Exponential growth

Say we start with one cell, put it in minimal medium, where it and its daughter cells will grow and divide once every hour:

In minimal medium , E. coli divides typically in 60 min ., or 1 generation $=60 \mathrm{~min}$.
We can calculate how long it will take to get a billion cells from just one:
Let $\mathrm{g}=$ number of generations. 2 gens. $-->4$ cells, 3 gens. $-->8$ cells, or N (no. of cells) $=1 \times 2 \mathrm{~g}$ (starting with one cell).
If we started with 100 cells, after 1 gen. we would have 200 and after 2 gens. 400, 3 gens., 800 etc.
More generally, starting with N_{o} cells: $N=N_{o} \times 2^{g}$
Since we want to know how much time it will take: express generations in terms of time.
If we let $t_{D}=$ the generation time, or doubling time, then the number of generations that have passed during the time interval t is just t / t_{D} : So $g=t / t_{D}$.
So now $N=N_{o} \times 2^{t / t D}$. One can thus see that growth is exponential with respect to time.
Now we could solve this equation for t, since we know we want N to be 1 billion, N_{o} is 1 , and t_{D} is 1 hr . Taking the logarithm base 2 of both sides:
$\log _{2}\left(\mathrm{~N} / \mathrm{N}_{\mathrm{o}}\right)=\mathrm{t} / \mathrm{t}_{\mathrm{D}}$, or $\mathrm{t}=\mathrm{t}_{\mathrm{D}} \log _{2}\left(\mathrm{~N} / \mathrm{N}_{\mathrm{o}}\right)=1 \times \log _{2}(1,000,000,000 / 1)=\log _{2}\left(10^{9}\right)$
But suppose your calculator doesn't do log base 2. No problem, convert to log base 10 ("log") or natural log base e ("In").
$\log _{2} X=\log X / \log 2=\log X / 0.3$ and $\log _{2} X=\ln _{e} X / \ln e^{2}=\ln X / 0.69\left(\right.$ Also: $2^{x}=10^{x \log 2}$ and $\left.2^{x}=e^{x \ln 2}\right)$
So $\log _{2}\left(N / N_{0}\right)=\log \left(N / N_{o}\right) / \log 2=t / t_{D}$ or $\log \left(N / N_{o}\right)=\left(\log 2 / t_{D}\right) t=K t$ where $K=\log 2 / t_{D}$ or $K=0.3 / t_{D}$.
Or back to the exponential form: $\mathrm{N} / \mathrm{N}_{\mathrm{O}}=10^{\mathrm{Kt}}$ or: $\mathrm{N}=\mathrm{N}_{\mathrm{o}} 10^{\mathrm{Kt}}$
Or, since most scientific calculators have natural log functions:
$N=N_{o} e^{K t}$, where $K=\ln 2 / t_{D}=0.69 / t_{D}$, another common form of the exponential growth equation.
We could also have approached this question of rates of change of N with time more naturally using calculus (Note: familiarity with calculus is not necessary for this course.) If you have a million cells, then after one generation time you'll have gained 1 million. If you had 100, you would've gained 100. In general, the rate of increase of N with time is just proportional to the number of cells you have at any moment in time, or: $\mathrm{dN} / \mathrm{dt}=\mathrm{KN}$

Separating variables: $\mathrm{dN} / \mathrm{N}=\mathrm{Kdt}$.
Integrating between time zero when $\mathrm{N}=\mathrm{N}_{\mathrm{o}}$ and time t , when $\mathrm{N}=\mathrm{N}$:
$\operatorname{InN}-\ln N_{o}=K t-0$, or $\ln \left(N / N_{o}\right)=K t$, or $N=N_{o} e^{K t}$
We can calculate the constant K by considering the time interval over which N_{o} has doubled. This time is the doubling time, t_{D}. For that condition:
$N / N_{o}=2=e^{K t D}$. Taking the natural logarithm of both sides: $\ln 2=K t_{D}$, or $K=\ln 2 / t_{D}$, exactly as above.

	Base 2	Base 10	Base e
Exponential form	$\mathbf{N}=\mathbf{N}_{0} 2^{K_{2} t}$	$N=N_{1} 10^{K_{10} t}$	$\mathbf{N}=\mathbf{N}_{0} e^{K_{e} t}$
Logarithmic form	$\log _{2}\left(\mathrm{~N} / \mathrm{N}_{0}\right)=\mathrm{K}_{2} \mathrm{t}$	$\log \left(\mathrm{N} / \mathrm{N}_{0}\right)=\mathrm{K}_{10} \mathrm{t}^{\text {d }}$	$\ln \left(\mathrm{N} / \mathrm{N}_{\mathrm{o}}\right)=\mathrm{K}_{\mathrm{e}} \mathrm{t}^{\text {d }}$
Definition of constant	$\mathrm{K}_{2}=1 / \mathrm{t}_{\mathrm{D}}$	$\mathrm{K}_{10}=\log _{10} 2 / \mathrm{t}_{\mathrm{D}}=0.3 / \mathrm{t}_{\mathrm{D}}$	$\mathrm{K}_{\mathrm{e}}=\ln 2 / \mathrm{t}_{\mathrm{D}}=0.69 / \mathrm{t}_{\mathrm{D}}$

All this looks worse than it is. Exponential growth using a base of 2 is intuitively obvious. And once you see the derivation, the exponential growth equation using log or In can be simply applied to problems using a calculator. You just have to keep track of what you know and what you are after.

Graphically, the depiction of exponential growth looks like this:

Growth of E.coli (Gen. time of 1 hour, initial cell number $=1$)

Or, with the ordinate (Y-axis) plotted on a logarithmic scale, a semi-log plot:

Grovth of E.coli (Gen. time of 1 hour, initial cell
number $=1$)

In reality, there's a lag before cells get going, and there's a limit (thankfully) to cell density, as nutrients become exhausted and/ or toxic excretions accumulate. The final plateau is called stationary phase:

[^0]
[^0]: © Copyright 2000 Lawrence Chasin and Deborah Mowshowitz Department of Biological Sciences Columbia University New York, NY

