Synaptotagmin I functions as a calcium regulator of release probability

Rafael Fernández-Chacón*†‡, Andreas Königstorfer‡§, Stefan H. Gerber*, Jesús García||, Maria F. Matos*, Charles F. Stevens¶, Nils Brose§, Josep Rizo||, Christian Rosenmund† & Thomas C. Südhof*

* Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA

§ Max-Planck-Institut für experimentelle Medizin, and † Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany

- Departments of Biochemistry and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- 9 The Salk Institute, and Howard Hughes Medical Institute, La Jolla, California 92037, USA

‡ These authors contributed equally to this work

In all synapses, Ca²⁺ triggers neurotransmitter release to initiate signal transmission. Ca²⁺ presumably acts by activating synaptic Ca²⁺ sensors, but the nature of these sensors—which are the gatekeepers to neurotransmission—remains unclear. One of the candidate Ca²⁺ sensors in release is the synaptic Ca²⁺-binding protein synaptotagmin I. Here we have studied a point mutation in synaptotagmin I that causes a twofold decrease in overall Ca²⁺ affinity without inducing structural or conformational changes. When introduced by homologous recombination into the endogenous *synaptotagmin I* gene in mice, this point mutation decreases the Ca²⁺ sensitivity of neurotransmitter release twofold, but does not alter spontaneous release or the size of the readily releasable pool of neurotransmitters. Therefore, Ca²⁺ binding to synaptotagmin I participates in triggering neurotransmitter release at the synapse.

Ð

NH₃

Neurotransmitter release is triggered rapidly by Ca²⁺ (in less than 1 ms)¹⁻³, but it is unknown how Ca²⁺ acts, and the identity of the Ca²⁺ sensor(s) involved is controversial⁴⁻⁷. One of the candidates for a Ca²⁺ sensor in release is synaptotagmin I, a synaptic vesicle protein that is selectively required for fast Ca²⁺-dependent release^{8,9}. Synaptotagmin I contains two C₂ domains (the C₂A and C₂B domains), which are composed of eight-stranded β-sandwiches, with three flexible loops emerging on top and four at the bottom¹⁰⁻¹³. Both C₂ domains bind several Ca²⁺ ions exclusively through their top loops, but only Ca²⁺ binding to the C₂A domain has been studied in detail^{12,13}. The C₂A domain ligates three Ca²⁺ ions in incomplete coordination spheres formed primarily by aspartate residues in the top loops (Fig. 1).

The intrinsic Ca^{2+} affinity of the C₂A domain is low, probably because of the incomplete coordination spheres. Phospholipid membranes increase the overall Ca^{2+} affinity of the C₂A domain up to 5,000-fold (dissociation constant, $K_d \approx 10 \,\mu$ M)^{14,15}. Native full-length synaptotagmin I also exhibits a low intrinsic Ca^{2+} binding affinity that is increased markedly by phospholipid membranes¹⁶. Phospholipid membranes probably enhance Ca^{2+} binding to synaptotagmin I by providing additional ligands for Ca^{2+} in the incomplete coordination spheres of the Ca^{2+} -binding sites¹⁵, as was also observed for the C₂ domain of protein kinase C (PKC)^{17,18}. Thus, in the presence of Ca^{2+} and phospholipids, the C₂A domain forms a ternary complex in which Ca^{2+} is simultaneously ligated by the top loops of the C₂A domain and by phospholipid headgroups, and the phospholipids are bound by the Ca^{2+} -binding sites in the C₂A domain (Fig. 1).

In addition to phospholipid membranes, synaptotagmin I binds to syntaxin as a function of Ca^{2+} , although higher Ca^{2+} concentrations are required¹⁹⁻²¹. At least at some synapses, release is activated at ~10 μ M free Ca^{2+} (refs 22–24), indicating that the exocytotic Ca^{2+} sensor has a substantially higher affinity than previously thought. The Ca^{2+} affinity corresponds well to the Ca^{2+} affinity of synaptotagmin I in the presence of phospholipids, suggesting that Ca^{2+} binding to synaptotagmin I may regulate exocytosis *in vivo*. However, confirming this function has proved technically daunting. Simply mutating Ca^{2+} -coordinating residues in a single C_2 domain of synaptotagmin I is not effective because other Ca^{2+} -binding sites remain^{12,15}, and because interactions between the two C_2 domains²⁵ might provide additional coordination sites for Ca^{2+} . Furthermore, extensive mutations to completely abolish Ca^{2+} binding may cause unintended effects, such as mistargeting, destabilization or misfolding.

To circumvent these problems, here we have pursued an alternative approach, and studied a point mutation in synaptotagmin I that changes the Ca^{2+} -binding affinity of synaptotagmin I without affecting its three-dimensional structure. We have correlated the change in Ca^{2+} binding with the physiological consequences of the same mutation after it was introduced into the endogenous

Loop 1

D238

Figure 1 Architecture of the Ca^{2+} -binding sites at the top of the C_2A domain of synaptotagmin I. The three Ca^{2+} -binding sites are formed by two loops 1 and 3 at the top of the C_2A domain. Five aspartate residues, one serine residue, and two backbone carbonyl groups coordinate the three bound Ca^{2+} ions, which are labelled Ca1, Ca2 and Ca3. Arginine 233 (R233) and lysine 236 (K236), positively charged residues that surround the Ca^{2+} -binding sites and that were mutated in this study, are highlighted by a grey box. Residues are shown in single-letter amino acid code, and are identified by number (adapted from ref. 12).

synaptotagmin I gene in mice. Our results show that a mutation in synaptotagmin I that selectively decreases its apparent Ca^{2+} affinity by a factor of two causes a corresponding decrease in the Ca^{2+} sensitivity of neurotransmitter release, suggesting that Ca^{2+} binding to synaptotagmin I directly determines Ca^{2+} triggering of exocytosis.

A mutant synaptotagmin I with reduced Ca²⁺ affinity

Previous results suggested that mutations in the positively charged residues surrounding the Ca²⁺-binding sites of the C₂A domain of synaptotagmin I influence Ca²⁺ binding^{15,26}. We therefore characterized mutations in two of these positively charged residues, R233Q and K236Q (Fig. 1), by NMR spectroscopy of the purified C₂A domains with and without Ca²⁺. Comparison of their Ca²⁺-free ¹H-¹⁵N heteronuclear single-quantum correlation (HSQC) spectra (Fig. 2a-c, red contours) showed that the mutations caused little perturbation in the spectra, and thus had no significant effect on the three-dimensional structure of the domain. This is not unexpected as the R233 and K236 side chains are freely exposed on the surface of the C₂A domain¹¹, and each mutation only neutralizes one of four basic residues surrounding the Ca²⁺-binding sites (Fig. 1).

We next examined the intrinsic Ca²⁺-binding properties of the mutants using Ca²⁺ titrations monitored with ¹H-¹⁵N HSQC spectra (Fig. 2a-c, black contours). We used Ca²⁺-induced chemical-shift changes of cross-peaks from residues close to the Ca²⁺binding sites as indicators of Ca²⁺ binding. The sequential coordination of the three Ca²⁺ ions is manifested by three components in the Ca²⁺-dependent chemical-shift changes (for example, the crosspeak of S235 HN; Fig. 2d-f, blue contours)¹². The affinities of the different Ca²⁺-binding sites were determined from plots of the Ca²⁺dependent changes in chemical shifts that are strongly affected by Ca²⁺ binding to a particular Ca²⁺-binding site. Thus, the ¹⁵N chemical shift of the K200 HN cross-peak is primarily affected by Ca²⁺ binding to site Ca1 (Fig. 2a-c, arrow), and the ¹H chemical shift of the S235 HN cross-peak by Ca2+ binding to site Ca2 (Fig. 2d–f). Although the S235 side chain coordinates the Ca^{2+} ion in site Ca3, the S235 HN cross-peak is strongly influenced by Ca²⁺ binding to Ca2 because the peptide backbone of S235 is very close to this site¹².

In the wild-type C₂A domain, our Ca²⁺ titrations confirmed previous estimates^{12,13} of the intrinsic Ca²⁺ affinities for Ca1 ($K_d =$ 54 µM Ca²⁺) and Ca2 ($K_d =$ 530 µM Ca²⁺). We could not saturate binding to Ca3 even at 40 mM Ca²⁺, indicating a K_d of more than 20 mM. The R233Q and K236Q mutants retained Ca²⁺ binding to all three sites, as expected from the lack of a structural change; however, the R233Q mutant exhibited a selectively higher Ca²⁺ affinity at site Ca1 with a K_d of 27 µM (Fig. 2), whereas sites Ca2 ($K_d =$ 420 µM) and Ca3 ($K_d >$ 20 mM) behaved similarly to those of the wild type (Table 1). The selectively lower K_d for Ca1 in the R233Q mutant was confirmed in independent titrations with a lower protein concentration (data not shown).

The K236Q mutant of the C₂A domain exhibited Ca²⁺ affinities similar to the wild-type domain ($K_d \approx 51 \mu$ M and $K_d \approx 530 \mu$ M Ca²⁺ for Ca1 and Ca2, respectively). Ca3 may have a slightly higher affinity in the K236Q mutant, but Ca²⁺ binding to this site could not be saturated, preventing a quantitative comparison. Thus, two substitutions in positively charged residues close to the Ca²⁺binding sites, R233Q and K236Q, had no effect on the threedimensional structure of the C₂A domain, but the R233Q substitution caused a selective increase in the intrinsic Ca²⁺ affinity of site Ca1, whereas the K236Q mutant did not.

R233Q decreases the overall Ca^{2+} affinity of the C₂A domain

Phospholipid membranes are thought to increase the Ca²⁺ affinity of synaptotagmin I by providing additional coordination sites for Ca²⁺ in the C₂A domain, and possibly also in the C₂B domain^{10–16}. As a result, the overall Ca²⁺ affinity of synaptotagmin I, defined here as the Ca²⁺ affinity in the presence of phospholipid membranes, is determined by formation of the entire C₂ domain/Ca²⁺/phospholipid complex. Thus, changes in the intrinsic Ca²⁺ affinity of a C₂ domain, such as the increased affinity for Ca1 in the R233Q mutant, may not necessarily translate into similar changes in overall Ca²⁺ affinity. We therefore measured the overall Ca²⁺ affinity of R233Q and K236Q mutant and wild-type C₂A domains using Ca²⁺-dependent phospholipid binding as an assay with liposomes comprising 30% phosphatidylserine and 70% phosphatidylcholine (Fig. 3). As judged by this assay, the R233Q mutation caused a

Figure 2 Ca²⁺ titrations of wild-type and mutant C₂A domains monitored by ¹H–¹⁵N HSQC spectra. **a–c**, Superposition of ¹H–¹⁵N HSQC spectra acquired at 0–40 mM Ca²⁺ concentrations. Spectra recorded in the absence of Ca²⁺ are shown in red, and spectra obtained at the various Ca²⁺ concentrations in black. Dashed boxes highlight the locations of the expansions shown in **d–f**; blue arrows identify the positions of the K200 HN cross-

peak. **d**–**f**, Expansions of the ¹H–¹⁵N HSQC spectra shown in **a**–**c** to illustrate the changes in the S235 HN cross-peak (blue contours) induced by Ca²⁺. All other cross-peaks are shown in black. Note that titration of the S235 backbone cross-peaks (S235 HN) exhibits the largest changes on Ca²⁺ binding to site Ca2 because of the proximity of the S235 HN group to this site.

twofold decrease in overall Ca^{2+} affinity, in spite of an increase in intrinsic Ca^{2+} affinity. By contrast, the K236Q mutation had no effect on overall Ca^{2+} affinity similar to its lack of an effect on intrinsic Ca^{2+} affinity.

Formation of the C₂A domain/Ca²⁺/phospholipid complex should depend on the phospholipid composition, and thus the overall Ca²⁺ affinity should also be sensitive to phospholipid composition. To test this, we measured the Ca²⁺ affinity of wildtype and R233Q mutant C₂A domains with membranes containing 22.5%, 30% or 45% phosphatidylserine. As predicted, the overall Ca²⁺ affinity of the wild-type C₂A domain strongly depended on the density of negative charges on the liposome surface (Table 1). The Ca²⁺ affinity of the R233Q mutant was roughly twofold lower than that of the wild-type C₂A domain with 22.5 and 30% phosphatidylserine, plausible concentrations of negatively charged phospholipids as compared with physiological membranes. An even larger decrease in Ca²⁺ affinity was observed with 45% phosphatidylserine (Table 1).

The Ca²⁺ affinity of the C₂A domain was independent of the density of recombinant protein on the glutathione beads used in the assay because a threefold variation of this density had no effect on apparent Ca²⁺ affinity (Table 1). These results suggest that although the intrinsic Ca²⁺ affinity is enhanced in the R233Q mutant (Fig. 2), its overall Ca²⁺ affinity is depressed because phospholipids are less able to bind to the Ca²⁺/C₂A domain complex. Surprisingly, the K236Q mutation does not have the same effect on Ca²⁺ binding as the R233Q mutation, although it is located next to R233 close to the Ca²⁺-binding sites. This suggests that it is not the proximity of a positively charged residue to the Ca²⁺-binding sites, but the precise location of this charge, that is critical in determining the Ca²⁺ affinity.

Generation of mice with point mutations in synaptotagmin I

We isolated a mouse genomic clone that includes a single exon encoding residues 214 to 269 of synaptotagmin I, and used this to construct three targeting vectors with the same overall design (Fig. 4)²⁷. A *neomycin* resistance gene was placed into the intron next to the exon for positive selection, and was flanked by a short arm with the exon on one side, and a long arm with intron

Table 1 Ca ²⁺ affinities	s of wild-type and n	nutant synaptotagn	nins
Condition	Protein		
	Wild type	R233Q	K236Q
Intrinsic Ca2+ affinity in the	absence of phospholi	pids*	
Ca ²⁺ -binding site Ca1 Ca ²⁺ -binding site Ca2 Ca ²⁺ -binding site Ca3	54 μM 530 μM >10 mM	27 μM 420 μM >10 mM	51 μM 530 μM >10 mM
Overall Ca2+ affinity in the	presence of phospholi	pid membranes†	
22.5% PS/77.5% PC 30.0% PS/70.0% PC (bigb.density)	$\begin{array}{l} 40.8 \pm 1.9 \mu M \\ 11.1 \pm 3.0 \mu M \end{array}$	$\begin{array}{l} 85.0 \pm 7.1 \mu M \\ 23.9 \pm 4.6 \mu M \end{array}$	n.d. 10.6 ± 1.7 μM
30.0% PS/70.0% PC (low density)	$12.7 \pm 1.3 \mu\text{M}$	$29.7\pm4.5\mu\text{M}$	n.d.
45.0% PS/55.0% PC	4.1 ± 0.2 μM	$24.5 \pm 6.0 \mu\text{M}$	n.d.
Overall Ca ²⁺ affinity of nat	ive synaptotagmin C ₂ o	domains‡	
30.0% PS/70.0% PC	\sim 3–4 μ M	~6-8 µM	n.d.

 * Dissociation constants were calculated from Ca²⁺ titrations monitored by $^{1}\text{H}^{-15}\text{N}$ HSQC NMR spectra acquired with 150–160 μM recombinant C2A domains. The Ca²⁺ dependence of the ^{15}N chemical shift of K200 NH resonances from 0.0–0.6 mM total Ca²⁺, and of the ^{14}L othermical shift of the S235 NH resonance from 0.5–2.0 mM total Ca²⁺ were used for Ca²⁺-binding sites Ca1 and Ca2, respectively. Dissociation constants for Ca²⁺-binding site Ca3 were estimated as it could not be reliably calculated because the binding site was never fully saturated.

† Binding constants represent the EC₅₀ obtained from Ca²⁺ titrations of the binding of radiolabelled liposomes to GST-C₂A domain fusion proteins (Fig. 3). Data are means \pm s.e.m. from 3-9 independent experiments performed in triplicate with liposomes comprising the indicated phosphatidylserine (PS)/phosphatidylcholine (PC) mixes (n.d. = not determined). For 30% PS/70% PC liposomes, beads were either saturated with the fusion protein (high density), or the fusion protein density on the bads on the apparent Ca²⁺ affinity.

Determined by binding of synaptotagmin cytoplasmic fragments to liposomes using a centrifugation assay (Fig. 5). sequences on the other side. In addition, two copies of the thymidine kinase gene were situated at the end of the short arm for negative selection (Fig. 4). The three targeting vectors differed only in the sequence of the exon which included either the R233Q substitution, the K236Q substitution, or no substitution (to generate wild-type control mice with the same *neomycin* resistance gene in the intron). The three vectors were used for homologous recombination in embryonic stem cells, yielding mutant cell clones that were injected into blastocysts to obtain 'knockin' mice.

We produced three knockin mouse lines. All lines contain a *neomycin* resistance gene in the intron, but differ in the sequences of the adjacent exon which is either wild type or includes the R233Q or K236Q substitution. By crossing R233Q knockin and K236Q knockin mice with wild-type knockin mice, we obtained double heterozygous mice with precisely controlled genetic backgrounds. The double heterozygotes were bred to each other, resulting in homozygous wild-type or mutant knockin littermates with identical intron sequences. Both types of homozygous mutant knockin mice were viable and fertile, and exhibited no obvious morbidity. Synaptotagmin I was fully expressed in all three knockin mouse lines, indicating that the inserted *neomycin* resistance gene in the intron did not alter transcription of synaptotagmin I, and that the mutations introduced in the C_2A domain did not produce unstable or mistargeted synaptotagmin I protein (Fig. 4).

Ca²⁺ affinity of native wild-type and mutant synaptotagmin I

To confirm that the R233Q substitution affects Ca^{2+} binding to native brain synaptotagmin I and not only to the isolated C_2A domain, we examined the Ca^{2+} -dependent phospholipid- and syntaxin-binding properties of native wild-type and R233Q mutant synaptotagmin I. Full-length synaptotagmin I is prone to nonspecific interactions, presumably because its amino-terminal transmembrane region is highly palmitoylated and indiscriminately binds to hydrophobic surfaces. Thus, to avoid nonspecific interactions, we removed the hydrophobic N-terminal region of synaptotagmin I by cleaving synaptotagmin I at the hypersensitive

Figure 3 Ca²⁺ dependence of phospholipid binding to wild-type and mutant C₂A domains. Liposomes composed of 30% phosphatidylserine/70% phosphatidylcholine were bound to immobilized GST fusion proteins of wild-type (open circles), R233Q mutant (filled circles) and K236Q mutant (triangles) C₂A domains from synaptotagmin I at the indicated concentrations of free Ca²⁺ clamped with Ca²⁺/EGTA buffers. Graphs show the means \pm s.e.m. of a representative experiment performed in triplicate, and normalized to the binding at saturating Ca²⁺ concentrations; most error bars are not visible because of their small size. EC₅₀ values for Ca²⁺: wild-type, 11 μ M; K236Q, 13 μ M; R2330, 21 μ M. Results from several independent experiments with different lipid compositions are summarized in Table 1.

proteolytic site between the transmembrane region and the C_2A domain^{^{28,29}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!

We briefly treated brain homogenates from wild-type and R233Q mutant brains with trypsin, and isolated the cleaved C_2A/C_2B domain fragment in the supernatant after pelleting the membranes. The native C_2A/C_2B domain fragment was used in Ca^{2+} -dependent phospholipid-binding assays by incubating it with liposomes in the presence of defined concentrations of free Ca^{2+} . Liposomes were pelleted, and the amount of C_2A/C_2B domain fragment bound was determined by immunoblotting (Fig. 5a). In parallel, we incubated the C_2A/C_2B domain fragment with glutathione beads containing either glutathione *S*-transferase (GST)–syntaxin or GST alone at different Ca^{2+} concentrations, and measured the amount of C_2A/C_2B domain fragment by immunoblotting of the pelleted beads (Fig. 5b).

The data show that the R233Q mutant C_2A/C_2B domain fragment bound phospholipids and syntaxin to a similar extent as did the wild-type C_2A/C_2B domain fragment. However, the R233Q mutant C_2A/C_2B domain fragment exhibited a roughly twofold lower overall Ca^{2+} affinity than that of the wild-type fragment (Fig. 5a), similar to the results obtained with recombinant C_2A domains (Table 1). We observed no consistent difference in syntaxin binding between wild-type and mutant C_2A/C_2B domains, possibly because the more labile, syntaxin-binding assay makes it difficult to detect a twofold shift in Ca^{2+} affinity (Fig. 5b). Notably, the native C_2A/C_2B domain fragment bound to syntaxin at much lower Ca^{2+} concentrations ($< 20 \,\mu$ M) than previously described for recombinant fragments ($> 200 \,\mu$ M $Ca^{2+})^{19,21}$. This result suggests that in native synaptotagmin I, the two C_2 domains cooperate with each other in

Figure 4 Generation of mice with mutant C₂A domains. a, Strategy for creating knockin mice by homologous recombination. A genomic clone containing a single exon from the murine synaptotagmin I gene (top) was used to construct three targeting vectors of the same overall design (middle), with two copies of the thymidine kinase (TK) gene for negative selection and a neomycin resistance cassette (neo) for positive selection. In the three vectors, the exon contains the R233Q or the K236Q substitution (asterisk) or is wild type (to generate a precisely matched wild-type control). Homologous recombination replaces the endogenous synaptotagmin I exon with the exon from the targeting vector, and inserts the neomycin resistance gene cassette into the intron (bottom). Numbered arrows identify the oligonucleotides (1,872 and 1,873) used for genotyping. The position of the outside probe for detection of homologous recombination by Southern blotting is indicated on the right. Locations of selected restriction sites are shown (HIII = HindIII; ERI = EcoRI, and the scale is given on the right. **b**, Immunoblots of total brain homogenates (30 μ g protein) from wild-type (+/+), heterozygous (+/-) and homozygous (-/-) littermate mice stained with monoclonal antibodies specific for synaptotagmin I and rab3a.

 Ca^{2+} binding and/or are post-translationally modified. Such cooperation and/or modifications could also explain why our previous results suggested that the R233Q mutant C₂A domain is impaired in syntaxin binding²⁶, whereas the native double C₂-domain fragment is not.

R233Q selectively impairs neurotransmitter release

To test the effects of the R233O and K236O mutations on synaptotagmin I function, we cultured hippocampal neurons from newborn knockin mice, and performed electrophysiological recordings in neurons that had formed autapses^{9,30-32}. In all experiments, neurons from mutant and wild-type littermates were cultured and analysed simultaneously to control for the variability in synaptic responses between cultures. Neurons from R233Q, K236Q and wild-type knockin mice exhibited robust excitatory postsynaptic currents (EPSCs) in response to action potentials induced by brief depolarizations. However, we observed marked differences between the mutants in the relative EPSC amplitudes during repetitive stimulation (Fig. 6). The EPSC amplitudes of R233Q mutant neurons were smaller than those of wild-type neurons (see below), but displayed large facilitation upon stimulation at 10 Hz, 20 Hz or 50 Hz. Under the same conditions, both wild-type knockin neurons and K236Q knockin neurons exhibited mild synaptic depression (Fig. 6). As a result, the relative synaptic response at the end of a stimulus train was several-fold higher in R233Q mutant neurons than in wild-type neurons and in K236Q mutant neurons,

Figure 5 Effect of the R233Q mutation on Ca^{2+} -dependent phosphopholipid and syntaxin binding by native synaptotagmin. **a**, The soluble C_2A/C_2B -domain fragment of synaptotagmin I was obtained from R233Q mutant and wild-type (WT) mice by partial trypsin digestion of synaptotagmin I in brain homogenates. The soluble C_2A/C_2B -domain fragment isolated in the supernatant of centrifuged trypsinized brain homogenates was used for binding experiments with liposomes at the indicated concentrations of free Ca^{2+} . The input and the proteins bound to the liposomes at the various Ca^{2+} concentrations were analysed by immunoblotting using a monoclonal synaptotagmin I antibody. Numbers on the left indicate positions of size markers. **b**, Pull-down experiments of the soluble C_2A/C_2B -domain fragment of synaptotagmin I isolated as described above with GST and with GST–syntaxin (residues 180–264). Experiments were performed with the indicated concentrations of free Ca^{2+} as described in **a**, and bound proteins were visualized by immunoblotting.

suggesting a selective functional effect of the R233Q substitution.

Facilitation during repetitive stimulation is indicative of a reduced release probability^{33,34}, suggesting that the R233Q mutation changes the efficacy with which Ca²⁺ triggers release during an action potential. The synaptic release probability is the probability with which an action potential stimulates neurotransmitter release at a synapse. It can be measured as the rate of inhibition by an irreversible open-channel blocker of the NMDA (*N*-methyl-D-aspartate) receptor, MK-801 (refs 35, 36). MK-801 only blocks NMDA receptors that have been opened by glutamate, thereby 'knocking out' synapses as they become activated.

To evaluate the effect of the R233Q mutation on synaptic release probability, we measured the rate of inhibition of NMDA-receptordependent EPSCs by MK-801. In R233Q mutant and in wild-type neurons, MK-801 caused a multi-exponential decay in the EPSC amplitude, which is consistent with two or more populations of synapses having distinct release probabilities^{35,36} (Fig. 7). The decay rate was significantly lower in R233Q mutant neurons than in wildtype neurons, however, showing that the R233Q substitution causes a reduction in synaptic release probability. Assuming that the distribution of release probabilities among synapses is similar between wild-type and R233Q mutant neurons, the decrease in

Figure 6 Effect of the R233Q and K236Q mutations on synaptic responses in cultured hippocampal neurons. Evoked synaptic responses were recorded in autapses of cultured hippocampal neurons stimulated at 10 Hz (**a**), 20 Hz (**b**) and 50 Hz (**c**). For each stimulation frequency, representative traces from wild-type (WT) and R233Q mutant neurons are shown on the left, and summary graphs for the respective knockin mutants are shown middle and right for R233Q and K236Q, respectively. Summary graphs compare individual signals from multiple experiments in which mutant and wild-type knockin neurons from littermates were analysed simultaneously to control for culture conditions (means ± s.e.m.). Recordings were made in standard 4 mM Ca²⁺, 4 mM Mg²⁺ solutions. Vertical calibration bars have been omitted since the currents are normalized to the first response because EPSC amplitudes are lower in the R233Q knockin neurons than in wild-type knockin or K236Q knockin neurons (see Fig. 8).

release probability can be quantified as the degree of expansion in the *x* axis of the wild-type curve that is necessary to make it fit to the mutant curve (Fig. 7, inset). This procedure showed that a twofold increase in the scale of the wild-type *x* axis induced a perfect match to the mutant response, suggesting that the R233Q mutation decreased the synaptic release probability twofold.

Vesicular release probability in R233Q mutant mice

A reduction in synaptic release probability could be caused by a decline in the readily releasable pool of synaptic vesicles or by a decrease in the Ca^{2+} triggering of synaptic vesicle exocytosis. In the first case, fewer vesicles would be readily available for release per synapse, but would be normally Ca^{2+} responsive. In the second case, the number of readily releasable vesicles would be unchanged, but the effectiveness of Ca^{2+} influx during an action potential to trigger release would be impaired. To differentiate between these possibilities, we measured consecutively the amplitude of the Ca^{2+} triggered synaptic response and the size of the readily releasable pool of vesicles in the same neuron (Fig. 8a).

The amplitude of Ca^{2+} -triggered synaptic responses was determined by inducing action potentials with short pulses of depolarization. Evoked responses were then recorded from a large number of mutant and control neurons to obtain representative average EPSC amplitudes. Consistent with the decrease in synaptic release probability (Fig. 7), the amplitude of evoked EPSCs was significantly reduced in R233Q mutant neurons (to ~55 % of the wildtype response) (Fig. 8b). No amplitude reduction was found in K236Q mutant neurons, similar to the lack of a phenotype in the repetitive stimulation paradigm.

To measure the size of the readily releasable pool of synaptic vesicles, we applied hypertonic sucrose (0.5 M), which stimulates exocytosis of the entire readily releasable pool of vesicles by an unknown, Ca^{2+} -independent mechanism^{37,38}. In contrast to Ca^{2+} evoked EPSC amplitudes, no difference in the size of the sucrose

response was detected between R233Q mutant neurons and K236Q mutant or wild-type neurons (Fig. 8b). Thus, the R233Q substitution in synaptotagmin I caused a selective decrease in evoked EPSCs that represent Ca²⁺-triggered fusion, but had no effect on the sucrose response that represents the readily releasable pool. In further support of this conclusion, the frequency and amplitude of spontaneous miniature postsynaptic currents (mEPSCs) were similar in R233Q mutant and wild-type neurons (wild-type, 1.9 \pm 0.8 events per second with 13.7 \pm 2.5 pA, n = 5; R233Q mutant, 2.5 \pm 0.8 events per second with 11.5 \pm 1.5 pA, n = 6).

The vesicular release probability is the probability with which a particular vesicle in the readily releasable pool can be stimulated for exocytosis by Ca²⁺ influx during an action potential^{32,38}. This probability can be calculated as the ratio of Ca²⁺-evoked release to the size of the readily releasable pool. Although in cultured autaptic neurons the sizes of the EPSC amplitudes and of the readily releasable pool vary between cultures, the vesicular release probability of a single neuron is reliably determined when the synaptic responses to action potentials and hypertonic sucrose are recorded in the same neuron (Fig. 8a). For each form of release, the measured charge integral of the postsynaptic currents is the product of the charge of individual mEPSCs (corresponding to release of single vesicles) and the number of released vesicles. Thus, the ratio of the charge integrals of Ca²⁺-evoked and sucrose-stimulated release measured in a single cell directly corresponds to its vesicular release probability.

When we performed such calculations for the data shown in Fig. 8b, we observed an almost threefold decrease in the vesicular release probability in R233Q mutant neurons compared with that in wild-type knockin neurons that were analysed simultaneously $(2.34 \pm 0.32\%, n = 44, \text{ versus } 6.95 \pm 0.85\%, n = 44; \text{ Fig. 8c}).$ No significant difference was detected in the vesicular release probability between K236Q mutant and littermate wild-type neurons (4.6 \pm 0.7%, n = 32, versus 5.2 \pm 0.9%, n = 23). Although substantial, the threefold reduction in vesicular release probability in the R233Q mutants is smaller than the tenfold reduction in the release probability observed under the same conditions in synaptotagmin I knockouts (0.6 \pm 0.2%, n = 12; data not shown). The reduction in vesicular release probability in the R233Q mutants (Fig. 8C) is slightly higher than the reduction in synaptic release probability measured by the rate of MK-801 blockade (Fig. 7), probably because of the distinct Ca²⁺ and Mg²⁺ concentrations that were required for these experiments.

Decreased exocytotic Ca²⁺ sensitivity in R233Q synapses

To obtain a quantitative estimate for the relative Ca²⁺ sensitivity of exocytosis in R233Q mutant and wild-type neurons, we monitored the size of evoked EPSCs as a function of the external Ca²⁺ concentration. Evoked EPSCs were recorded during low-frequency stimulation (0.2 Hz for 30-60 s) at variable Ca²⁺ concentrations (1– 12 mM) with a constant Mg^{2+} concentration (1 mM Mg^{2+}) to maximize the release probability, and to allow examination of a large range of Ca²⁺ concentrations. Each test measurement was followed by a control measurement in standard 4 mM Ca²⁺, 4 mM Mg²⁺ solution to correct for the rundown of synaptic responses during the experiment. We then normalized the response at each test Ca²⁺ concentration to the response at the standard Ca²⁺/Mg²⁺ concentration obtained immediately afterwards. As the absolute magnitude of the EPSC amplitude is significantly decreased in the R233Q mutant (Fig. 8b), we also normalized the mutant signal to the wild-type signal under standard conditions. In this way, we measured the Ca²⁺ dependence of release independently of the absolute EPSC amplitude.

The resulting Ca^{2+} -response curves reveal two features (Fig. 8d). First, synaptic amplitudes in the R233Q mutant neurons are consistently lower than in wild-type neurons, as expected from the relative depression of release under standard conditions in this mutant (see Fig. 8b). Second, the Ca²⁺-response curve in the mutant is shifted to the right compared with the wild-type Ca²⁺-response curve. In the mutant neurons, we could not achieve saturation because increases in extracellular Ca²⁺ beyond 12 mM led to action potential failures and to saturation of Ca²⁺ influx³⁹. Nevertheless, high Ca²⁺ concentrations at least partially rescued the mutant phenotype. At the highest Ca²⁺ concentration used (12 mM), the wild-type EPSC amplitude was 1.6 times the control response in standard 4 mM Ca²⁺, 4 mM Mg²⁺ solution, whereas in R233Q mutant neurons we observed a 2.6-fold increase over the control response (Fig. 8d).

To calculate the apparent affinity for extracellular Ca²⁺, the dose– response curve was fitted with the Hill function $(I = I_{max} / (1 + (K_d / I_{max}))))$ $[Ca^{2+}])^n$, where I is the recorded synaptic current plotted as normalized amplitude, I_{max} the maximal current, K_d the apparent dissociation constant for extracellular Ca^{2+} , $[Ca^{2+}]$ the extracellular Ca^{2+} concentration, and *n* the apparent cooperativity. The calculated Ca²⁺ affinity was decreased twofold in R233O mutant neurons compared to wild-type neurons ($K_d = 3.7 \pm 0.8$ mM versus 1.9 ± 0.2 mM extracellular Ca²⁺). By contrast, the cooperativity of release, as reflected in the Hill coefficient, was similar (1.7 for wildtype neurons versus 1.6 for R233Q mutant neurons), and the calculated I_{max} of the R233Q neurons was 74% of the wild-type value (1.27 versus 1.72). Note that the external Ca²⁺ affinity and Ca²⁺ cooperativity obviously represent an underestimate of true intracellular Ca²⁺ affinities and cooperativities because they are only indirectly related³⁹.

Intracellular Ca²⁺ responsiveness in R233Q-mutant synapses

The most plausible explanation for the impaired vesicular release probability in R233Q mutant neurons is that this mutation directly affects the function of the Ca²⁺ sensor for synaptic vesicle exocytosis; however, the impaired vesicular release probability could also be explained by a decrease in Ca²⁺ influx. As synaptotagmin I and syntaxin are known to interact with Ca²⁺ channels^{40,41}, it is conceivable that the decreased Ca²⁺ responsiveness of synaptic vesicles in the R233Q mutant neurons is due to an inhibition of Ca^{2+} influx. To examine this, we bypassed Ca²⁺-channel activation by applying the Ca²⁺ ionophore calcimycin. Calcimycin spontaneously inserts into the plasma membrane, and allows Ca²⁺ to flow directly into the neurons. Soon after application of calcimycin, robust Ca²⁺-induced spontaneous EPSCs were observed in wild-type neurons (Fig. 8e). Application of the same concentration of calcimycin under identical conditions to R233Q mutant neurons led to a delay in the stimulation of EPSCs compared to wild-type neurons (Fig. 8e).

The speed with which a synaptic response is triggered by a Ca^{2+} ionophore will depend on how fast the ionophore inserts into the membrane, how fast Ca^{2+} flows through the ionophore into the terminal, and how much intracellular Ca^{2+} is required in the terminal to trigger release. As the same concentrations of Ca^{2+} ionophore were applied to wild-type and R233Q mutant neurons, the rise in intracellular Ca^{2+} should be identical. Thus, the delayed response in the mutant neurons suggests that higher local Ca^{2+} concentrations in the nerve terminal are necessary to trigger neurotransmitter release from R233Q mutants, consistent with a change in the Ca^{2+} responsiveness of synaptic vesicles downstream of Ca^{2+} channels.

Conclusions

We examined two point mutations in synaptotagmin I, R233Q and K236Q, that neutralize positively charged residues close to the Ca^{2+} binding sites but have no effect on the three-dimensional structure of synaptotagmin I. R233Q reduces the overall Ca^{2+} affinity of synaptotagmin I, and results in a selective decrease in the Ca^{2+} responsiveness of synaptic vesicle exocytosis. By contrast, K236Q had no effect *in vitro* or *in vivo*. Thus a single-point mutation in synaptotagmin I selectively decreases its overall Ca^{2+} affinity by a

factor of two, and also causes a 2–3-fold decrease in the Ca²⁺ sensitivity of release. The R233Q phenotype is not due to non-specific electrostatic changes because the neighbouring K236Q mutation does not alter the Ca²⁺ affinity of synaptotagmin I or the Ca²⁺ responsiveness of release. The most parsimonious explanation for the effect of the R233Q mutation is that Ca²⁺ binding to synaptotagmin I triggers synaptic vesicle exocytosis; however, this explanation does not imply that synaptotagmin I is the only Ca²⁺ sensor in release as several Ca²⁺ sensors may have to be activated simultaneously to trigger release (for example, several synaptotagmin isoforms).

The similarity of the overall Ca^{2+} affinity of synaptotagmin¹⁴⁻¹⁶ with that of the exocytotic Ca^{2+} sensor in central synapses²²⁻²⁴, and the parallel shift in these parameters caused by the R233Q mutation, strongly support the role of synaptotagmin I as a Ca^{2+} sensor in release. Nevertheless, alternative explanations could also account for the observed phenotype of the R233Q mutation, although they appear to be less likely than the Ca^{2+} -sensor hypothesis. One alternative explanation is that Ca^{2+} influx is inhibited, leading to a decrease in the apparent Ca^{2+} sensitivity of release. This explanation is unlikely, however, because the Ca^{2+} ionophore experiments revealed that Ca^{2+} triggering is impaired in the R233Q mutant downstream of Ca^{2+} influx.

A second potential explanation for the decrease in apparent Ca²⁺

responsiveness is that Ca^{2+} buffering is increased. This explanation is also improbable because the R233Q mutation causes only a small change in Ca^{2+} binding compared with the large increase in Ca^{2+} buffering required to account for the phenotype. A third potential alternative explanation for the R233Q phenotype is that R233 mediates binding of an unidentified protein to synaptotagmin I which is the 'true' Ca^{2+} sensor in release instead of synaptotagmin. To be the true Ca^{2+} sensor, however, the unidentified synaptotagmin I ligand—possibly the SNARE complex—would itself have to bind Ca^{2+} but interact equally well with Ca^{2+} -bound and Ca^{2+} -free synaptotagmin I (otherwise synaptotagmin I would, after all, still be a Ca^{2+} sensor in release). These conditions make this explanation also rather unlikely, especially in view of the role of R233 in Ca^{2+} binding to synaptotagmin I.

What is the mechanism of action of synaptotagmin I as a Ca^{2+} sensor/transducer in release? In proteins such as perforin, PKC and phospholipase C, phospholipid binding to C₂ domains mediates the Ca^{2+} -dependent regulation^{42–45}. By analogy, it seems plausible that binding of the C₂ domains of synaptotagmin I to phospholipid membranes is integral to its function. Synaptotagmin I is present on docked vesicles at the active zone close to the plasma membrane, and thus has ready access to phospholipid membranes. In addition, the interaction of synaptotagmin I with syntaxin provides an attractive mechanism of action because of the fundamental role of

Figure 8 Pool sizes and Ca^{2+} responsiveness of synaptic vesicles in wild-type, R233Q and K236Q mutant synapses. **a**, Typical synaptic responses evoked by action potentials or application of hypertonic sucrose in neurons from wild-type and R233Q knockin mice. Action potentials were induced by short somatic depolarization (from -75 mV to 0 mV for 2 ms), and the readily releasable pool of vesicles was stimulated from the same cell by hypertonic sucrose (0.5 M for 3 s). Capacitative and somatic currents are blanked for display purposes. **b**, Quantitative analysis of the synaptic EPSC amplitudes and the size of the readily releasable pool of R233Q and K236Q knockin neurons compared with wild type. Mean amplitudes and pool sizes recorded in mutant knockin neurons were normalized to wild-type knockin littermate controls; responses are expressed as per cent of wild-type controls (100% = dotted line; *n* is the same as in **c**). **c**, Mean vesicular release probability expressed as a per cent of the readily releasable pool. R233Q and K236Q knockin neurons were analysed simultaneously with wild-type knockin control neurons from littermates, and are shown in comparison with these controls to correct for culture-dependent variability. Vesicular release probability was obtained from recordings in which

evoked EPSCs and the readily releasable pool were measured in the same cells, and is calculated as the ratio of the evoked EPSC charge integral to the sucrose-stimulated charge integral. **d**, Ca²⁺ dependence of release from wild-type knockin (WT) and R233Q knockin synapses. Synaptic responses to brief depolarizations were recorded at the indicated concentrations of Ca²⁺ in the presence of 1 mM Mg²⁺. The same neurons were examined consecutively for all Ca²⁺ concentrations, with control measurements in standard 4 mM Ca²⁺, 4 mM Mg²⁺ solutions after each test measurement to correct for the rundown of responses during recordings; responses are additionally normalized for the absolute EPSC amplitudes. Data shown are means ± s.e.m. (n = 6-16 and 8-18 cells for wild-type and R233Q knockin neurons, respectively). **e**, Spontaneous synaptic EPSCs evoked by the Ca²⁺ ionophore calcimycin in wild-type (WT) and R233Q knockin neurons. Calcimycin was applied at time 0 after stable baseline recordings for 100 s. Data shown are means ± s.e.m. (n = 9 and 12 cells for wild-type and R233Q knockin neurons, respectively). All recordings except for those in **d** were made in standard 4 mM Ca²⁺, 4 mM Mg²⁺ solutions.

syntaxin in synaptic vesicle fusion⁴⁶. The absolute Ca^{2+} dependence and the markedly lower Ca^{2+} requirement for syntaxin binding to native synaptotagmin (as opposed to recombinant synaptotagmin^{19,21}) fit well with the role of an exocytotic Ca^{2+} sensor^{22–24}. Although we were unable to detect a change in syntaxin binding in the R233Q mutant, it is possible that Ca^{2+} -dependent phospholipid and syntaxin binding to synaptotagmin I cooperate in Ca^{2+} triggering of exocytosis. This might occur together with additional Ca^{2+} dependent activities of the C₂ domains, such as the Ca^{2+} -dependent multimerization of synaptotagmin I (refs 47, 48). Independent of the precise mechanism of action of synaptotagmin I, however, our data show that synaptotagmin I is a direct component of the Ca^{2+} sensor in synchronous release where alterations in its overall Ca^{2+} affinity translate into equivalent changes in the Ca^{2+} sensitivity of neurotransmitter release.

Methods

Ca²⁺-binding studies of C₂A domains

 $^1\mathrm{H}-^{15}\mathrm{N}$ HSQC spectra were acquired at 25 °C in a Varian INOVA500 NMR spectrometer (spectral widths = 7,600 and 1,163 Hz in the $^1\mathrm{H}$ and $^{15}\mathrm{N}$ dimensions, respectively) using uniformly $^{15}\mathrm{N}$ -labelled C₂A domains $^{11-13,49}$. Initial Ca²⁺ titrations were recorded at 150–160 $\mu\mathrm{M}$ protein concentrations using $^1\mathrm{H}-^{15}\mathrm{N}$ HSQC spectra (1 h total acquisition time) with successive additions of 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.375, 0.45, 0.525, 0.6, 0.675, 0.75, 1, 1.2, 2, 5, 10, 20, 30 and 40 mM Ca²⁺. Additional Ca²⁺ titrations of 18–20 $\mu\mathrm{M}$ wild-type and R233Q mutant C₂A domains were obtained with $^1\mathrm{H}-^{15}\mathrm{N}$ HSQC spectra (12 h total acquisition time) recorded after successive additions of 0, 10, 20, 40, 60, 80, 100, 140, 180 and 220 $\mu\mathrm{M}$ Ca²⁺ (wild-type) and 0, 5, 10, 20, 40, 60, 80 and 100 $\mu\mathrm{M}$ Ca²⁺ (mutant). The Ca²⁺ affinities of the different sites were calculated by curve fitting the Ca²⁺ dependence of selected chemical shifts to standard protein–ligand equilibrium equations using Sigma Plot.

Phospholipid-binding studies of C₂A domains

³H-labelled liposomes containing the indicated concentrations of PS and PC were prepared by sonication, and used in phospholipid-binding assays with immobilized GST or GST fusion proteins of the C₂A domains^{14,15}. Binding assays were carried out with identical amounts of liposomes, protein and glutathione–agarose using Ca²⁺/EGTA buffers calculated with EqCal (Biosoft, Cambridge, UK). To test the effect on the apparent Ca²⁺ affinity of the density of the C₂A domain fusion protein on the beads, beads were loaded with a 2:1 mixture of GST to the GST–C₂A domain fusion protein, and the binding assays were performed with these diluted C₂A domains.

Phospholipid and syntaxin binding

Post-nuclear supernatants from mouse brains in 20 mM HEPES-NaOH pH 7.2, 0.1 g l^{-1} PMSF were diluted to 8 g protein per l and digested with 0.008% trypsin for 30 min at 37 °C. Afterwards, 0.1 g l^{-1} soybean trypsin inhibitor, 1% goat serum, and 1 mM PMSF were added, samples were centrifuged at 300,000g for 4 h at 4 °C, and the supernatants were re-centrifuged for an additional 30 min. Aliquots (1.1 ml) of the supernatants and of 2.4× Ca²⁺/EGTA-buffers in 80 mM HEPES-NaOH pH 7.2, 0.2 M NaCl were mixed. One millilitre of each sample was distributed into two tubes, 0.2 ml of 0.5 g l^{-1} liposomes were added in 50 mM HEPES-NaOH pH 7.2, 0.1 M NaCl, and samples were incubated at 36 °C for 15 min under agitation. Liposomes were pelleted by centrifugation (100,000g for 30 min), washed once in the appropriate Ca²⁺/EGTA buffer, and analysed by SDS–PAGE and immunoblotting using Cl41.1 synaptotagmin I monoclonal antibody.

For GST–syntaxin binding assays, trypsinized brain extracts were aliquoted with Ca^{2+7} / EGTA buffers as described above with 1% Triton X-100 in the final solutions. Agarose beads with GST–syntaxin 180–264 or GST alone (1–2 g protein per l glutathione agarose) were preblocked in 20 mM HEPES-NaOH pH 7.2, 1% BSA for 30–90 min at 4 °C, pelleted, and 1.2 ml of trypsinized brain extract in Ca²⁺/EGTA buffer was added. Samples were incubated overnight at 4 °C on a rotator, pelleted, washed three times with the appropriate incubation buffers, and pelleted again. Bound proteins were analysed by SDS–PAGE and immunoblotting as described above.

Generation of knockin mutant mice

We used a genomic λ -clone containing a single exon with residues 214–269 of murine synaptotagmin I to construct three similar targeting vectors with either wild-type or R233Q and K236Q mutant exon sequences (Fig. 4). Vectors were electroporated into embryonic stem cells (E14 cells, a gift from K. von Figura, Göttingen), colonies were selected with G418 and gancyclovir²⁷, and double-resistant colonies were analysed for homologous recombination by Southern blotting with an outside probe. Clones containing homologously recombined genes were expanded, confirmed by PCR, and used to generate mice by blastocyst injection. All three resulting mouse lines had the *neomycin* resistance gene in the intron next to the exon which was either wild-type or carried the R233Q or K236Q mutation. To ensure that all analysis was performed on percisely mutant knockin on a mixed SV129/Black 6 background, and all analyses were performed on littermates derived from matings between double heterozygotes. Mice of various

genotypes and wild-type control mice were studied by immunoblotting for synaptic proteins as described²⁷.

Electrophysiological analyses of hippocampal neurons

Individual cultures of hippocampal neurons from all mice in a litter from doubleheterozygous mutant/wild-type knockin mice were prepared at P0 or P1 on microislands of glia cells (pre-plated in 10% fetal bovine serum) under conditions favouring formation of autapses, and used for experiments after 10-20 d in culture³⁰⁻³². Before seeding neurons in a density of 500 per cm², the medium was exchanged to neurobasal medium A (Gibco) with supplement B27 (Gibco). Only dots containing single neurons were used. Only excitatory EPSCs were analysed since too few measurements were obtained from inhibitory GABAergic. The extracellular medium for the cultures contained (in mM): NaCl 140, KCl 2.4, HEPES 10, glucose 10, CaCl2 4, MgCl2 4; pH 7.3; 300 mOsm. For the measurements of mEPSCs, tetrodotoxin (200 nM) was added. NMDA EPSCs were measured in the presence of external 2.7 mM Ca^{2+} and 10 μ M glycine but without Mg²⁺. Synaptic transmission was recorded in the whole-cell configuration under voltage-clamp using 1-2 ms depolarizations from -75 mV to 0 mV to induce action potentials. Hypertonic sucrose solutions contained 0.5 M sucrose in addition to the regular external solution. Patch pipette solutions included (in mM): K-gluconate 125, NaCl 10, MgCl₂ 4.6, ATP-Na₂ 4, creatine phosphate 15, phosphocreatine kinase (20 U ml⁻¹), EGTA 1; buffer pH 7.3; 300 mOsm. Chemicals were purchased from Sigma, except for MK-801 (Tocris).

Received 9 October; accepted 12 December 2000.

- 1. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969).
- Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. *Nature* 383, 431–434 (1996).
- Sabatini, B. L. & Regehr, W. G. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542 (1999).
- Bennett, M. R. The concept of a calcium sensor in transmitter release. Prog. Neurobiol. 59, 243–277 (1999).
- Burgoyne, R. D. & Morgan, A. Calcium sensors in regulated exocytosis. *Cell Calcium* 24, 367–376 (1998).
- 6. Kelly, R. B. Neural transmission. Synaptotagmin is just a calcium sensor. Curr. Biol. 5, 257–259 (1995).
- von Gersdorff, H. & Matthews, G. Electrophysiology of synaptic vesicle cycling. Annu. Rev. Physiol. 61, 725–752 (1999).
- Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. & Südhof, T. C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. *Nature* 345, 260–263 (1990).
- Geppert, M. et al. Synaptotagmin I: A major Ca²⁺ sensor for transmitter release at a central synapse. *Cell* 79, 717–727 (1994).
- Sutton, R. B., Davletov, B. A., Berghuis, A. M., Südhof, T. C. & Sprang, S. R. Structure of the first C₂domain of synaptotagmin I: a novel Ca²⁺/phospholipid-binding fold. *Cell* 80, 929–938 (1995).
- Shao, X., Fernandez, I., Südhof, T. C. & Rizo, J. Solution structures of the Ca²⁺-free and Ca²⁺-bound C₂A-domain of synaptotagmin I: does Ca²⁺ induce a conformational change? *Biochemistry* **37**, 16106– 16115 (1998).
- Ubach, J., Zhang, X., Shao, X., Südhof, T. C. & Rizo, J. Ca²⁺ binding to synaptotagmin: how many Ca²⁺ ions bind to the tip of a C₂-domain? *EMBO J.* 17, 3921–3930 (1998).
- Shao, X., Davletov, B. A., Sutton, R. B., Südhof, T. C. & Rizo, J. A bipartite Ca²⁺-binding motif in C₂domains of synaptotagmin and protein kinase C. Science 273, 248–251 (1996).
- Davletov, B. & Südhof, T. C. A single C₂-domain from synaptotagmin I is sufficient for high affinity Ca²⁺/phospholipid-binding. *J. Biol. Chem.* 268, 26386–26390 (1993).
- Zhang, X., Rizo, J. & Südhof, T. C. Mechanism of phospholipid binding by the C₂A-domain of synaptotagmin I. *Biochemistry* 36, 12395–12403 (1998).
- Brose, N., Petrenko, A. G., Südhof, T. C. & Jahn, R. Synaptotagmin: A Ca²⁺ sensor on the synaptic vesicle surface. *Science* 256, 1021–1025 (1992).
- Mosior, M. & Epand, R. M. Characterization of the calcium-binding site that regulates association of protein kinase C with phospholipid bilayers. J. Biol. Chem. 269, 13798–13805 (1994).
- Verdaguer, N., Corbalan-Garcia, S., Ochoa, W. F., Fita, I. & Gomez-Fernandez, J. C. Ca²⁺ bridges the C₂ membrane-binding domain of protein kinase Cα directly to phosphatidylserine. *EMBO J.* 18, 6329–6338 (2000).
- Li, C. et al. Ca²⁺-dependent and Ca²⁺-independent activities of neural and nonneural synaptotagmins. Nature 375, 594–599 (1995).
- Chapman, E. R., Hanson, P. I., An, S. & Jahn, R. Ca²⁺ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23771 (1995).
- Kee, Y., Scheller & R. H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).
- Lagnado, L., Gomis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. *Neuron* 17, 957–967 (1996).
- Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. *Nature* 406, 889–893 (2000).
- Bollmann, J. H., Sakmann, B. & Borst, J. G. Calcium sensitivity of glutamate release in a calyx-type terminal. *Science* 289, 953–957 (2000).
- Garcia, R. A., Forde, C. E. & Godwin, H. A. Calcium triggers an intramolecular association of the C₂domains in synaptotagmin. *Proc. Natl Acad. Sci. USA* 97, 5883–5888 (2000).
- Shao, X. et al. Synaptotagmin–syntaxin interaction: the C₂-domain as a Ca²⁺-dependent electrostatic switch. Neuron 18, 133–142 (1997).
- Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).
- Perin, M. S., Brose, N., Jahn, R. & Südhof, T. C. Domain structure of synaptotagmin. J. Biol. Chem. 266, 623–629 (1991).
- Tugal, H. B., van Leeuwen, F., Apps, D. K., Haywood, J. & Phillips, J. H. Glycosylation and transmembrane topography of bovine chromaffin granule p65. *Biochem. J.* 279, 699–703 (1991).
- Bekkers, J. M. & Stevens, C. F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl Acad. Sci. USA 88, 7834–7838 (1991).

- Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. *Neuron* 21, 443–451 (1998).
- Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc-13 is essential for fusion competence of glutamatergic synaptic vesicles. *Nature* 400, 457–461 (1999).
- 33. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13-31 (1989).
- Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. *Trends Neurosci.* 23, 305–312 (2000).
- Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. *Science* 262, 754–757 (1993).
 Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian
- central synapse. Nature 366, 569–572 (1993).
- Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. *Neuron* 16, 1197–1207 (1996).
- Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).
- Mintz, I. M., Sabatini, B. L. & Regehr, W. G. Calcium control of transmitter release at a cerebellar synapse. *Neuron* 15, 675–688 (1995).
- Catterall, W. A. Interactions of presynaptic Ca²⁺-channels and SNARE proteins in neurotransmitter release. Ann. N. Y. Acad. Sci. 868, 144–159 (1999).
- Seagar, M. et al. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Phil. Trans. R. Soc. Lond. B 354, 289–297 (1999).
- Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C₂-domain. EMBO J. 16, 7287–7296 (1997).
- Edwards, A. S. & Newton, A. C. Regulation of protein kinase CβII by its C₂-domain. *Biochemistry* 36, 15615–15623 (1997).
- Nalefski, E. A. & Falke, J. J. Location of the membrane-docking face on the Ca²⁺-activated C₂-domain of cytosolic phospholipase A2. *Biochem.* 37, 17642–17650 (1998).

- Williams, R. L. & Katan, M. Structural views of phosphoinositide-specific phospholipase C: signalling the way ahead. *Structure* 4, 1387–1394 (1996).
- Blasi, J. et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/ syntaxin. EMBO J. 12, 4821–4828 (1993).
- Sugita, S., Hata, Y. & Südhof, T. C. Distinct Ca²⁺-dependent properties of the first and second C₂domains of synaptotagmin I. *J. Biol. Chem.* 271, 1262–1265 (1996).
- Chapman, E. R., An, S., Edwardson, J. M. & Jahn, R. A novel function for the second C₂-domain of synaptotagmin. Ca²⁺-triggered dimerization. *J. Biol. Chem.* 271, 5844–5849 (1996).
- 49. Zhang, O., Kay, L. E., Olivier, J. P. & Forman-Kay, J. Backbone ¹H and ¹⁵N resonance assignments of Nterminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 (1994).

Supplementary information is available on *Nature's* World-Wide Web site (http://www.nature.com) or as paper copy from the London editorial office of *Nature*.

Acknowledgements

We thank I. Herfort, I. Leznicki and A. Roth for technical assistance; H. Riedesel, J. Krause, S. Röcklin and the ARC in Dallas for help with mouse husbandry; and E. Neher, G. Alvarez de Toledo, J. López-Barneo and R. Jahn for advice. This study was supported by grants from the NIH to J.R., a grant from the Deutsche Forschungsgemeinschaft to C.R., Heisenberg Fellowships from the Deutsche Forschungsgemeinschaft to N.B. and C.R., a grant from the Perot Family Foundation to T.C.S., and postdoctoral fellowships from the Spanish Ministry of Education and the Fulbright Commission to R.F.C., and from the Deutsche Forschungsgemeinschaft to S.H.G.

Correspondence and requests for materials should be addressed to T.C.S. (e-mail: Thomas.Sudhof@UTSouthwestern.edu).