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Recent analyses based on high-throughput transcriptome data

have revealed that the fraction of the genome that is

transcribed largely exceeds the fraction encoding protein.

Transcription of unconventional genes into noncoding RNAs is

widespread and, in mammals, these RNAs comprise at least

half the total number of RNAs transcribed by RNA polymerase

II. Although the function of the majority of noncoding RNAs has

yet to be discovered, many of them are transcribed from both

strands of the genome, and evidence points towards a

regulatory function for many noncoding RNAs in mammalian

cells.

Addresses
1 Genome Exploration Research Group (Genome Network Project

Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama

Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa,

230-0045, Japan
2 Genome Science Laboratory, Discovery and Research Institute, RIKEN

Wako Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

Corresponding author: Carninci, Piero (rgscerg@gsc.riken.jp) and

Hayashizaki, Yoshihide (rgscerg@gsc.riken.jp)
Current Opinion in Genetics & Development 2007, 17:139–144

This review comes from a themed issue on

Chromosomes and expression mechanisms

Edited by Tom Misteli and Abby Dernburg

Available online 20th February 2007

0959-437X/$ – see front matter

# 2006 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.gde.2007.02.008

Introduction
In recent years, the science community has witnessed the

sequencing of the human genome and an increasingly

large number of other animal and plant genomes. Despite

the apparent different organism complexity, vertebrate

and invertebrate genomes have similar numbers of

protein-coding genes. Mice and humans have as few as

20 000–25 000 protein-coding genes [1,2], slightly more

than in the Drosophila (13 000) [3] and C. elegans (19 000)

genomes [4] and, surprisingly, even less than in some

plants, such as rice (more than 46 000) [5]. Yet mammals

have evolved very complex structures. For instance, in

the human brain, more than 100 billion neurons need

instruction to properly connect during development. The

low number of protein-coding genes has been a surprise:

before the completion of these genome sequencing pro-

jects, scientists assumed that a large number of ‘genes’

would be required to control many complex biological

phenomena. Although part of this task can be performed
www.sciencedirect.com
by alternative splicing, novel datasets are pointing at new

directions.

In this review, we discuss recent works that suggest that

the transcriptional output of the genome is much more

complex than estimates based on the number of protein-

coding genes; these studies point at non-coding RNA as a

source of regulatory element.

There are more transcripts than ‘genes’
In the past couple of years, it has become evident that the

genome produces many more RNAs than there are

protein-coding genes and genes encoding structural

RNAs (e.g. rRNAs and tRNAs), and that most of these

RNAs have still unknown functions. Novel non-protein-

coding RNAs (from here on referred to as noncoding

RNAs) have been identified in plants (e.g. sense–

antisense RNAs in Arabidopsis [6] and rice [7]), invert-

ebrates (e.g. Drosophila [8] and honey bee [9]) and

vertebrates, as described below. Novel datasets consisting

of whole-genome tiling arrays and sequences tags have

demonstrated that, in mammals, the number of the non-

coding RNAs is very large, in agreement with theories

suggesting that the increase in complexity of body plans,

and its regulation, is associated with the expansion in the

number of noncoding RNAs as controlling elements

[10,11]. Indeed, the whole-genome tiling arrays

[12,13��] demonstrate that the human genome is widely

transcribed, extending beyond the conventionally anno-

tated protein-coding genes. In particular, Cheng and

colleagues [13��] separated the cytosolic and nuclear

cellular fractions, and extracted from each of them polyA+

and polyA– RNAs, to hybridize whole-genome tiling

arrays. They identified transcripts that, to date, have

been hidden from other experimental approaches for

gene discovery. In fact, 51.3% of the species of RNAs

are detected exclusively in the nucleus, and 43% of all the

RNAs do not have a polyA tail; these fractions are not

targeted during cDNA cloning for expressed sequence

tag (EST) sequencing determination, the strategy of

which is based on oligo-dT priming. Indeed, in the

mouse, the sequences of large noncoding RNAs, which

probably have no 30 polyA tail, were reconstructed from

the fragments of truncated cDNAs. These cDNAs were

generated from oligo-dT molecules that were non-specifi-

cally hybridized onto A-rich stretches of RNAs, leading to

the production of internally primed cDNAs with incom-

plete 30 ends. In fact, these fragments are difficult to clone

as full-length cDNAs, because the original RNAs are too

long and lack a 30 polyA tail [14]. These 66 RNAs,

identified accidentally, represent the tip of the iceberg

of a large class of RNAs, members of which are difficult to
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clone and which are preferentially localized in the

nucleus and devoid of polyA tails. A large fraction of

these transcripts are encoded from genomic regions that

do not contain known protein-coding genes, suggesting

that many of them are noncoding RNAs.

In addition to humans, the mouse transcriptome has been

deeply analyzed. However, for the mouse, the transcrip-

tome was studied with an extensive collection of full-

length cDNAs and other datasets called 50–30 ‘ditags’,

which identify the start and termination sites of RNAs.

[15��,16,17]. The RIKEN mouse full-length cDNA col-

lection differs from the human one. Besides tissue

sampling, one of the large human cDNA contributors,

the Mammalian Gene Collection project [18], uses for

full-insert sequencing only those cDNAs that have coding

potential. However, the RIKEN mouse cDNAs have

been randomly sequenced and therefore the noncoding

RNA content is different. By analyzing all of the available

mouse cDNA sequences, it was found that the mouse

genome encodes at least 44 000 distinct transcriptional

units; a transcriptional unit comprises all the RNAs that

share a common exonic sequence transcribed from the

same genomic strand. Analysis of transcriptional units

shows that more than half (�23 000) do not have

protein-coding potential in any of the identified variants

[15��]. Given that the technique used to isolate relatively

large full-length cDNA makes use of cap selection [19],

most of these noncoding RNAs are likely to be tran-

scribed by RNA pol II. To ascertain that the novel RNAs

identified across high-throughput platforms are not arte-

facts [17], experimental validation confirms that the

majority of noncoding RNAs are genuine transcripts.

Tiling arrays and tags partially validate each other when

applied on the same sample. Analysis of a human liver cell

line (Hep-G2) with both CAGE (cap-analysis gene

expression) and whole-genome tiling arrays shows that

CAGE tags are generally validated by tiling array, and

generally extend their edges, but a large number of tiling

array transfrags (transcribed fragments) cannot be vali-

dated by tags [17]. Besides difficulties in mapping 50 tags

to internal exons, it is also possible that a large number of

tiling arrays identify non-capped RNAs. Rapid amplifica-

tion of cDNA ends (RACE) [20] largely validates the

existence and structure of the unknown noncoding RNA

transcripts, whereas microarrays and reverse transcriptase

PCR (RT-PCR) show that noncoding RNAs are dynami-

cally expressed in different tissues and upon induction

[21]. Additionally, we have recently identified novel

dimensions of complexity: there are noncoding RNA

variants of protein-coding genes, including transcripts

that originate from the exonic sequence of mRNAs tran-

scribed from promoters enriched in TATA-boxes, and

transcripts originating from a novel type of promoter in

the 30 untranslated regions (UTRs) [16]. Interpretations

that the former could be associated with chromatin remo-

deling and transcriptional control, and that the latter
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might be involved in regulating sense-antisense transcrip-

tion and other information that is encoded in the 30 UTRs

are awaiting functional validation.

Lack of conservation: why we are not
monkeys?
Conservation has been assumed to be synonymous to

functionality. This is intuitively true for protein domains

that have to perform under structural constrains, such as

when forming a membrane channel, constructing a cat-

alytic site of an enzyme or, in the case of transcription

factors, binding to double-stranded DNA. However, if

noncoding RNAs have regulatory functions, some of their

parts can act by pairing to other nucleic acids. Alterna-

tively, other noncoding RNAs can work in cis, by altering

the chromatin and other binding proteins through the act

of transcription itself. Clearly, these types of interaction

do seem to be dramatically constrained against base

substitutions. Indeed, a very large fraction of noncoding

RNAs are poorly conserved, which has led to the specu-

lation that they are not functional [22]. However, this

observation is not necessarily associated to lack of func-

tionality, because known functional noncoding RNAs,

such as Xist (responsible for X chromosome inactivation)

and Air (involved in imprinted gene-silencing at the

IGFR2 locus) are poorly conserved [23]. Indeed, putative

promoter regions located upstream of a validated set of

noncoding RNAs show clear patterns of conservation that

extend broadly upstream to the starting site but which are

reduced downstream of the transcription starting site

[15��]. Intriguingly, an independent study on expression

of intergenic sequences in human and chimpanzee shows

conservation of expression of noncoding RNAs in equiv-

alent genomic positions, but not conservation of the RNA

sequences, demonstrating that that noncoding RNAs are

under expression constraints, particularly in brain [24].

Instead of looking for similarity of expression, Pollard and

colleagues [25] looked for differences between human

and chimpanzee. They analyzed genomic regions that

evolve faster than neutral regions (evidence of positive

selection) and identified about 200 of these regions.

Among them, one expresses an RNA during the human

cortical development in neocortex from 7 to 19 gestational

weeks, a period crucial for cortical neuron specification

and migration [26�]. This noncoding RNA, called

HAR1F , is co-localized with Reelin, a protein with a

fundamental role in specifying the six-layer structure of

the human cortex. Although we await the final proof of

functionality, such as interaction of Reelin and the

HAR1F RNA, this work establishes the importance of

looking for lack of conservation to explain evolutionary

differences.

Sense–antisense transcription
Validation of tiling arrays transfrags (which roughly cor-

relate with exonic regions [17]) has identified overlapping

transcripts for about half of the expressed genomic
www.sciencedirect.com
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regions [20]. A consistent fraction of the antisense RNAs

validated from transfrags includes transcripts whose spli-

cing sites seem to be the mirror image of the normally

spliced RNAs [13��], leading the authors to hypothesize

the existence of a putative RNA-dependent RNA poly-

merase that would produce such antisense RNAs in

mammals. This hypothesis awaits further confirmation,

because such transcripts were not identified from other

cDNA collections, and only conventionally spliced anti-

sense transcripts have been widely identified.

The 50 end CAGE tags have revealed antisense transcrip-

tion in 72% of the transcriptional unit, when considering

transcripts antisense to introns [27]. Other technologies

have also revealed a large extent of transcription overlap:

large-scale serial analysis gene expression (SAGE; 8.5

millions of tags in the mouse genome) [28] suggests

the existence of a large number of unannotated tran-

scripts. Besides the prediction of 23 000 novel tran-

scriptional units, they identified a large extent of

sense–antisense transcripts (36%), which confirms the

majority of RIKEN sense–antisense transcripts analyzed

RNAs [29].

Sense–antisense relationships can extend for more than a

pair of transcriptional units, by involving as much as 11

transcriptional units, which overlap as sense–antisense or

share a bidirectional promoter. The transcriptional units

in such relationships are said to form ‘chains’ [30].

Because the expression of transcriptional units within

chains tends to be positively correlated, they are likely

to be located in genomic regions that are under similar

transcriptional control, and indeed they tend to be co-

expressed. About 1000 of such chain pairs are conserved

between mouse and human, despite the generally poor

sequence conservation of the RNAs involved in chains

[30]. The failure to identify positional conservation for

other chains might be due to lack of appropriate cDNA

coverage resulting from different sampling and gene

discovery strategies (P Carninci, unpublished).

It is widely accepted that mammalian genomes fre-

quently transcribe overlapping RNAs, and that sense

and antisense RNAs influence each other’s expression

levels [27]. Furthermore our knowledge of the molecular

mechanisms of in trans sense–antisense relationships

(such as miRNAs [31]) is growing. Despite all this, there

is not yet consensus on how sense–antisense transcription

exerts its function in mammals. Extrapolating from the

lessons of the siRNA and miRNA machinery, it is tempt-

ing to hypothesize that sense–antisense pairs produce

short siRNAs (silencing RNAs). These siRNAs would

then be used by the RISC complex to cleave larger RNAs,

thereby promoting their degradation. However, such

short RNAs could not be identified [32] for two gene

pairs mapping on the genome in a tail to tail fashion,

leading to the interpretation that the action of this type of
www.sciencedirect.com
sense–antisense transcript does not depend upon Dicer

and does not involve formation of short siRNA, at least in

the cytosolic fraction. In the cytoplasm, large sense–

antisense transcripts do not seem to interact [32], but

the interaction might be nuclear. Accordingly, noncoding

RNAs that are involved in sense–antisense relationships

tend to be poorly polyadenylated and enriched in the

nuclear fraction [27,29]. Mechanisms can differ for the

large fraction of bidirectionally transcribed regions span-

ning promoter regions [27]. Indeed, Dicer acts in

the nucleus of mammalian cells, where it controls tran-

scription at the b-globin locus, from which bidirectional

transcription has been detected. Knocking down Dicer

expression in mammalian cells promotes intergenic tran-

scription at the b-globin gene cluster and has general

effects on the whole locus [33]. Given that this is also

associated with histone modifications that facilitate tran-

scription, these experiments clearly point at the nucleus

as the compartment where bidirectional transcription

has an important role in mammals, and where transcrip-

tion is required for subsequent silencing of specific chro-

mosomal regions, although the mechanisms are much less

clear than in plants [34].

Not every noncoding RNA needs to be diced
It would be an oversimplification to assume a single mode

of action for noncoding RNAs, and various mechanisms

have been extensively reviewed elsewhere [10,11,17,35].

Apart from their potential involvement in cis and trans
sense–antisense transcripts, the action of noncoding RNA

transcription involves other mechanisms, including the

formation of complexes with proteins, such as NRON

(noncoding repressor of NFAT), which modifies nuclear

transportation [36], coating of chromosomal regions (e.g.

X inactivation), and transcriptional interference [17]. A

model for transcriptional interference was proposed for

Air, a large (108 kb) pol II-transcribed noncoding RNA

that is mainly retained in the nucleus. Its instability and

the fact that it isn’t exported to the cytoplasm lead to the

hypothesis that its actions are based on transcriptional

interference: transcription of Air would proceed through

hypothetical domain regulatory element(s), displacing

the factor bound there, which would otherwise activate

transcription of Igf2r, Slc22a2 and Slc22a3 — the latter two

do not show overlapping expression, and yet are con-

trolled by Air [37]. This mechanism is opposite to tran-

scription of HOX antisense noncoding RNAs, the

expression of which seems to prevent silencing [30].

Although Air was considered to be an unusual transcript,

analysis of tiling arrays [13��] and cDNA [14] suggests

that such nuclear RNAs are very abundant, and tran-

scription through controlled regions might represent

a common mechanism of action. For most of the non-

coding large RNAs, however, novel high-throughput

screening methods will probably reveal more mecha-

nisms of action.
Current Opinion in Genetics & Development 2007, 17:139–144
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But more diversity among short RNAs
Discovery of novel short RNAs has been recently

reported, increasing the dimensions of the transcriptome

complexity. In fact, a series of almost simultaneous papers

has recently described a new large family of short RNAs

(25–31 nucleotides), members of which are slightly larger

than the miRNAs and siRNAs, and which bind to Piwi

and its orthologous proteins in mouse (Miwi and Mili) and

rat (Riwi) [38�–42�]. These short RNAs are produced by

relatively few regions in each respective genome and are

essential for the maturation of the sperms [42�]. They are

produced from less than 100 genomic regions, which map

in orthologous regions of the mouse, rat and human gen-

omes. These RNAs, renamed piRNAs (Piwi-associated

RNAs) are hypothesized to work at the nuclear level, by

associating with DNA, histone or RNAs [43], and form a

complex with RecQ that has helicase activity. A remark-

able feature of these short transcripts is that, unlike other

short RNAs, they do not seem to originate from

the cleavage of double-stranded RNAs but from direct

processing of single-stranded RNAs.

There are still additional novel mechanisms of action of

short RNAs: by analyzing the ovary, Watanabe et al. [42�]
identified yet another class of short RNA. Members of

this group are 20–24 nucleotides long and derive from

retro-elements (e.g. SINEs [short interspersed elements],

LINEs [long interspersed elements] and LTRs [long

terminal repeats]), and they were shown to destabilize

transcripts containing such repeat elements, suggesting

that they work through the RNAi pathway. It is uncertain,

however, where these short repeat-associated RNAi mol-

ecules exercise their action. Besides working like the

repeat-associated RNAs (rasiRNAs) in invertebrates

[44], it is intriguing that 17% of mRNA isoforms encoding

proteins that are specifically expressed in mouse early

embryos make use of LTR elements as promoter

elements in a short window of the early development

in mice [45�]. The short repeat-associated RNAs might

provide a link to regulate those transcripts specifically

promoted by repeat elements. Intriguingly, repeat

elements are also present in Drosophila ovary, where

such repeats are associated with Piwi but have a larger

size (25–29 nucleotides) [46]. It is very likely that novel

dimensions of complexity will be added by analyzing

other tissues and biological phenomena: for instance,

noncoding repetitive RNAs are produced from cells

under stress in nuclear stress bodies [47]; and, in plants,

high-throughput methods have identified 30 000 differ-

ent short transcripts [48], promising that more short RNAs

will soon be found.

Conclusions
Noncoding RNAs constitute a very heterogeneous group

of RNAs, for which we are progressively deciphering the

basic mechanisms of action. High-throughput screening

methods might reveal their functions and help to admit
Current Opinion in Genetics & Development 2007, 17:139–144
them into the category of non-protein coding RNA

‘genes’. However, owing to the difficulties in measuring

phenotypes, in particular those having mild effects, we

might not be able to assess the function of many of them,

nor of a fraction of protein-coding genes. If the non-genic

RNAs have regulatory functions, regulatory network

redundancy might further complicate the functional

phenotype assessment in laboratory animals. Until that

time, we scientists are facing a dilemma: should we start

considering (and classifying) all of these RNAs as non-

protein coding genes or keep them to one side until their

function will be determined? This is causing a growing

dichotomy in genomics and biology. While gene annota-

tion and nomenclature is very conservative and tends to

be limited to protein-coding mRNA with solid evidence

of function, a parallel world of noncoding transcripts

clearly exists, which it is not properly represented in

the maps.
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