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Protein splicing is an intricate self-catalyzed protein

rearrangement that converts an inactive protein precursor to

biologically active proteins. In the past decade, mechanistic

studies and extensive engineering of the naturally occurring

protein splicing elements, termed inteins, has led to the

development of numerous novel technologies. These intein-

based methodologies permit in vitro and in vivo protein

processing in ways previously not possible using traditional

biochemical and genetic approaches. Inteins have been

utilized in the production of protein and peptide arrays, as

molecular switches and in the reconstitution of functional

proteins by split-gene techniques.
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Introduction
Protein splicing is an extraordinary post-translational

processing event that involves the precise removal of

an internal polypeptide segment, termed an intein, from

a precursor protein with the concomitant ligation of the

flanking polypeptide sequences, termed exteins [1].

Since its discovery in 1990, more than 200 inteins have

been identified in all three domains of life [2]. The

inteins, ranging from 128 to 1650 amino acids, share a

set of highly conserved sequence motifs. The majority of

known inteins appear to be bifunctional, as they also

contain the characteristic motifs of a homing endonu-

clease that confers genetic mobility upon the intein-

encoding gene. An endonuclease insertion splits the

region required for splicing. A small number of inteins

lack an endonuclease-coding region and are termed mini-

inteins. Of special interest are the naturally occurring

trans-splicing inteins in which a host gene is split into

two separate coding regions, each fused to either the

N-terminal or C-terminal portion of an intein-coding
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region [3]. Formation of the full-length host protein

occurs when the N-terminal and C-terminal intein regions

come together to reconstitute protein splicing activity.

Here, we review some of the recent advances in protein

splicing research and discuss a number of intein-based

applications.

Splicing mechanism and intein family
Many inteins have been shown to self-splice in vitro
without the requirement of external energy or protein

cofactors [4]. The mechanism of protein splicing has been

elucidated by the identification of key catalytic amino

acid residues and intermediates (Figure 1). Most inteins

start with a cysteine or serine residue that is responsible

for an acyl shift at the N-terminal splice junction. The

first C-extein residue following the scissile bond at the

C-terminal splice site is invariably a cysteine, serine or

threonine and the sulfhydryl or hydroxyl group on their

sidechain nucleophilicly attacks the linkage at the

N-terminal splice junction, resulting in a branched inter-

mediate. An asparagine residue typically precedes the

C-terminal splice junction and is involved in the resolu-

tion of the branched intermediate by sidechain cycliza-

tion. Interestingly, a subfamily of inteins possessing an

N-terminal alanine apparently initiates splicing by a

direct attack on the peptide bond at the N-terminal splice

junction by the sidechain of the first C-extein residue [5].

In addition, recently identified non-canonical inteins

include those with glutamate or aspartate in place of

the highly conserved C-terminal asparagine and bacterial

intein-like proteins, mainly possessing a C-terminal glu-

tamate, glycine or leucine [6–9]. A study of the oceanic

nitrogen-fixing cyanobacterium Trichodesmium erythraeum
revealed a remarkable intein organization showing the

presence of three inteins (including one split intein) in

the dnaE gene encoding the catalytic domain of DNA

polymerase III [10]. The study of T. erythraeum has also

led to the first report of the coexistence of multiple inteins

and introns in a single gene [11,12]. A new example of a

viral intein was recently found in Mimivirus [13]. The

broad range of intein properties facilitates their use in

diverse protein engineering strategies.

Intein-mediated protein immobilization
The steps that underlie protein splicing consist of two

acyl rearrangements, a transesterification and cyclization

of an asparagine. The elucidation of the protein-splicing

pathway led to the discovery that catalysis of each of the

steps is often relatively independent. Formation of a

thioester by an initial acyl rearrangement occurs even
www.sciencedirect.com
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Prototypical protein splicing mechanism. The hydroxyl- or sulfhydryl-

containing sidechain of the intein N-terminal residue initiates an N–O or

N–S acyl rearrangement, resulting in a (thio)ester linkage between the

N-extein and C-extein. The sidechain of cysteine, serine or threonine

at the C-terminal splice junction attacks the (thio)ester in a

trans(thio)esterification reaction to form a branched intermediate.

The intein is excised from the branch by cyclization of the intein

C-terminal asparagine coupled to peptide bond breakage. A

spontaneous O–N or S–N shift generates a native peptide bond.

The X represents either an oxygen or sulfur atom.
when the subsequent steps are blocked by amino acid

replacements (e.g. by substitution of the intein C-term-

inal asparagine with alanine) at the downstream splice

junction [14,15]. Thioester formation is the basis for an

intein-mediated purification system in which a target
www.sciencedirect.com
protein is fused to the N terminus of an intein and can

be released in a thiol-induced reaction. This intein fusion

system has been extended to produce recombinant pro-

teins possessing a C-terminal thioester for ligation with

synthetic peptides or recombinant proteins carrying a

variety of modifications or chemical moieties [16,17].

Researchers have used this technique to incorporate

various probes in a site-specific manner or to produce

proteins with isotopically labeled regions for functional

and structural analysis [18,19��]. Semisynthetic DNA–

protein conjugates were also generated by use of a

C-terminal thioester on an expressed protein and cystei-

nyl oligonucleotides [20,21�].

Recently, intein-mediated protein ligation has been

further employed to generate protein or peptide arrays

by improving binding efficiency and orientation of the

target molecules. A technique was developed for the site-

specific attachment of C-terminal biotinylated proteins

onto avidin-coated glass slides (Figure 2a) [22�,23]. Simi-

larly, single-chain antibodies expressed in Escherichia coli
can be labeled for chip-based screening [24]. The immo-

bilization of site-specifically oriented proteins might help

to retain their biological activities. In addition, an extre-

mely strong avidin–biotin linkage is beneficial to with-

stand various assay conditions. This scheme permits the

arrays to be utilized for quantitative analysis because each

target protein carries only one reactive site for the bio-

tinylated tag, which in turn is capable of binding to avidin

ligand immobilized on a glass slide.

Furthermore, a new strategy was recently demonstrated

for making peptide arrays on low-cost nitrocellulose. This

approach employs the intein-mediated protein ligation of

synthetic peptide substrates to an intein-generated carrier

protein (Figure 2b) [25�]. This method is intended to

provide a simple solution to the problems associated with

the variable binding of small peptide substrates to

matrices. The commonly used method of synthetic pep-

tide arrays on membrane support (SPOT synthesis) pro-

duces an excessive amount of peptide and therefore has

limitations in peptide quantification and normalization.

As intein-generated carrier proteins play a dominant role

in binding and each carrier protein molecule has precisely

one reactive site for a peptide possessing an N-terminal

cysteine, the amount of peptide arrayed onto a membrane

can be effectively normalized. This technique, termed

intein-mediated peptide array has been applied to anti-

body characterization, epitope scanning and kinase

assays, and resulted in an increase in sensitivity up to

104-fold.

Putting trans-splicing to work
In protein trans-splicing, a target gene is split into two

segments and each half is fused to either the N-terminal

or C-terminal portion of an intein-coding sequence; the

two halves of the intein-coding sequence are not linked in
Current Opinion in Biotechnology 2005, 16:440–446
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Immobilization of proteins for biochip production. (a) The site-specific

attachment of C-terminal biotinylated proteins onto avidin-coated

glass slides. Target proteins (red) are generated with a C-terminal

thioester for ligation with a biotinylated tag (blue) for subsequent

site-specific attachment to avidin (green) for biochip processing.

(b) The intein-mediated production of peptide arrays. A thioester

tagged carrier protein (blue) is ligated to target peptides (red)

possessing an N-terminal cysteine. The ligated products can be

efficiently arrayed onto nitrocellulose.
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the genome. The two distant segments of the protein are

then expressed as inactive truncated forms that can read-

ily associate and regain splicing activity to generate

spliced protein products (Figure 3a). In the case of cis-
splicing, the inteins are split artificially [26,27]. The most

robust tool for trans-splicing is the naturally occurring

split intein from the catalytic subunit of a DNA poly-

merase III (DnaE) from the cyanobacterium Synechocystis
sp. PCC6803. Major applications of this intein include the

ligation of two expressed protein segments, in vivo cir-

cularization of proteins, and the generation of a cyclized

peptide library [28–31]. Using the DnaE intein, it has

been demonstrated that protein–protein interactions

within mammalian cells can be assessed in vivo by recon-

stitution of a functional reporter from a split reporter gene

by protein interactions (Figure 3b) [32]. The DnaE intein

was also employed to develop a living cell imaging

method to investigate nucleocytoplasmic trafficking

[33��].

Exploiting the ability of inteins to associate led to the

split-gene approach for preventing the spread of trans-

genes from genetically modified plants to the surrounding

environment. Put simply, a transgene can be split into two

fragments, each confined to different cellular compart-

ments or chromosomes to reduce the chance of transgene

spread. This split gene approach was tested in Arabidopsis
cells by reconstitution of a functional b-glucuronidase

(GUS) [34]. Protein trans-splicing occurred between two

separately expressed fusion precursors: one containing

the N-terminal portion of the GUS-coding sequence

fused to the N-terminal DnaE intein region, and the

second carrying the C-terminal portion of the GUS-cod-

ing sequence fused to the C-terminal DnaE intein region.

Furthermore, a transgene containment model was sys-

tematically assessed and eventually demonstrated in

Nicotiana tabacum by employing a herbicide resistance

gene, a mutant form of 5-enolpyruvylshikimate-3-phos-

phate synthase (EPSPS) [35]. The split gene sequences

were integrated into the nuclear and chloroplast genomes.

The chloroplast genome is not inherited paternally in

many commercially important crops and therefore plastid

DNA bearing the transgene should not be spread via

pollen. A plastid localization signal sequence fused to the

transgene located in the nucleus can target the truncated

N-terminal gene product to the chloroplast. Trans-spli-

cing then occurs to yield full-length EPSPS and trans-

genic plants that are resistant to the herbicide glyphosate.

Interestingly, these studies also led to the discovery of

intein-mediated protein complementation (Figure 3c) in

which functional proteins were produced when a splicing-

deficient intein was used as an affinity domain to activate

the truncated target protein [36].

Inteins as protein switches and drug targets
Although the role of protein splicing in the regulation of

host gene expression is still unknown, the potential
www.sciencedirect.com
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Strategies for the production of functional proteins using inteins and conditional protein splicing. (a) Protein trans-splicing to generate active

proteins. In trans-splicing the intein is split, with the intein N-terminal fragment (IN) fused to the N-extein and the intein C-terminal fragment (IC)

fused to the C-extein. The two halves of the intein associate to reconstitute splicing activity. (b) Intein association and protein splicing induced

by the dimerization of two interacting proteins fused to split intein fragments. In this case, splicing reconstitutes a reporter that can be used

for cell imaging. (c) Intein-mediated protein complementation (IPC). IPC utilizes the heterodimerization of the intein N- and C-terminal splicing

domains to bring protein fragments together and reconstitute protein activity; IPC reconstitutes protein activity without splicing. (d) Conditional

protein splicing by a temperature-sensitive intein. (e) Intein association and protein trans-splicing induced by ligand (e.g. rapamycin) controlled

heterodimerization (LBD, ligand-binding domain; L, ligand). (f) Conditional protein splicing controlled by a ligand-binding domain inserted into an intein.
utilization of inteins as molecular switches has been

vigorously explored to implement conditional activation

or inhibition of protein functions. For conditional protein

splicing it is assumed that proteins are inactivated by an

intein insertion and their functions can be restored upon

splicing [37,38]. Furthermore, targeting inteins is of bio-

logical significance as inteins are found only in micro-
www.sciencedirect.com
organisms, including bacterial and fungal pathogens, but

not in human cells [39,40]. For an intein to act as a switch,

it must be possible to control splicing and several

approaches have been explored including the use of

temperature- or pH-sensitive splicing, the mutation or

splitting of inteins, inhibition or activation by small-

molecule ligands or protein dimerization (Figures 3a–f).
Current Opinion in Biotechnology 2005, 16:440–446
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In general, an intein-based switch system relies on

rational screening for conditionally active intein variants

and splicing activators or inhibitors. Temperature-sensi-

tive inteins have been generated by various selection

strategies. A temperature-sensitive splicing variant of

the vacuolar ATPase subunit (VMA) intein from Sacchar-
omyces cerevisiae has been used to control activation of a

pair of universal transcription regulators, Gal4 and Gal80

(Figure 3d) [41��]. Gal80 is able to interact with the Gal4

enhancer to block its binding to an upstream activator

sequence (UAS) inserted 50 to a gene of interest, thereby

turning the target gene on or off. It has been shown that

the temperature-sensitive Gal80 intein fusion can provide

temporal regulation of the Gal4/UAS system in a tem-

perature-dependent manner in Drosophila melanogaster.

The temperature-sensitive intein system is limited to

systems that can tolerate a temperature shift. It is there-

fore of considerable interest to search for small molecules

that can be applied to conditional protein splicing in a

broad range of organisms and cell types. The small

molecule rapamycin was found to effectively trigger

splicing of an engineered split VMA intein in mammalian

cells [38,42��]. The split intein fragments were fused to

FKBP and FRB domains, which can be dimerized by

rapamycin, thereby facilitating the reconstitution of the

split intein (Figure 3e). A rapid response was detected

with the product being formed within 10 min of rapamy-

cin induction. Success was also achieved using a directed

evolution approach on the Mycobacterium tuberculosis RecA

intein, with a natural ligand-binding domain inserted.

Intein variants were obtained that are highly dependent

on a cell-permeable small synthetic compound 4-hydro-

xytamoxifen (Figure 3f) [43��]. Furthermore, a switch

mechanism was rationally designed by creating a chimeric

intein carrying a thyroid hormone binding domain, which

resulted in an allosteric intein variant capable of under-

going thyroid hormone induced splicing in E. coli
(Figure 3f) [44�]. These successful attempts make it

possible to regulate protein splicing, thereby activating

arbitrary target proteins using a single small-molecule

activator in a dose-dependent manner.

To target inteins present in bacterial and fungal patho-

gens, the ultimate goal is the discovery of small molecules

or proteins that can block the protein splicing of native

inteins. Although several screening systems have been

developed, a compound that effectively inhibits splicing

of a native intein in vivo has not yet been reported [40,45].

The complete inhibition of intein activity represents a

major hurdle in developing an effective drug for targeting

M. tuberculosis inteins.

Conclusions
The discovery of protein self-splicing and the investigation

of the chemical mechanisms that nature employs to build

and breakdown proteins has provided an enormous oppor-
Current Opinion in Biotechnology 2005, 16:440–446
tunity to develop novel strategies for protein engineering.

Conditional protein splicing provides an alternative route

for turning protein function on or off in a temporal and

dose-dependent manner. In addition to its ability to cyclize

proteins, a naturally or artificially split intein can be used to

produce active proteins either by trans-splicing or through

intein-mediated protein complementation. Furthermore,

by taking advantage of a transient thioester formed by an

acyl rearrangement catalyzed by an intein N-terminal

cysteine residue, various forms of proteins can now be

generated by combining in vivo expression and in vitro
synthesis approaches. Such proteins could be used to

produce protein or peptide arrays with improved binding

and orientation, providing the prerequisite for high-

throughput screening and quantitative analysis of protein

function. These new approaches are rapidly changing our

view on how proteins can be produced and targeted and

therefore hold great promise to meet the needs and chal-

lenges of functional protein analysis.
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