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ABSTRACT: Determining cell death mechanisms occurring in
patient and animal tissues is a longstanding goal that requires
suitable biomarkers and accurate quantification. However, effective
methods remain elusive. To develop more powerful and unbiased
analytic frameworks, we developed a machine learning approach
for automated cell death classification. Image sets were collected of
HT-1080 fibrosarcoma cells undergoing ferroptosis or apoptosis
and stained with an anti-transferrin receptor 1 (TfR1) antibody,
together with nuclear and F-actin staining. Features were extracted
using high-content-analysis software, and a classifier was
constructed by fitting a multinomial logistic lasso regression
model to the data. The prediction accuracy of the classifier within
three classes (control, ferroptosis, apoptosis) was 93%. Thus, TfR1
staining, combined with nuclear and F-actin staining, can reliably detect both apoptotic and ferroptotis cells when cell features are
analyzed in an unbiased manner using machine learning, providing a method for unbiased analysis of modes of cell death.

■ INTRODUCTION
Regulated cell death is a complex and tightly regulated
phenomenon, involving intricate molecular mechanisms. For
numerous cell death processes, molecular markers have been
developed that identify cells undergoing apoptosis1 or
necroptosis2 through immunolabeling. Such markers may be
used in cell culture and tissue histopathological applications to
examine the prevalence of cell death processes, which may
improve the treatment and diagnosis of diseases in which these
processes are implicated.
Ferroptosis is a form of regulated cell death characterized by

the iron-dependent accumulation of lipid peroxides, as well as
the loss of cellular antioxidant repair capabilities.3 The enzyme
glutathione peroxidase 4 (GPX4) is a cellular regulator of lipid
peroxidation levels, and several ferroptosis inducers have been
developed that specifically target the activity of this enzyme
through direct inhibition (e.g., RSL3).4 A second class of
ferroptosis inducers (e.g., IKE and erastin) causes inactivation
of GPX4 through depletion of glutathione via inhibition of the
antiporter system xc

−.5 Ferroptosis has been implicated in
several disease pathologies, such as degenerative diseases and
organ injury.6,7 Furthermore, ferroptosis induction may have
potential as a cancer treatment strategy.8,9

Toward the goal of specific identification of ferroptosis in
tissue samples, we previously discovered an effective
ferroptosis-staining reagent, 3F3 anti-Ferroptotic Membrane
Antibody (3F3-FMA), that can be used to stain cells and tissue
samples directly.10 The antigenic target of 3F3-FMA is
transferrin receptor 1 (TfR1), a membrane receptor that

internalizes iron-bound transferrin through receptor-mediated
endocytosis.11 This iron uptake activity of TfR1 contributes to
intracellular iron levels necessary for ferroptosis.12 3F3-FMA,
as well as other anti-TfR1 antibodies, exhibits an increase in
total and membrane-localized fluorescence when used to stain
cells undergoing ferroptosis in culture (compared to vehicle-
treated control cells). TfR1 has been used to identify the
occurrence of ferroptosis in traumatic brain injury13 and
myocardial ischemia/reperfusion injury,14 among other uses.
Thus, TfR1 serves as a biomarker to facilitate the identification
of ferroptosis in cell and tissue contexts.
The identification of plasma membrane fluorescence as a

distinguishing feature between ferroptosis and other cell death
processes upon staining with anti-TfR1 antibodies was
discovered using visual inspection; here, we sought instead
to evaluate the use of machine learning as an unbiased tool to
detect ferroptotic cells. Machine learning methods facilitate the
high-throughput analysis of cell image sets versus tedious and
subjective manual processes; in cell biology applications,
machine learning can increase processing capabilities and
objectivity. The supervised machine learning pipeline involves
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image collection and preprocessing, object detection, and
feature extraction and prioritization.15 Our goals were to assess
the machine learning potential in discriminating ferroptosis,
apoptosis, and control-treated samples as well as to provide a
pipeline for identification of features that best distinguish those
cell death modalities in our setting.
Therefore, after collecting images of fluorescently stained

cells treated with vehicle only or undergoing ferroptosis or
apoptosis, images were analyzed via high-content-image
analysis, and a classifier was trained on the extracted data.
The trained classifier corresponds to a nonexclusive list of
informative features with assigned coefficients, which was
validated with a second data set by successfully predicting the
same classes. These results expand and strengthen the
applicability of biomarkers, such as 3F3-FMA/TfR1, for
differentiating cell death mechanisms in an objective and
high-throughput manner.

■ RESULTS AND DISCUSSION

To explore the application of machine learning to the
classification of different cell death modalities, we collected
large numbers of images of cells fixed and immunofluor-
escently stained with 3F3 anti-Ferroptotic Membrane Anti-
body (3F3-FMA), a ferroptosis-specific antibody with TfR1 as
its target antigen. Specifically, HT-1080 cells were treated with
ferroptosis inducers (RSL3, a GPX4 inhibitor, or IKE, a system
xc
− inhibitor), an apoptosis inducer (staurosporine, STS),16 or

DMSO vehicle control. In addition to being stained with anti-
TfR1 3F3-FMA (labeled with AlexaFluor 594), cells were
stained with DAPI as a nuclear marker and FITC-phalloidin as

a cytoplasmic (F-actin) marker to assist identification of
cellular features for machine learning classification (see below).
Machine learning tools are designed to adapt to any data

pattern associated with the task to learn. There were several
important aspects to consider in collecting images for machine
learning classification. First, all treatments within a day (i.e.,
using the same microscope settings) were balanced. Moreover,
we collected all images of the discovery data on day 1 and the
validation data later on a different day. Second, the extent of
cell death was standardized across different conditions to
analyze cells in an early stage of cell death induction.
Specifically, we fixed cells under each treatment condition
when they reached 10−20% cell death, so that cell death had
been initiated, but not to the extent of excessive end-stage
necrosis. At this point, the cells should still have intact cell
membrane integrity and not have detached from the surface.
The CellTiter-Glo (CTG) viability assay, which measures
intracellular ATP levels as an indicator of viability, was used to
monitor the extent of cell death. We performed a pilot study
and established optimal concentration and time point ranges
for each treatment (Figure S1).
Guided by the results of the pilot study, the first image set

for training and discovery of classifiers was collected, and
immunofluorescence experiments were performed when the
extent of cell death reached 10−20% compared to DMSO
control treatment in parallel CTG assays (Figure 1). Viewing
the images, the characteristic membrane localization of the
3F3-FMA signal can be seen in ferroptotic cells compared to
the DMSO control,10 and characteristic membrane blebbing
can be observed in apoptotic cells.17

Figure 1. Images undergoing different cell death modalities for machine learning analysis. (A) HT-1080 cells were incubated with ferroptosis
inducers RSL3 (1 μM) or IKE (20 μM), apoptosis inducer STS (1 μM), or DMSO control. Nuclei were stained with DAPI (blue). TfR1 was
labeled with 3F3-FMA and Alexa Fluor 594 secondary antibody (red). F-actin was labeled with FITC-phalloidin (green). Images were captured
using a Zeiss LSM800 confocal microscope at 63×/1.40 oil DIC objective. For each treatment, representative images from the training data set are
depicted. (B) In parallel with the immunofluorescence experiments, CellTiter-Glo viability assays were used to monitor the percentage cell death
for each treatment, and cells were fixed when percentage cell death reached 10−20%. The concentrations and time points that resulted in this
extent of cell death in each set are listed for each treatment.

ACS Chemical Biology pubs.acs.org/acschemicalbiology Articles

https://doi.org/10.1021/acschembio.1c00953
ACS Chem. Biol. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acschembio.1c00953?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00953?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00953?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00953?fig=fig1&ref=pdf
pubs.acs.org/acschemicalbiology?ref=pdf
https://doi.org/10.1021/acschembio.1c00953?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For the training set, once the cells were fixed and stained
with DAPI, FITC-phalloidin, and anti-TfR1 3F3-FMA, 120
images were collected per treatment condition (DMSO
control, RSL3, IKE, STS) with an average of 10 cells per
image (Figure 2A), which corresponds to a cell density of
approximately 80% for DMSO-treated cells. Subsequently, we

analyzed images with the PerkinElmer Columbus high-
content-analysis software. For this purpose, nuclei were
identified using the DAPI signal, and based on this, the
cytoplasm and the membrane regions were segmented using
the F-actin signal (Figure S2). The intensity, the morphology,
and the symmetry of the objects, as well as the texture and

Figure 2. Feature extraction and classifier discovery. (A) The experiment consisted of 120 images per condition (DMSO, IKE, RSL3, STS). The
image analysis software extracted 1473 features for the blue, green, and red fluorescence signals. The features can roughly be grouped in intensity,
morphology/symmetry, and texture features. Undefined values (NaN, “Not a Number”). (B) Principal component analysis of 1373 features
extracted from the images. Individual images are visualized as points on the scatter plot of the first two principal components. The color code is
according to the treatment label (black = DMSO, yellow = RSL3, green = IKE, and red = STS) and was added after the PCA was conducted. (C)
Feature matrix of the training data set (scaled for visualization purposes) is cleared for highly correlated features (“included”) and informative
features are isolated by pairwise logistic lasso regressions (“selected”). Finally, a multinomial logistic lasso regression model is fitted to the reduced
feature matrix, and a classifier is identified (“classifier”: 23 features with corresponding regression model coefficients). blgr = bluegreen
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structure of the fluorescence signal, were determined within
these cell segments for the blue, green, and red channels,
respectively. Consequently, we were able to extract a large
number of features for each image. Importantly, during the
analysis, the features for single cells were averaged for each
image (median). This gave rise to 120 observations per
treatment for each feature. The blue (DAPI) and green (FITC-
phalloidin) channel provided together 738 features, while the
red (TfR1) channel provided 735 features (Figure S2). Among
these features, there were frequently used features such as
“Number of Nuclei”, “Nucleus Intensity”, and “Nucleus
Roundness”. As expected, different effects are visible for
basic features after treatment, but no reasonable classification
could be made (Figure S3A−C). In order to validate the
quality of the data, we analyzed the membrane fluorescence
intensity for the TfR1 signal. As expected, we found a
significant increase in TfR1 fluorescence intensity after
treatment with RSL3 and IKE but not upon treatment with
DMSO or STS (Figure S3D).

We then removed all features that contained undefined
values (NaN, “Not a-Number”) and reduced the number of
features from 1473 to 1373. We performed a principal
component analysis (PCA) with the data matrix of 1373
features and a total of 480 observations (= 120 images per
condition; DMSO, IKE, RSL3, and STS) and visualized
principal components 1 and 2 (Figure 2B). The cells treated
with RSL3 and IKE separated well from the other samples in
the first principal component (Figure 2B). As expected, the
RSL3-treated and IKE-treated samples overlapped in the first
two principal components, as both induce the same type of cell
death modality, namely ferroptosis. Cells treated with STS also
separated from the DMSO population, although to a lesser
extent compared to ferroptosis inducers. STS differs not only
from the vehicle DMSO but also from RSL3 and IKE, although
cell death in the CTG viability assay performed in parallel was
almost identical. This indicated that the staining and analysis
strategy was able to distinguish vehicle-treated from
ferroptosis, and from apoptosis.

Figure 3.Model validation. (A) The classifier was applied to the independent test data set for model validation. (B) Comparison of the known class
with the predicted class measures classifier performance. Each class is enriched in the corresponding samples, thereby validating the model. (C and
D) Confusion tables for the multiclass prediction. (C) DMSO, IKE+RSL3, and STS classes are predicted with an accuracy of 93%. (D) DMSO,
IKE, RSL3, and STS are predicted with 94% accuracy, when IKE and RSL3 are combined.
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This data set was then used for supervised machine learning
to build a classifier that would allow the determination of
whether treatments of cells with certain substances trigger
ferroptosis or apoptosis (Figure 2C).
A classifier is a mathematical function or procedure that

assigns a sample to one or several classes, usually by calculating
class scores for each sample (i.e., image) from its feature
values. With respect to the type of mathematical procedure,
classifiers vary in terms of interpretability and transferability to
new data sets. Multinomial logistic regression models using the
lasso (least absolute shrinkage and selection operator)
inherently provide a feature selection and return a vector of
coefficients for the selected features, called signature, which is
directly interpretable and transferable.
For numerical stability of a treatment classifier, all non-

normally distributed features (Shapiro−Wilk test of normality
in discovery data, alpha = 0.05) were Box-Cox transformed
(parameters lambda1 = 0 and lambda2 = 1 if the p value of this
test was increased by transformation). Reduction of
dimensionality was carried out by removal of redundancies
(according to feature-pairwise Pearson correlation of |r| > 0.9
in discovery data) and by preselection of informative features
through treatment-pairwise logistic lasso regression analysis.
Notably, only informative features of limited correlation
among each other were used for signature discovery. The
CRAN package glmnet was used to perform multinomial
logistic lasso regression.19 For classification of three groups
(DMSO; IKE/RSL3; STS), a signature of 23 features was
identified (Table S1). These features have biological meanings
and can be interpreted as such: for instance, the feature
“Membrane.Region.Red.SER.Valley.0.px” is based on texture
changes (= SER.Valley.0.px; SER = Spots, Edges and Ridges)
of the TfR1 staining (= Red) within the cell membrane (=
Membrane.Region). We have previously shown that TfR1
plasma membrane intensity staining changes under ferroptotic
conditions.10 Thus, it is plausible that this feature should be
represented in a classifier signature. Interestingly, the signature
also consists of features that are not TfR1 related. For example,
the feature “Nucleus.Region.Blue.SER.Saddle.2.px” describes a
texture (SER.Saddle.2.px) in the nucleus that is determined
using the blue channel (DNA staining). Importantly, this
particular texture changes upon treatment with apoptosis
inducers, which is expected as apoptosis induces alterations to
DNA and chromatin structure. Similar to these two examples,
the biological context of features can be interpreted.
Together, this unbiased approach to classifier identification

offers the possibility of discovering features that previously
have not been considered in cell death. Hence, this strategy
allows the development of a signature using features whose
changes human eyes would not necessarily perceive and helps
to more accurately classify cell death states. Notably, there are
highly correlated features in the full data set (Table S2), which
are potentially replaceable in the classifier (after refitting the
coefficients). Features that were not included in the classifier
are not necessarily uninformativethey were not selected,
because they do not contribute additional information to
improve the classifier.
We then collected an independent second image setusing

the same conditions with viabilities in the 80−90% range
(Figure S4A)in order to generate biological replicates for
model validation (Figure S4B). For this experiment, termed
the “validation experiment”, we ran an identical analysis to
extract image data and generated the same set of features as

was used in the “training experiment”. For model validation,
the data from the validation experiment was used to challenge
the identified classifier. The coefficients of the 23 features in
the classifier were used to predict the class of the samples in
the validation experiment, i.e., control, ferroptosis, or apoptosis
(Figure 3A,B). The accuracy of prediction for the three classes
of control (DMSO), ferroptosis (RSL3+IKE), or apoptosis
(STS) was 93% (447 out of 479 cases correct; Figure 3C).
A four-class classifier trained to distinguish the three

inducers (IKE, RSL3, and STS), as well as the DMSO control,
did not differentiate between IKE and RSL3, as expected. Both
classes were assigned identically to IKE (89 cases each) or
RSL3 (31 and 29 cases) and minimally to STS (0 or 1 case).
Combining IKE and RSL3 resulted in an accuracy of 94%
(Figure 3D). Consistently, even when excluded from model
discovery, IKE validation set images were constantly identified
as RSL3-like by two-class logistic lasso regression classifiers
trained to discriminate DMSO control from RSL3 or STS from
RSL3 (120 of 120 and 113 of 120 images, respectively−see
supplementary PDF file “MachineLearning_Ferroptosis_-
SI.pdf”: “Binary Prediction”). Importantly, this suggests that
both ferroptosis inducers induce a similar phenomenology with
respect to the features extracted from the images.
The classifier performed well for detecting ferroptosis, as

TfR1 is a known ferroptosis marker, and features from this
channel are prominently represented in the signature.
However, we were intrigued that apoptosis was also readily
distinguished from the control group using the developed
signature.
This classifier is based on images of cells treated with

ferroptosis or apoptosis inducers and stained with anti-TfR1
3F3-FMA, DAPI, and FITC-Phalloidin. It is important to
consider that for any new (unknown) small molecule that is
desired to be tested with this classifier, the concentration and
incubation times reducing the viability to 80−90% have to be
identified in advance. Standardized microscopy image acquis-
ition of treated cells in combination with this classifier could
provide the information on whether the substances induce
ferroptosis or apoptosis. As with any analysis tool, some
refinement might be needed.
Further, this work may have important implications for

tissue analysis and allow for a high-throughput, objective
procedure to identify ferroptosis and other cell death
modalities in a tissue context, whether with animal disease
models or patient samples. One such application may involve
assessing the response of cancer patients to therapy.9

This classifier cannot directly be applied to images taken
under entirely different conditions (treatments, staining, etc.).
However, we present a workflow on how researchers can
develop a classifier based on a training image set for various
cell death processes with the help of standardization of
experiments and corresponding analysis tools. Hence, this
strategy may serve as a blueprint to be employed for the
detection of other cell death pathways, including necroptosis
and pyroptosis, and ultimately a universal classifier that detects
and classifies all of the major types of cell death.

■ METHODS
Cell Culture. HT-1080 (ATCC Cat# CRL-7951, RRID:CVCL

0317) cells were grown in Dulbecco’s Modified Eagle Medium
(DMEM) with 10% fetal bovine serum, 1% penicillin-streptomycin,
and 1% nonessential amino acids. Cells were grown in a humidified
incubator at 37 °C and 5% CO2.
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CellTiter-Glo Assay. HT-1080 cells were plated in technical
triplicates in white opaque 96-well plates at 15 000 cells/100 μL
media per well. For the pilot experiment, the cells were treated with 1
μM RSL3, 20 μM IKE, or 1 μM staurosporine (STS) at different time
points. For the immunofluorescence experiments, the cells were
treated at the time points determined in the pilot experiment and
several time points before and after. A total of 100 μL of 50%
CellTiter-Glo (Promega) and 50% cell culture medium was added to
each well, and the cells were incubated and shaken for 2 min at RT.
Luminescence was measured using a Victor X5 plate reader
(PerkinElmer).
Immunofluorescence (IF). HT-1080 cells were treated with 1

μM RSL3, 20 μM IKE, or 1 μM STS on poly lysine-coated coverslips
(Sigma-Aldrich P4832) in 24-well plates. When the cell death
percentage reached around 10−20% (determined using the CellTiter-
Glo assay), media were removed, and the cells were gently washed
with PBS2+ (PBS with 1 mM CaCl2 and 0.5 mM MgCl2) twice,
ensuring the cells did not dry out. The cells were fixed and
permeabilized with 4% PFA in PBS with 0.1% Triton X-100 (PBT),
with 200 μL per well. The plates were covered with foil, and the cells
were incubated and shaken at RT for 15−20 min. The PFA was
disposed of safely, and the cells were washed with PBT three times.
The cells were blocked with 5% normal goat serum (NGS;
ThermoFisher 50197Z) in PBT for 1 h at RT. The cells were then
incubated with mouse 3F3 anti-Ferroptotic Membrane Antibody
(3F3-FMA) at a 1:500 dilution in PBT with 1% bovine serum
albumin (BSA) and 5% NGS at 4 °C overnight. The cells were
washed with PBT for 5 min three times. The cells were then
incubated with goat antimouse IgG (H+L) Highly Cross-Adsorbed
Secondary Antibody, Alexa Fluor 594 (Thermo Fisher Scientific Cat#
A-11032, RRID:AB_2534091) at 1:200 dilution, and FITC-phalloidin
at 1:1000 dilution in PBT with 1% BSA for 1 h at RT. The cells were
washed with PBT for 5 min three times. The cells were placed on
slides using Prolong Diamond antifade mountant with DAPI
(ThermoFisher P36962). All images were collected on a Zeiss LSM
800 confocal microscope using a Plan-Apochromat 63×/1.40 oil DIC
objective with constant laser intensity for all images.
Automated Image Analysis. Image analysis was performed

using Columbus software version 2.8.0 (PerkinElmer). In the
following, the analysis steps in Columbus are described: the DAPI
and FITC signals were smoothened for the cell segmentation process
using Median filters to reduce noise signals. Nuclei were detected via
the DAPI signal. The FITC channel was used to define the cytoplasm
and membrane region. In a next step, morphology/symmetry features,
texture (SER features), and intensity properties of the DAPI, FITC,
and red channel were calculated for each cell region (nuclei,
cytoplasm, and membrane). Moreover, we applied a filter to remove
border objects (nuclei that cross image borders). For the detailed
analysis pipeline in Columbus, please see Figure S2 and the analysis
sequences.
Statistical Data Analysis: Transformation and Feature

Selection. From two data sets containing 480 samples each (120
DMSO, 120 IKE, 120 RSL3, 120 STS) 1473 features were generated
and exported by the Columbus imaging software. The data sets were
filtered for completeness, i.e., all features containing “not-a-number”
(NaN) were excluded from analysis, resulting in 1373 features. The
data set generated first was assigned to model discovery, the second
data set to model validation. Features that were non-normally
distributed in the discovery data according to the Shapiro test for
normality (p < 0.05) were log-transformed (i.e., log(1 + x) also
known as two-parameter Box−Cox transformation with lambda1 = 0
and lambda2 = 1), if the transformed data were closer to normality in
terms of the Shapiro-test p value. Of all pairs of features that were
highly correlated in the discovery data (i.e., absolute Pearson
correlation coefficient of larger than 0.9), one member was excluded
from analysis iteratively; starting with the feature participating in the
largest number of correlations in the training data set for classifier
discovery, which was preserved, all highly correlated features were
removed from both data sets.

Classifier Discovery. Further feature preselection was conducted
on the discovery data by logistic regression for pairwise classification
among control, ferroptosis, and apoptosis using the lasso (least
absolute shrinkage and selection operator).18 All features that were
selected at least once in the pairwise logistic regressions were
preserved in the training data set for classifier discovery, on which the
classifier was trained. For classification, a multinomial logistic
regression model with the lasso was used, resulting in a signature
for sample classification. Lambda.1se was used as a criterion for
selection of the optimal penalty parameter. The quality of this
signature was determined in terms of accuracy of classification of the
validation data, where true class membership is known. The
importance of signature features was estimated by the product of
the standard deviation of the transformed feature in the discovery data
and the coefficient in the regression model. All statistical calculations
were conducted using R version 4.0.3; for lasso regression, the glmnet
package was used.19

Data Availability Statement. The data underlying this study
(raw data as txt files, R code Rmd file, and complete and intermediate
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