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Abstract

CONTRAST, a new gene-prediction algorithm that uses sophisticated machine-learning techniques,
has pushed de novo prediction accuracy to new heights, and has significantly closed the gap
between de novo and evidence-based methods for human genome annotation.
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Gene prediction is one of the most important and alluring

problems in computational biology. Its importance comes

from the inherent value of the set of protein-coding genes for

other analysis. Its allure is based on the apparently simple

rules that the transcriptional machinery uses: strong, easily

recognizable signals within the genome such as open reading

frames, consensus splice sites and nearly universal start and

stop codon sequences. These signals are highly conserved,

are relatively easy to model, and have been the focus of a

number of algorithms trying to locate all the protein-coding

genes in a genome using only the sequence of one or more

genomes. This technique, so-called de novo prediction, does

not use information about expressed sequences such as

proteins or mRNAs.

In this month’s issue of Genome Biology, Gross and colleagues

[1] describe the gene-prediction program CONTRAST, the

latest significant advance in de novo gene prediction. The

program exploits patterns inherent in multiple sequence

alignments while making few assumptions about evolution-

ary processes. Its accuracy is considerably higher than any

other de novo prediction program and has significantly

closed the gap between de novo and evidence-based methods

for human genome annotation.

There have been two previous significant breakthroughs in

de novo human gene prediction. The first was the identi-

fication and optimization of algorithms to effectively model

the problem. The second was the use of an evolutionarily

related genome sequence to reliably increase both the

sensitivity and specificity of the predictions. Both advances

are briefly discussed below (for more on the history of gene

finding see [2]).

Algorithms based on a generalized hidden Markov model

(GHMM) framework have been particularly successful for

gene prediction. A GHMM can be used to describe the

relationship between the components of a protein-coding

gene (such as exons and splice sites) and the sequence of

genomic DNA in which the gene is found. The best-known

example of this method is the program GENSCAN [3], which

in 1997 was shown to be dramatically more accurate than the

previous state-of-the-art prediction programs. GENSCAN

was easy to use, very fast, and predicted genes in the long

sequences of genomic DNA that would characterize the

human genome project. Although subsequently shown to

predict only 10–15% of genes correctly on realistic genome-

wide datasets [4,5], GENSCAN remains a popular bio-

informatics tool. GENSCAN predictions continue to be a

standard feature for every genome released on both the

University of California Santa Cruz (UCSC) [6] and Ensembl

[7] genome browsers.

In 2002, with the publication of the mouse genome sequence

[8], human gene prediction formally entered the era of

comparative genomics (see Figure 1 for a comparison of the

programs). A number of programs were developed to exploit

this new data source. In both human-mouse comparisons

and across the tree of life, the most successful of these

dedicated algorithms was TWINSCAN [9], a gene-prediction

program that exploited the signature of evolution using a

reimplementation and extension of the GENSCAN GHMM

model. TWINSCAN’s improved accuracy featured a dramatic

reduction in false-positive predictions, while managing to

predict about 25% of human protein-coding genes com-

pletely accurately [5,10]. TWINSCAN itself was then

extended with a more expressive model of evolutionary



conservation derived from a multiple sequence alignment of

several complete genomes. This extension, known as N-

SCAN, predicts approximately 35% of human genes correctly

[5], but is no more accurate with a multiple sequence

alignment than it is with the most informative pairwise

genome alignment [10]. Thus, even though the N-SCAN

model of evolutionary conservation is better than the one

used by TWINSCAN, N-SCAN is not benefiting from the

additional genome sequences used in the alignment.

At the same time as these advances in de novo gene

prediction, evidence-based gene prediction was also progres-

sing rapidly. The best evidence-based systems integrate data

from sources such as mRNA and protein sequences to

predict specific genes that are supported by a variety of

expressed sequences [11,12]. These evidence-based gene sets

are often used for other biological analyses such as [13].

CONTRAST is a dramatic advance on the previous state of

the art [1]. Using the Consensus CDS (CCDS) [14] set as the

gold standard, CONTRAST predicts nearly 60% of the genes

correctly using only the human genome sequence and a

multiple alignment with 11 so-called ‘informant’ genome

sequences. This result is a stunning improvement on the

previous state-of-the-art de novo gene-prediction algorithms

both on the CCDS set and the gold standard manually anno-

tated genes used for the ENCODE Genome Annotation

Assessment Project (EGASP) [5] (Figure 1). Close examina-

tion of the EGASP results shows that CONTRAST compares

very favorably with even the best evidence-based, expressed

sequence prediction methods, especially for exon accuracy.

To achieve this, Gross et al. [1] did something unconventional

in the gene-prediction field. They ignored what is known

about evolutionary relationships and assumed that there

must be additional information in the multiple sequence

alignment even if they could not exactly say what sort of

information was there. Doing this required a switch from

generative models such as HMMs, which have been used by

essentially all previous de novo prediction programs, to

discriminative models such as support vector machines and

conditional random fields. A support vector machine (SVM)

is an example of the machine-learning technique called

‘supervised learning’, in which the algorithm is able to classify

new items based on rules it has discovered from a correctly

labeled training set. A conditional random field (CRF) can be

used to classify sequential data and is applicable to many of

the same problems as an HMM. CONTRAST uses both SVM

and CRF techniques for different parts of the gene-prediction

problem. The SVMs are used for coding region boundary

detection (splice sites, start and stop codons), whereas a CRF

is used to model the gene structure (that is, how all the pieces

fit together). Readers interested in more information about

these machine-learning techniques may like to start with a

recent biology-based primer on SVMs [15].

There are limits for biological understanding with these

new techniques. A process of evolution resulted in the

extant sequences that we see, and understanding this

process would be immensely valuable. Generative models

such as HMMs attempt to explicitly describe the

evolutionary process by generating the multiple sequence

alignment of an evolutionarily conserved exon. For

example, a phylogenetic HMM may use separate models of

molecular evolution for the first, second and third

positions of each codon [16]. Unlike phylogenetic HMMs,

discriminative machine-learning techniques such as those

used by Gross et al. [1] do not model the complexities of

the evolutionary process, but they are able to find the

subtle differences in the alignments associated with real

genes from other, very similar alignments in the genome.
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Figure 1
Increase in the accuracy of de novo gene prediction over time. The gene
sensitivity and specificity and the exon sensitivity and specificity on the
EGASP test set [5] are shown for several programs by year of initial
publication. Included are GENSCAN (1997), TWINSCAN (2001), N-
SCAN (2005) and CONTRAST (2007). Note the significant decrease in
false positive predictions (as measured by the rise in TWINSCAN’s exon
specificity) with the inital use of evolutionarily related genome sequences.
By comparison, the accuracy of the Ensembl evidence-based gene
predictions used in the EGASP experiment at the gene level were 71.6%
sensitivity and 67.3% specificity and 77.5% sensitivity and 82.7% specificity
at the exon level.
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In the current implementation, training CONTRAST

requires the target genome to be at least reasonably well

annotated at the start. It is not yet clear how well it will

perform when annotating a genome with no high-quality

training data, although unpublished results from the

CONTRAST team demonstrate substantial accuracy with

only a few thousand training genes [17]. The situation

where no training data is available could be simulated, at

least for the case of human and mouse, by using one of the

genomes as a well-annotated training set and the other to

test predictive accuracy. As the most accurate de novo

prediction program, CONTRAST will help complete the

protein-coding gene set in well annotated genomes such as

human and mouse, and may be vital for accurate

annotation of complex genomes with informative sequence

alignments to related species, but without significant

expression data. Nevertheless, annotating a genome

without the sequence of a closely related species is likely to

remain a challenge.

CONTRAST is not the first program to apply these types of

machine-learning technique to the problem of computa-

tional gene prediction. Bernal et al. [18] recently introduced

a gene-prediction program called CRAIG, which does not

use any sequence alignments, but does use a semi-Markov

CRF. CRAIG shows notable improvement over a large selec-

tion of other non-alignment-based programs. However, it

performed less well than HMM-based multi-genome predic-

tion programs such as N-SCAN [5,18]. DeCaprio et al. [19]

developed Conrad, a comparative gene-prediction program

that also uses semi-Markov CRFs. Conrad shows striking

improvements on fungal genomes compared with other

leading prediction programs, but its current implementation

makes its application to large mammalian genomes

computationally prohibitive [19].

It is still the case that the best full-length gene predictions

are done by mapping expressed sequences to the genome

assembly. CONTRAST finds the initial and terminal exons of

a gene relatively difficult to predict and this somewhat limits

exact gene prediction. However, Gross et al. [1] show

convincingly that there is complex information in the

multiple sequence alignment of mammalian genomes and

that this information can be exploited to create far more

accurate gene predictions than those produced by the best

HMM-based algorithms. The performance of CONTRAST

suggests that the dominance of HMM-based programs in

gene-prediction might be waning. Without doubt, further

advances in machine-learning methods for large-scale

biological analysis will help us integrate and understand

complex biological data. A challenge for computational

biologists is to transform the language of SVMs and

discriminative learning techniques into biological models

that will help us understand the complex processes of

evolution that have created the extant species that we are

now so busily sequencing.

The development of CONTRAST is a welcome result to those

of us who believed that there must be additional information

that could be used for gene prediction in multiple sequence

alignments. Brent [2] recently suggested a number of

possible reasons why multiple sequence alignments had

failed to increase the accuracy of comparative gene predic-

tion. These included sequence quality, alignment methods,

and lack of splice site and exon conservation in the mammalian

lineage. It looks as though his final reason - that designers of

de novo gene prediction algorithms had not yet been clever

enough to come up with a solution - might well have been

the right one.
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