (GSSG) were depleted significantly upon erastin treat-

ment, whereas the level of lysophosphatidyl cholines (lysoPCs)

was increased; the increase in lysoPCs may reflect the genera-

tion of lipid ROS during erastin-induced ferroptosis because

PCs have been found to be converted to lysoPCs (deacylated

PCs) upon lipid oxidation (Parthasarathy et al., 1985).

The significant depletion of GSH/GSSG was consistent with

the fact that erastin induces the formation of ROS, causing an

oxidative cell death. GSH/GSSGconstitutes amajor cellular anti-

oxidant system and provides reducing equivalents to eliminate

oxidative species. We treated three cell lines with erastin, deter-

mined GSH levels using Ellman’s reagent, and confirmed the

dose-dependent, GSH-depleting effect of erastin (Figures 1B

and S1A). We found that GSH depletion by erastin is necessary

for erastin’s lethality because supplementing the culturemedium

with GSH or N-acetylcysteine (NAC), a biosynthetic precursor to

GSH, prevented erastin-induced cell death (Figure S1B).

We sought to test further whether the glutathione-depleting

activity of erastin was essential for lethality. We established a

synthetic route to create six erastin analogs (see Data S1 for

synthesis) and tested these analogs for selective lethality in

BJ-derived engineered cell lines (Figure 1C). Three compounds

(MEII, PE, and AE) retained selective lethality, whereas three

compounds (A8, PYR, and dMK) were not lethal (Figure 1C).

Lethal analogs of erastin depleted cellular GSH more effectively

than nonlethal analogs of erastin (Figure 1D), which further sug-

gested that the GSH-depleting activity of erastin is necessary for

erastin lethality.

We reasoned that, if GSH depletion was contributing to

erastin’s lethality, then GSH depletion by other reagents might

partially mimic erastin’s selective lethality in the BJ-cell line sys-

tem, which consists of isogenic cell lines (two with and two

without oncogenic HRAS), through which ferroptosis-inducing

compounds such as erastin were discovered. When the four

BJ-derived cells were treated with BSO, an oncogenic HRAS-

selective lethal phenotype was observed under conditions of

low cell density (Figure 1E), suggesting that GSHdepletion is suf-

ficient for induction of ferroptosis in BJ cells with oncogenic

HRAS overexpression, although additional factors may enhance

the potency and efficacy of the lethality caused by GSH deple-

tion under more general circumstances. These results indicated

that erastin depletes GSH through preventing cystine uptake via

inhibition of system xc
� (Dixon et al., 2012).
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Erastin Inactivates GPX Enzymes through GSH
Depletion
Given that we found GSH depletion to be critical for erastin-

induced ferroptosis, we investigated how GSH depletion by era-

stin was able to induce selective lethality in the engineered BJ

cell lines. It has been hypothesized that most cancer cells,

including RAS-transformed fibroblasts (Irani et al., 1997), are

under high levels of oxidative stress (Szatrowski and Nathan,

1991), which therefore needs to be counteracted by increasing

the ROS-scavenging capacity, to prevent oxidative damage

(Hussain et al., 2003). In this model, targeting ROS-scavenging

systems through multiple points, including GSH depletion,

would cause an imbalance in this equilibrium, leading to oxida-

tive cell death (Trachootham et al., 2006). In order to test

whether this simple hypothesis could explain erastin’s selective

lethality, we examined basal ROS levels in the BJ-derived engi-

neered cell lines using H2DCF, a cytosolic ROS sensor, and

confirmed that BJeLR cells have modestly elevated ROS levels

compared to BJeH (BJ-TERT) and BJeHLT (BJ-TERT/LT/ST)

cells (Figure 2A). We then treated the four BJ-derived cell lines

with an SOD inhibitor (DETC), a thiol-reactive reagent (DIA), a

thioredoxin reductase inhibitor (DCNB), or a catalase inhibitor

(ATZ) (Figures 2B and S2). Three of these antioxidant inhibitors

(DETC, DIA, and DCNB) killed BJ-derived cells, but they neither

depleted GSH nor displayed selective lethality, which was in

contrast to the two GSH-depleting reagents, erastin and BSO

(Figures 2B, 2C, and S2). The results indicate that it is not

possible to induce selective ferroptosis in the BJ-derived cell

lines by simply targeting the antioxidant network. Instead,

unique biochemical and metabolic changes downstream of

GSH depletion were likely to be responsible for the selective

induction of ferroptosis.

The degree of GSHdepletion upon erastin treatment in the four

BJ cell lines was also examined (Figure 2D). We found that these

four BJ-derived cell lines contained varying amounts of basal

GSH in the absence of any treatment, as reported previously

by Kang and Enger (1992), but were depleted of GSH to a similar

extent upon erastin treatment. The concentration of erastin used

in this experiment (10 mM) was lethal to BJeLR and DRD cells

(expressing HRASV12) but was not lethal to BJeH and BJeHLT

cells (with wild-type RAS), even upon prolonged incubation (Fig-

ure 2B). Therefore, the selective lethality among these cell lines

was not caused by differential depletion of GSH or by differences

in the basal level of GSH.

We then treated BJeLR cells with either GSH-depleting

reagents (erastin or BSO) or other antioxidant-targeting re-

agents (DETC, DIA, and DCNB), and stained cells with either

BODIPY-C11, a membrane-targeted lipid ROS sensor, or

H2DCF, a cytoplasmic ROS sensor, to detect changes in

ROS accumulation upon compound treatment (Figure 2E).

GSH-depleting reagents strongly increased BODIPY-C11 and

H2DCF signals, whereas other antioxidant inhibitors did not

increase the fluorescence signals from either ROS sensor, indi-

cating that both cytosolic and lipid ROS levels were increased

selectively by GSH depletion in the oncogenic HRAS-containing

cell lines (Figure 2E).

We considered that one consequence of GSH depletion could

be inactivation of glutathione-dependent peroxidases (GPXs).
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Figure 1. Ferroptosis Involves Generation of Lyso-PC and Depletion of Glutathione

(A) Changes in metabolites upon erastin treatment.

(B) Dose-dependent depletion of GSH by erastin in HT-1080 cells and U-2 OS cells.

(C) Structure and activity of erastin (ERA) analogs. Potency (GI50; concentration required for 50% growth inhibition) and selectivity (ratio of GI50 in HRASwild-type

cells divided by GI50 in HRAS mutant cells) of each analog are shown. PYR, pyridine erastin; AE, aldehyde erastin; MEII, morpholine erastin II; PE, piperazine

erastin.

(D) GSH depletion by erastin analogs. HT-1080 cells were incubated with 10 mM erastin analogs for 5 hr or 100 mM BSO for 12 hr. BSO was used as a positive

control for GSH depletion. Data were normalized to the DMSO sample. Box-and-whisker plots (n = 3–8) are as follows: midline representsmedian, box is the 25th–

75th percentiles, and whiskers are minimum and maximum. ***p < 0.001.

(E) BSO induces selective lethality in BJ-derived tumorigenic cells expressing oncogenic HRAS. Scale bars, 60 mm.

In (B) and (E), data are presented as mean ± SD (n = 3). See also Figure S1 and Table S1.
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Figure 2. GSH Depletion Inactivates GPX

Enzymes to Induce Ferroptosis

(A) Basal ROS levels among BJ-derived cell lines

were compared (n = 8).

(B) The growth inhibition effect of antioxidant-

targeting compounds was determined in the

four BJ-derived cells (n = 3). The bar graph in-

dicates growth inhibition at two different concen-

trations (23 GI50 and 43 GI50 for each compound

in BJeLR cells).

(C) Other antioxidant inhibitors do not deplete GSH

during cell death (n = 3).

(D) Erastin depletes cellular GSH equally in the four

BJ-derived cell lines.

(E) GSH-depleting reagents elevated both cyto-

solic and lipid ROS level, whereas other antioxidant

inhibitors did not (n = 3).

(F) GSH-depleting reagents (ERA and BSO) in-

hibited GPX activity. Rel. Abs., relative absor-

bance.

n.s., not significant; *p < 0.05; ***p < 0.001. Error

bars in (B), (C), and (E) represent mean ± SD. See

also Figure S2.
GPXs catalyze the reduction of hydrogen peroxide and organic

hydroperoxides to water or the corresponding alcohols, using

GSH as an essential cofactor (Brigelius-Flohé and Maiorino,

2013).

The total activity of GPXs in BJeLR cells was examined using

tert-butylhydroperoxide (tBuOOH) as a substrate, by monitoring

the rate of NADPH oxidation, which is coupled to the tBuOOH-

reducing activity of GPXs in cell lysates.When BJeLR cell lysates

treated with vehicle only (0.08% DMSO) were added to the GPX

activity assay, we observed a decrease in the amount of NADPH,

indicating that tBuOOH was reduced by GPXs in the cell lysate

(Figure 2F). Treatment of BJeLR cells with antioxidant inhibitors

(DETC, DIA, and DCNB) did not affect GPX activity because the

rate of NADPH oxidation was similar to the vehicle-only-treated

sample.

When lysates from BJeLR cells that had been treated with

GSH-depleting reagents (erastin or BSO) were analyzed, NADPH

oxidation was prevented, indicating that GPXs were inactivated

upon GSH depletion (Figure 2F). Taken together, these data indi-

cate that erastin and BSO inactivate cellular GPXs, leading to the

generation of cytoplasmic and lipid ROS. Other antioxidant in-

hibitors did not deplete GSH, an essential cofactor for GPX

enzyme activity, and therefore, did not inhibit GPX activity and

did not cause accumulation of peroxides.
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RSL3Binds to and Inactivates GPX4
Having determined that erastin acts

by depleting GSH and inhibiting GPXs,

we examined the mechanism of action

of RSL3, another ferroptosis inducer

(Yang and Stockwell, 2008a). Cell death

induced by erastin and RSL3 shared

common ferroptotic features, such

as iron, MEK, and ROS dependence;

however, RSL3 was not dependent on

VDAC2/VDAC3 or system xc
� implying
that a different initiating mechanism could converge on a similar

form of ferroptotic cell death. We thus used RSL3 as a probe to

illuminate the shared downstream mechanism involved in

executing ferroptosis.

When we examined cellular GSH levels during RSL3-induced

cell death, we found that GSH remained unaffected by a

lethal RSL3 concentration (2 mM) in BJeLR cells, which was in

contrast to erastin’s effect (Figure 3A). However, BODIPY-C11

staining revealed the generation of lipid ROS in RSL3-treated

BJeLR cells, which indicated that lipid oxidation is common to

both erastin-induced and RSL3-induced ferroptotic cell death

(Figure 3B).

In order to understand the mechanistic basis of RSL3’s enig-

matic induction of lipid ROS in the absence of GSH depletion,

we used affinity-based chemoproteomics to identify candidate

target proteins for RSL3. We discovered that the chloroaceta-

mide moiety of RSL3 was essential for its activity and that

replacement with other electrophiles resulted in a loss of potency

(Table S2; see Data S1 for synthesis). These data suggested that

RSL3 targets an enzyme with a nucleophilic active site, such

as serine, threonine, cysteine, or selenocysteine. Despite the

potential for promiscuous reactivity of the chloroacetamide, we

discovered that only the (1S, 3R)-RSL3 diastereomer of RSL3 ex-

hibited selective lethality in the BJ cell system, whereas the three
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(F) The active affinity probe with the (1S, 3R) stereochemistry exhibited selective lethality against cells with HRASV12, whereas an affinity probe with the (1R, 3R)

stereochemistry was not lethal.

(legend continued on next page)
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other diastereomers of RSL3 lacked selectivity and were more

than 100-fold less potent (Figures 3C and 3D; Table S2; Data

S1 for synthesis). These results suggested that (1S, 3R)-RSL3

covalently binds to one or more proteins to induce the potent

and selective lethality observed in BJ cells expressing HRASV12.

Affinity reagents were synthesized by attaching an isobutyryl-

protected fluorescein tag via a polyethylene glycol (PEG) linker

to the phenyl substituent at the 1 position in the tetrahydro-

b-carboline ring system of RSL3, which was found to tolerate

structural modifications. Despite a loss in potency upon incorpo-

ration of the affinity tag, 10-fold oncogenic HRAS selectivity was

retained for an affinity analog with the active (1S, 3R) stereo-

chemistry, whereas an affinity analog with the (1R, 3R) stereo-

chemistry showed no activity (Figures 3E and 3F; see Data S1

for synthesis).

Samples for proteomic analysis were prepared by treating

intact BJeLR cells with (1S, 3R)-RSL3-fluorescein (active probe

treatment), (1R, 3R)-RSL3-fluorescein (inactive probe treat-

ment), or (1S, 3R)-RSL3-fluorescein pretreated with free (1S,

3R)-RSL3 (competitor treatment). Treated cells were lysed, and

fluorescein-tagged proteins were affinity purified using Sephar-

ose beads coupled to an anti-fluorescein antibody. Eluted

proteins were identified with a Synapt G2 HDMS mass spec-

trometer (Waters) using a quantitative label-free shotgun proteo-

mic strategy with data-independent scanning (MSE) and ion

mobility spectrometry (see Extended Experimental Procedures).

Proteins enriched in ‘‘active probe’’ versus ‘‘inactive probe’’

and ‘‘active probe’’ versus ‘‘competitor’’ treatments were deter-

mined (Figure 3G). Three independent affinity preparations of

each of these treatments were further subsampled in three LC-

MS/MS analyses (Table S2). Candidates were chosen on the

basis of (1) exhibiting enrichment in both active:inactive and

active:competitor comparisons with p < 0.01 (with false discov-

ery rate correction; see Extended Experimental Procedures) and

(2) identification and quantitation by n > 2 tryptic peptides. This

analysis ranked GPX4 (glutathione peroxidase 4, PhGPx) as

the top candidate protein target for (1S, 3R)-RSL3 (Figure 3G;

Table S2).

It was intriguing that GPX4 was identified as the most highly

ranked candidate in our unbiased chemoproteomic approach

to find target proteins for RSL3 because erastin inhibited cellular

GPX enzymes through GSH depletion (Figures 1 and 2). We

confirmed that GPX4 was purified specifically by the affinity

analog (1S, 3R)-RSL3-fluorescein, using fresh samples prepared

from BJeLR cells treated with the active probe, the inactive

probe, or the competitor as before, analyzed for GPX4 abun-

dance by western blot (Figures 3H and S3A).

In order to examine whether RSL3 binding to GPX4 inactivates

the peroxidase activity of GPX4, we treated a clone of the COH-
(G) Affinity-based chemoproteomics identified GPX4 (red dot) as the most likely

indicated condition and their FDR-adjusted p values were represented as volcan

(H) Confirmation of GPX4 binding to active (1S, 3R)-RSL3 affinity probe. Left pane

as rendered by TransOmics software. Right panel: cell lysates prepared from BJe

presence of competitor (A+C) that were affinity purified by a-fluorescein antibod

using GPX4-specific antibody.

(I) (1S, 3R)-RSL3 inhibits enzyme activity of GPX4.

See also Figure S3 and Table S2.
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BR1 breast cancer cell line overexpressing GPX4 (L7G4), with

(1S, 3R)-RSL3 or vehicle only, prepared cell lysates, and incu-

bated them with 7a-cholesterol hydroperoxide (7a-cholesterol-

OOH) to determine the rate of reduction to the corresponding

alcohol (7a-cholesterol-OH). 7a-cholesterol-OOH is a specific

substrate for GPX4; no other GPX enzyme can catalyze the

reduction of 7a-cholesterol-OOH (Kriska and Girotti, 2005). In

vehicle-treated samples, 7a-cholesterol-OOH decreased over

time in a GSH-dependent manner, due to reduction by GPX4

in the lysate. Upon treatment with (1S, 3R)-RSL3, however, no

reduction of 7a-cholesterol-OOH was observed, indicating that

GPX4 was inhibited by (1S, 3R)-RSL3 (Figure 3I; see Figure S3B

for quantitation data). Treatment with the inactive diastereomer

(1R, 3R)-RSL3 did not inhibit GPX4 activity (Figure S3C).

We used another proteomics data analysis tool, Elucidator

(Rosetta Biosoftware), and found that only GPX4 was a signifi-

cantly enriched protein common to both TransOmics and

Elucidator analysis algorithms (Figure S3D). Evaluation of other

candidates using specific siRNAs and shRNAs failed to show

either modulation of (1S, 3R)-RSL3 sensitivity or cell killing (Fig-

ures S3E–S3I), which excludes the functional role of these other

binding proteins on ferroptosis induced by (1S, 3R)-RSL3.

RNAi-Mediated GPX4 Knockdown Induces Ferroptosis
We hypothesized that, if RSL3 were to inhibit a protein essential

for cancer cell viability, then reducing the levels of this protein

would sensitize cells to RSL3. Silencing of GPX4 mRNA using

shRNAs that cause partial knockdown of GPX4 strongly sensi-

tized cells to (1S, 3R)-RSL3 (Figure 4A). Conversely, when we

overexpressed GPX4, we found that it caused strong resistance

to (1S, 3R)-RSL3 lethality (Figure 4B), as expected for a relevant

target protein.

We were able to achieve a more effective knockdown of GPX4

using a pool of siRNAs targeting GPX4 (20-fold decrease in the

GPX4 mRNA; Figure S4A) compared to a single clone of shRNA

(5-fold decrease in the GPX4 mRNA; Figure 4A). With this more

effective knockdown, HT-1080 cells underwent cell death with

accompanying lipid ROS generation (Figure 4C). Cell death

induced by siGPX4 was rescued by the same suppressors of

RSL3—an iron chelator (DFOM), a MEK inhibitor (U0126), and

an antioxidant (vitamin E [Vit. E])—which suggested that GPX4

knockdown induced ferroptotic cell death (Figure 4D) similar to

RSL3. None of these ferroptosis inhibitors suppressed cell death

induced by siDeath, a control siRNA pool targeting multiple

essential genes, highlighting the ferroptosis-specific action of

these inhibitors (Figure 4D). Furthermore, siGPX4 induced selec-

tive cell death in BJeLR and DRD cells (with HRASV12), but not

BJeH and BJeHLT cells (wild-type HRAS), which recapitulated

the selective lethality of erastin and RSL3 (Figures 4E and
binding protein for (1S, 3R)-RSL3. Fold enrichment values of peptides at the

o plots. The top three candidates are shown.

l is a 3D visualization of isotopic clusters of peptide ILAFPCNQFGK from GPX4

LR cells treated with active probe (A), inactive probe (I), or active probe in the

ies. Then, the purified protein samples were probed for GPX4 by western blot
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Figure 4. RSL3 Targets GPX4 to Induce Ferroptosis

(A) Knockdown of GPX4 using shRNAs rendered HT-1080 cells hypersensitive to (1S, 3R)-RSL3 lethality.

(B) Overexpression of GPX4 rendered HT-1080 cells resistant to (1S, 3R)-RSL3 lethality.

(C) HT-1080 cells transfected with a pool of siRNAs targeting GPX4 showed increased lipid ROS level as assessed by BODIPY-C11 staining. siNeg has no

homology to any known mammalian genes and was used as a negative control.

(legend continued on next page)
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S4B). These data suggested that GPX4 is the primary target of

RSL3, mediating its ability to induce ferroptosis specifically in

the oncogenic HRAS-containing BJ-derived fibroblasts.

There are eight isoforms of GPXs in humans with different tis-

sue expression and substrate specificities. In BJeLR cells, six

GPX isoforms are expressed (GPX1, GPX2, GPX3, GPX4,

GPX7, and GPX8) as determined by RT-qPCR (Figure S4C).

Knockdown of each isoform affected cell viability to varying

levels; however, GPX4 knockdown was the most lethal to BJeLR

cells, which highlights the prominent role of GPX4 inhibition in

inducing cell death, as compared to other GPX enzymes (Figures

4F and S4D).

Taken together, these data suggest that GPX4 is a central

regulator of ferroptosis induced by erastin and RSL3. Cell death

was enhanced in the BJ-derived cell lines expressing HRASV12

due to the increased basal ROS (Figure 2A) and enhanced lipid

peroxidation after GPX4 inhibition, which caused selective

lethality in this engineered isogenic cell line model.

GPX4 Regulates Ferroptosis Induced by 12 Divergent
Compounds
In a larger screening campaign to find additional FIN com-

pounds, 14 candidate compounds were discovered out of

more than a million tested (Figure 5A; see Figure S5 for struc-

tures) (Weı̈wer et al., 2012; Yang et al., 2012). These 14 com-

pounds displayed selective lethality in HRASV12-expressing cells

in the four BJ-derived cell lines (Figure 5A; Table S3). We defined

ten structurally diverse FIN groups, not including erastin or RSL3

(Figure 5A), to use in subsequent experiments.

BJeLR cells treated with each of the ten additional FIN com-

pounds exhibited an increase in BODIPY-C11 fluorescence,

indicating that lipid ROS were generated (Table S3 for individual

flow cytometry data). We then tested 11 non-FIN compounds

acting through diverse lethal mechanisms to see whether they

induced lipid ROS generation using this assay (Table S3 for

more information of 11 non-FIN compounds). These 11 diverse

lethal compounds were confirmed to lack selective lethality in

the four BJ-derived cell lines previously (Root et al., 2003), which

suggested that they are not ferroptosis inducers. We found that

10 out of 11 of the non-FIN compounds did not generate lipid

ROS, implying a specificity of lipid ROS generation for FIN

compound-treated cells (Table S3 for individual flow cytometry

data). It is likely that the reported ROS-generating activity of

phenylarsine oxide was responsible for the oxidation of the

BODIPY-C11 dye (Fanélus and Desrosiers, 2008).

In order to determinewhether these FIN compounds genuinely

induced ferroptosis, the functional requirement of lipid ROS dur-

ing ferroptosis was examined by treating BJeLR cells with each

lethal compound (FINs and non-FINs) in the presence of a lipo-

philic antioxidant, butylated hydroxytoluene (BHT). BHT strongly
(D) Known inhibitors of ferroptosis, 10 mM U0126, 100 mM Vit. E, or 100 mM DFO

suppress cell death induced by siDeath.

(E) Knockdown of GPX4 displayed selective lethality in the four BJ-derived isoge

(F) Other GPX isoforms are not relevant to ferroptotic cell death.

The values in (D)–(F) were normalized to control samples transfected with siNeg.

Data in (A) and (B) are presented as mean ± SD (n = 3).

See also Figure S4.
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suppressed cell death induced by all FIN compounds (Table S3

for individual growth inhibition curves). The rescuing effect of

BHT was specific to FIN compounds because BHT was not

able to suppress cell death induced by 12 non-FIN compounds

(Table S3 for individual growth inhibition curves). We quantified

the degree of cell death suppression by calculating the normal-

ized differences in the AUC (area under the concentration-

response curve) of the compound alone and that of the

compound with BHT. Combined with the BODIPY-C11 staining

data, these results revealed that the FIN compounds are mech-

anistically distinct from the 11 non-FIN compounds (Figure 5B).

An extended death mechanism analysis using the modulatory

profiling approach (Wolpaw et al., 2011) with four selected FIN

compounds (erastin, PE, DPI2, and DPI10) revealed that they

induced a similar form of cell death that was distinct from non-

FIN compounds (Figure 5C). Taken together, these data indicate

that compounds that display the RSL phenotype in the four-BJ

cell system are ferroptosis inducers. These data also suggest

that ferroptotic cell death is not limited to erastin and RSL3

but that a number of additional small molecules can be identified

that induce ferroptosis, suggesting that it may be a more gener-

ally important mechanism of lethality.

In order to determine the generality of ferroptosis regulation by

GPX4, we treated HT-1080 cells with each lethal compound (FIN

compound or non-FIN compound) under a GPX4-inhibited con-

dition (using BSO treatment, which depletes glutathione and

therefore inhibits all GPXs), or a GPX4-upregulated condition

(by overexpressing GPX4). GPX4 inhibition using BSO enhanced

ferroptotic cell death induced by all FIN compounds, whereas

GPX4 overexpression suppressed ferroptosis induced by all

FIN compounds (Figure 5D and Table S3). The modulation effect

of BSO and GPX4 overexpression was specific to FIN com-

pounds because their effects on cell death induced by 11 non-

FIN compounds were minimal (Figure 5D).

We speculated that these additional FIN compounds acted

through mechanisms similar to those induced by erastin or

RSL3; we examined whether these FIN compounds inhibited

GPX4 in BJeLR cells. For a side-by-side comparison of GPX4

activity in multiple samples, we used an LC-MS-based GPX4

assay in which the GPX4 enzyme activity in cell lysates was

measured by their capacity to reduce exogenously added

phosphatidylcholine hydroperoxide (PC-OOH), a GPX4-specific

substrate. When GPX4 was inhibited, cells could not reduce PC-

OOH, which resulted in a signal for the [PC-OOH + H]+ ion (m/z,

790.6) in the mass chromatogram. BJeLR cells treated with any

of the eight FIN compounds (DPI7, DPI10, DPI12, DPI13, DPI17,

DPI18, DPI19, and RSL3) lacked GPX4 activity, being unable to

reduce exogenous PC-OOH (Figure 5E). On the other hand, a

control non-FIN compound, staurosporine, and two known FIN

compounds, erastin and DPI2, did not inhibit GPX4 activity in
M, were able to suppress siGPX4-induced cell death, whereas they could not

nic cell lines.

Bar graphs in (C)–(F) are mean ± SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001.
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the assay. The LC-MS-based assay requires addition of exoge-

nous GSH (5 mM) in the reaction mixture; therefore, it cannot

detect indirect inhibitory effects on GPX4 by GSH-depleting

agents such as BSO and erastin.We then determined the cellular

GSH level in BJeLR cells treated with DPI2, the one FIN com-

pound that did not inhibit GPX4 in the LC-MS-based assay,

along with BSO and erastin as positive controls, and staurospor-

ine as a negative control (Figure 5F). DPI2 depleted 90% of

cellular GSH compared to untreated BJeLR cells, indicating

that it acts through a mechanism similar to erastin to induce

ferroptotic cell death (Figure 5F).

These results demonstrate that GPX4-regulated ferroptosis is

a common mechanism shared by multiple independent small

molecule scaffolds. All FIN compounds can be categorized

into two classes based on the mode of GPX4 inhibition. One

class, including erastin, inhibits GPX4 through GSH depletion.

The second class inhibits GPX4 without GSH depletion, such

as RSL3, which inhibits GPX4 directly (Figure 5G).

Ferroptosis Inducers Inhibit Tumor Growth in a
Xenograft Mouse Model
We explored whether the GPX4-regulated ferroptotic cell death

pathway could be utilized to suppress the growth of tumors in

a xenograft mouse model. First, we searched for a pharmacody-

namic marker associated with ferroptotic cell death. A set of 83

genes that were known to be perturbed upon oxidative stress

was surveyed to determine whether the expression level of any

gene was affected during ferroptosis induced by erastin or

RSL3 (Figure 6A; Table S4). This analysis revealed that PTGS2,

a gene encoding cyclooxygenase-2 (COX-2), was the most

upregulated gene in BJeLR cells upon treatment with either era-

stin or (1S, 3R)-RSL3 (Figure 6A). The functional relevance of

PTGS2 on ferroptosis was examined using indomethacin, a

PTGS-1/PTGS-2 (COX-1/COX-2) inhibitor. Ferroptotic cell death

by erastin or (1S, 3R)-RSL3 was not affected by indomethacin

treatment, suggesting that PTGS2 upregulation is simply a

downstream marker of ferroptosis (Figure S6A).

We also developed a more effective analog of erastin that

could be tested in vivo. Erastin itself has modest water solubility

and is metabolically labile, precluding its use in vivo. We discov-

ered that introduction of a piperazine moiety into the aniline ring

of erastin resulted in a more water-soluble and more metaboli-

cally stable compound that was suitable for in vivo experiments;
Figure 5. Ferroptosis Occurs through a GPX4-Regulated Pathway

(A) Discovery of additional FINs based on selective lethality in the four BJ cell lin

(B) FINs (red) are distinct from non-FINs (blue) in accompanying lipid ROS

antioxidant, BHT.

(C) Modulatory profiling (Wolpaw et al., 2011) with erastin, PE, DPI2, DPI10, and ot

of cell death as erastin in HT-1080 cells. DAUC with a positive sign indicates sup

death modulators upon lethal compound treatment.

(D) Inhibition of GPX4 by BSO sensitized cells to death induced by 12 FIN compo

the lethality of FIN compounds.

(E) Eight structurally diverse FIN compounds inhibited GPX4, whereas two FIN com

FIN compound, did not show direct GPX4 inhibition in this LC-MS-based assay.

(F) The two FIN compounds, DPI2 and erastin, depleted cellular GSH, which inh

indicates mean ± SD (n = 3).

(G) Model of GPX4-regulated ferroptosis pathway. Ferroptosis inducers can be c

*p < 0.05; ***p < 0.001. See also Figure S5 and Table S3.
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we named this compound piperazine erastin (PE). PE upregu-

lated PTGS2 in BJeLR cells (Figure 6B). Cotreatment of Vit.

E suppressed PTGS2 induction by PE, which indicates that

PTGS2 upregulation is downstream of the lipid peroxidation

that occurs during ferroptosis (Figure 6B). (1S, 3R)-RSL3, but

not (1R, 3R)-RSL3, increased PTGS2 expression (Figure 6B). In

addition, knockdown of GPX4 using siRNAs markedly increased

PTGS2mRNA abundance, whereas the effect on PTGS2mRNA

abundance of siDeath was minimal (Figure 6B). Kumagai et al.

(2004) reported upregulation of PTGS2 by 4-HNE, an end

product of oxidized lipids in an atherosclerosis model. Moreover,

DNA microarray analysis of gene expression in skin tissue sam-

ples obtained fromGpx4-deficient mice identified Ptgs2 as a key

gene upregulated as a consequence of Gpx4 loss (Sengupta

et al., 2013). Taken together, these data confirm that PTGS2

upregulation is a suitable marker for the lipid peroxidation that

occurs during GPX4-regulated ferroptosis.

We tested whether (1S, 3R)-RSL3 could prevent tumor growth

in athymic nude mice implanted with subcutaneous (s.c.) xeno-

graft tumors derived from BJeLR cells. Mice were injected with

BJeLR cells s.c. and then with 100 mg/kg (1S, 3R)-RSL3 in the

same site 1 day later. The (1S, 3R)-RSL3 injection was repeated

twice each week for 2 weeks. Three weeks later, we observed

significant prevention of tumor growth in (1S, 3R)-RSL3-treated

animals (Figure 6C; p = 0.0053). Subsequently, we examined

the ability of (1S, 3R)-RSL3 to shrink preexisting tumors in a ther-

apeutic study, using s.c. xenograft tumors that had been allowed

to grow for 1 week and then treated with 100 mg/kg (1S, 3R)-

RSL3 twice a week for 2 weeks. Again, we observed a significant

reduction in tumor volume compared with the vehicle-treated

control group, with this infrequent dosing (Figure 6C; p =

0.038). The inhibition of tumor growth was likely due to the induc-

tion of ferroptosis, as determined by Ptgs2 upregulation in

(1S, 3R)-RSL3-treated tumors (Figure 6C).

We then evaluated the erastin analog PE in a tumor-prevention

model using nude mice into which HT-1080 cells, the human

fibrosarcoma cell line, had been injected. As mentioned, PE

has improved metabolic stability (Figure 6D) and water solubility

(0.086mM for erastin versus 1.4mM for PE) compared to erastin.

PE was affected similarly by cell deathmodulators as erastin and

displayed a distinct pattern from other non-FIN lethal com-

pounds, indicating that PE, like erastin, induces ferroptosis in

HT-1080 cells (Figure 5C; Spearman correlation coefficient,
es.

generation during the cell death process and in death suppression by an

her lethal molecules confirmed that PE, DPI2, and DPI10 induced a similar form

pression of cell death, whereas a negative sign indicates sensitization by cell

unds, whereas activation of GPX4 by cDNA overexpression rescued cells from

pounds, DPI2 and erastin, and the negative control staurosporine (STS), a non-

ibits GPX4 indirectly, whereas staurosporine did not deplete GSH. Bar graph

ategorized into two classes based on the mode of GPX4 inhibition.
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Figure 6. Ferroptosis Suppresses Tumor Growth in a Xenograft Mouse Model

(A) Upregulation of PTGS2 expression upon erastin and (1S, 3R)-RSL3 treatments.

(B) PTGS2 expression was induced by PE, (1S, 3R)-RSL3, and siGPX4, but not by PE with Vit. E, (1R, 3R)-RSL3, and siDeath.

(C) (1S, 3R)-RSL3 inhibited tumor formation and tumor progression through induction of ferroptosis as demonstrated by upregulation of PTGS2 in the tumors.

(1S, 3R)-RSL3 was administered s.c. twice a week for 2 weeks.

(legend continued on next page)
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0.9291; p < 0.0001). HT-1080 cells were injected to the flank of

athymic nude mice. One day later, vehicle or PE (40 mg/kg)

was s.c. delivered to the nude mice with a twice-a-week

schedule for 1 week. Then, vehicle or PE (30 mg/kg) was admin-

istered to the mice through tail vein once every other day for

6 days. We observed a significant delay in tumor growth in

the PE-treated group compared to the vehicle-treated group

(Figure 6D).

The systemic toxicity and pharmacodynamics of these two

ferroptosis inducers, PE and (1S, 3R)-RSL3, were assessed

by injecting the compounds through the tail vein at 60 and

10 mg/kg, respectively. At these doses, we observed upregula-

tion of Ptgs2 in mouse liver (Figure 6E). In contrast, tail vein injec-

tion of the chemotherapeutic agent doxorubicin did not show

any induction of Ptgs2 in the same tissue, confirming the speci-

ficity of Ptgs2 as a pharmacodynamic marker (Figure 6E). As a

control, we detected robust upregulation of the p21 gene, a

biomarker for p53 activation induced by doxorubicin-mediated

DNA damage (Figure 6E). Regardless of ferroptosis activation

in the liver, we observed no overt toxicity in either animal study,

as assessed by the lack of acute lethality, and the lack of signif-

icant body weight reductions. Independently, NCI’s DTP (devel-

opmental therapeutics program) evaluated in vivo the toxicity of

intraperitoneal injection of (1S, 3R)-RSL3 and observed no

toxicity up to 400mg/kg dose, which suggested that these doses

of (1S, 3R)-RSL3 were well tolerated (Figure S6).

Diffuse Large B Cell Lymphomas and Renal Cell
Carcinomas Are Sensitive to Ferroptosis
We investigated whether the mutation status of RAS genes in

cancer cells is a predictor of sensitivity to erastin-induced ferrop-

totic cell death, by testing erastin in 117 cancer cell lines from

different tissues such as hematopoietic and lymphoid tissue,

large intestine, lung, ovary, and skin (Table S5). The cancer cell

line panel contained 38 cancer cell lines with oncogenic-RAS

mutations, which allowed us to examine the correlation between

RAS mutation status and erastin potency.

Although erastin displayed synthetic lethality in the engineered

cells, it did not show selective lethality in RAS-mutated cancer

cell lines over RAS wild-type counterparts (Figures S7A and

S7B) in this large and diverse panel of cell lines. Although RAS

mutations sensitize to ferroptosis in an individual genetic

context, there are other more dominant determinants of sensi-

tivity when analyzing sensitivity across diverse contexts. Anal-

ysis of the 117-cell line erastin sensitivity data revealed that

diffuse large B cell lymphomas (DLBCLs) were particularly sensi-

tive (Figure 7A). When we divided the 117 cell lines into sensitive

and resistant groups based on AUC values (sensitive if AUC <

3.5, resistant if AUC > 5.5), DLBCLs were enriched in the sensi-

tive group (Figure 7A, p = 0.01 by chi-square test; p = 0.025 by
(D) PE showed efficacy in preventing HT-1080 tumor formation in a mouse xenog

liver microsome assay demonstrating improved metabolic stability of PE over era

right view shows images representative of tumors in live mice from each treatm

through tail vein injection once every other day for 6 days.

(E) Pharmacodynamics of PE and (1S, 3R)-RSL3 in the mouse liver tissue.

Bar graphs in (B), (C), and (E) represent mean ±SD (n = 3). In (C) and (D), the lines in

See also Figure S6 and Table S4.
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logistical regression analysis [Basu et al., 2013]). In a larger

drug-screening analysis, it was observed that suspension cell

lines were generally more sensitive to growth inhibitory effects

of small molecules (Basu et al., 2013). In order to examine

whether the observed sensitivity enrichment in our analysis

was due to the general sensitivity of suspension cell lines, we

tested erastin in seven DLBCL cell lines, five acute myeloid leu-

kemia (AML) cell lines, and five multiple myeloma (MM) cell lines.

The DLBCLs displayed increased sensitivity among these sus-

pension cell lines, which suggested that DLBCLs are particularly

sensitive to ferroptotic cell death (Figure 7B; see Figure S7C for

individual concentration-dependent curve).

We further analyzed the sensitivity of DLBCLs and other

hematopoietic cell lines against 203 diverse lethal compounds

to see if DLBCLs are generally sensitive to lethal compounds

(Figure 7C). DLBCL cell lines in fact displayed a slight resistance

on average to all compounds tested compared to other hemato-

poietic cell lines (p < 3 3 10�4, Kolmogorov-Smirnov test). This

indicates that the enhanced sensitivity of DLBCLs to erastin-

induced ferroptosis is not due to a general sensitivity to all

compounds.

We confirmed that erastin and RSL3 generated lipid peroxides

in two DLBCL cell lines: SU-DHL-8 and WSU-DLCL-2 (Fig-

ure 7D). Moreover, erastin-induced cell death was rescued by

a lipophilic antioxidant (Vit. E) in these cell lines, indicating that

cells were dying through the lipid ROS characteristic of ferropto-

sis (Figure 7E).

The potency of erastin was also determined in a 60-cancer cell

line panel (NCI60) (Shoemaker, 2006) from eight diverse tissues,

which revealed increased sensitivity of renal cell carcinomas

(RCCs), compared to the other tissues examined (Figures 7F

and S7D). We confirmed the potency of erastin in these RCC

cell lines and observed generation of lipid ROS in two represen-

tative RCC cell lines (Figures 7G and 7H). Moreover, erastin-

induced death of these cell lines was suppressed by a lipophilic

antioxidant (Vit. E) (Figure 7I). The two RCC cell lines expressed

GPX4, as determined by western blot with a GPX4-specific anti-

body (Figure 7J). Knockdown of GPX4 using siRNAs decreased

the level of GPX4 protein and was sufficient to kill these RCC cell

lines (Figure 7J). Moreover, these cells died via a characteristic

ferroptotic death upon GPX4 knockdown (Figure 7K).

DISCUSSION

Unlike other GPXs, GPX4 can catalyze the reduction of lipid per-

oxides in a complex cellular membrane environment (Brigelius-

Flohé and Maiorino, 2013). Systemic deletion of Gpx4 in mice

causes embryonic lethality, which was not observed when other

Gpx genes were deleted (Ran et al., 2004), suggesting a unique

role for Gpx4 in physiology. Four groups independently created
raft model. The left view shows the structure of PE. The middle view is a mouse

stin. Midazolam was used as a positive control for metabolic degradation. The

ent group. PE was delivered s.c. twice a week for 1 week and then delivered

the tumor volume plots indicate mean of nine data points. *p < 0.05; **p < 0.01.
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Figure 7. DLBCLs and RCCs Are Sensitive to GPX4-Regulated Ferroptosis

(A) Testing erastin in 117 cancer cell lines revealed DLBCLs as a cancer subtype susceptible to ferroptosis. DLBCL cell lines are marked with lines on the left. The

table shows the name of DLBCL cell lines along with the sensitivity rank.

(B) DLBCLs were more sensitive to erastin than AML and MM cells.

(C) DLBCL cell lines are no more sensitive to lethal compounds than other hematopoietic cell lines. The total number of AUCs in the analysis was 3,883 (972 for

DLBCL and 2,911 for other hematopoietic cell lines).

(D and E) DLBCL cells died through a mechanism characteristic of ferroptosis, as determined by lipid peroxide generation and death rescue by Vit. E.

(legend continued on next page)
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conditional Gpx4 knockout mice and analyzed the cell death

mechanisms after Gpx4 inhibition (Seiler et al., 2008; Sengupta

et al., 2013; Ueta et al., 2012; Yoo et al., 2012). Lipid peroxidation

was observed in all knockout models, highlighting the impor-

tance of Gpx4 for protecting cells from detrimental effects of lipid

peroxides. Systemic deletion of Gpx4 was lethal to mice partly

due to the nervous system damage caused by neuronal loss

(Seiler et al., 2008; Yoo et al., 2012).

In models in whichGpx4 deletion caused lethality or cell loss, it

is likely that ferroptosis had occurred. Indeed, mouse embryonic

fibroblasts (MEFs) fromconditionalGpx4 knockoutmicediedwith

lipid peroxide generation uponGpx4 deletion. Supplementing Vit.

E to these MEFs in culture rescued cell death (Seiler et al., 2008).

Elevation of lipid peroxidation upon GPX4 inhibition raises the

question of the source of lipid peroxides in normal cellular phys-

iology. Cellular iron may be the most important factor in lipid

peroxide generation during ferroptosis. Indeed, iron chelators

suppress ferroptosis (Yang and Stockwell, 2008a). Some onco-

genes, including RAS and MYC, are known to alter iron meta-

bolism by increasing iron abundance in cells and promoting

transformation (Kakhlon et al., 2002; O’Donnell et al., 2006).

In summary, we have determined that Gpx4 is a central regu-

lator of ferroptosis and that ferroptosis can be induced in mouse

tumor xenografts, providing a possible therapeutic application of

ferroptosis-inducing compounds. See the Extended Discussion

for more information.

EXPERIMENTAL PROCEDURES

Metabolite Profiling

Two million HT-1080 cells were seeded in 10 cm culture dishes. The next day,

cells were treated with 5 mg/ml erastin and incubated for 5 hr before metabolite

extraction. A total of 4 ml of cold 80% methanol was added to the cell mono-

layer to extract polar metabolites using a cell scraper. The cell lysate/methanol

mixture was transferred to a 15 ml tube and centrifuged at 2,0003 g at 4�C for

10 min to pellet debris and proteins. The supernatant was transferred to a new

tube and stored at �80�C for LC-MS/MS analysis. For lipid extract prepara-

tion, 3 ml of cold 100% isopropanol was added to the cell monolayer to scrape

cells. The resulting cell lysate/isopropanol mixture was transferred to a new

15 ml tube and centrifuged at 2,000 3 g at 4�C for 10 min. The cleared super-

natant was transferred to a new tube and stored at �20�C for LC-MS/MS

analysis.

RSL3 Target Identification

A total of 1.5 million cells were seeded into T225 flasks (Corning) 3 days before

treatment in order to be confluent on the day of treatment. Three days later, 20

flasks were washed with PBS three times to remove serum proteins from the

media and then treated with either 0.5 mM (1S, 3R)-RSL3-fluorescein probe

(‘‘active probe’’) or 0.5 mM (1R, 3R)-RSL3-fluorescein probe (‘‘inactive probe’’)

in serum-free media (DMEM) for 2 hr. For the competitor-treated samples, 20

flasks of cells were treatedwith 0.5 mM (1S, 3R)-RSL3 (‘‘competitor’’) for 20min
(F) Sensitivity profile of 53 cancer cell lines in the ‘‘NCI60’’ cell panel against eras

(G) The eight RCC cell lines were retested with erastin to confirm their sensitivity

(H) Erastin and RSL3 generated lipid ROS in the two RCC cell lines.

(I) Cell death was rescued by a lipophilic antioxidant, Vit. E.

(J) GPX4 depletion by siGPX4 induced cell death in RCC cell lines. The western

knockdown of GPX4 by siRNAs. Scale bars, 30 mm.

(K) Ferroptosis inhibitors suppressed cell death induced by GPX4 knockdown but

cells via a nonferroptotic pathway.

Data points in (E), (G), and (I)–(K) represent mean ± SD (n = 3). **p < 0.01; ***p <
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prior to treatment with 0.5 mM active probe for 2 hr. (The active and inactive

probe-treated cells were treated with the equivalent amount of vehicle for

the same time period of the competitor pretreatment.)

After treatment, the cells were washed once with PBS, trypsinized, and

pelleted at 1,000 rpm. Following trypsinization, all the following steps were

performed at 4�C. The pelleted cells were again washed in PBS twice to re-

move serum proteins added during the trypsinization. Cells were resuspended

in nondenaturing lysis buffer for 20 min (50 mM HEPES, 40 mM NaCl, 2 mM

EDTA, 0.5% Triton X-100, 1.5 mMNa3VO4, 50 mM NaF, 10 mMNa-pyrophos-

phate, 10 mM Na b-glycerophosphate, and Roche protease inhibitor tablet).

The resulting lysate was centrifuged at 12,000 3 g for 15 min to pellet out

insoluble materials, and the supernatant was removed. Protein concentration

was determined using the Bradford assay (Bio-Rad). Subsequent pull-down

and proteomics procedures are described in the Extended Experimental

Procedures.

In Vivo Xenograft Mouse Study

Athymic nude mice (8 weeks; Charles River Laboratories) were injected with

four million HT-1080 cells s.c. The next day, 400 ml of vehicle (0.625%

DMSO/99.375% HBSS [pH 2]) or 40 mg/kg PE was delivered to the s.c. site

where cancer cells were injected. Two days later, the s.c. injection was

repeated. Three days later, 300 ml of vehicle or 30 mg/kg PE was administered

to the mice through tail vein. Tail vein injection was repeated three more times,

once every other day before the final tumor size was measured in both groups.

The animal protocols containing all the procedures were approved by

Columbia University’s IACUC.

Statistical Analysis

All statistical analyses were performed by using Prism 6 (GraphPad Software).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Discussion, Extended Experi-

mental Procedures, seven figures, one data file, and five tables and can be

found with this article online at http://dx.doi.org/10.1016/j.cell.2013.12.010.
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