1. Volume V=100000 μ^3 +10000 $\mu^3 \approx 10^5 \mu^3$. Number of protein molecules is N= 500molecules/minute*60minutes/hour*24hours/day*7days/week/N_a, N_a - Avogadro number Concentration C=N/V=8.4*10⁻⁸M

2. Dynamic equilibrium: dN_{syntetized molecules}/dt=dN_{transported to axon}/dt= =1000molecules/minute=K

 $dN_{transported to axon}/dt=v*A*C$, v-rate of transport (5mm/day), A-cross-sectional area, C stable concentration

 $C=K/(v*A)=2.4*10^{-7}M$

3.

- a. 2Dt= $<\Delta X^2$ >, t= $(0.05 \text{ cm}^2)^2/2\text{D}=6.25*10^4\text{ s}$
- b. Presumably the diffusion doesn't have directional preference, so half of synthesized molecules will be in dendrite, and half will be in axon. In dendrite: C=(N/2)/(N_a*V_{dendrite})=~21uM, volume V_{dendrite}=4 μ^{2*} 1mm In axon: the first 1 mm (==2*< ΔX^{2} >) contains ~95% of molecules diffused in axon (two standard deviations of normal distribution), so average concentration C=0.95*(N/2)/(N_a*V_{axon})=~79uM, volume V_{axon}=1 μ^{2*} 1mm
- 4. $pH_{medium}=7.4$, so $[H^+]=10^{-7.4}M=40nM=C_c$

Surface is negatively charged to V=-50mV, and negative charges are distributed by Boltzmann distribution: surface concentration of positive ions (protons) $C_s=C_c*exp[zeV/kT]$, and surface pH=-lgC_s=6.5

- The surface area of sphere is proportional ("∝") to the r². We have ~25% of radius change ([7.5μ-6μ]/6μ), so we have (1.25)²≈1.56 of initial membrane area (~56% stretching). But even 4% stretching leads to lysis, so lymphocytes can swell due to smoothing of folds in membrane.
- 6. At the beginning we have K⁺ -defined membrane potential: V_K=RT/(zF)ln[3mM/140mM]=~-90mV, where is z=1. At the end we can calculate voltage difference again by Nernst equation, but for Ca²⁺: V_{Ca}=RT/(zF)ln[0.5mM/2μM]=~+66mV, where is z=2. The change in potential will be ΔV=V_K-V_{Ca}=~-156mV
- 7. Donnan equilibrium (see also Lecture#11): $C_{K \text{ inside}}/C_{K \text{ outside}} = C_{Cl \text{ outside}}/C_{Cl \text{ inside}}$, Also we know that $C_{K \text{ outside}}=1\text{mM} C_{Cl \text{ outside}}=110\text{mM}$. Another equation – electroneutrality inside the cell (assuming that there are only K & Cl): $C_{K \text{ inside}}=C_{Cl \text{ inside}}$. Also x – change in concentrations inside: $C_{K \text{ inside}}=140+x$, and

 $C_{Cl inside} = 4 + x$. By substituting one equation to another : $x^2+144x+450=0$, the meaningful solution of this square equation (which will keep concentrations positive) x=-3.2mM, so $C_{Cl inside}=4+x=0.8$ mM, and $C_{K inside}=\sim136.8$ mM. Potential difference by Nernst equation (for example for potassium): V=56mV*lg[1/136.8]=~ -118mV.

- 8.
- a. Bending energy for the membrane with constant curvature E=(B/2)*(1/R_t)²*A. Area of cylinder A= π *d*l=~5 μ ² E=7.8*10⁻¹⁷ N*m, KT=~4*10⁻²¹ N*m (T=300K) So E= ~KT*10⁴
- b. Affinity of enhancer (E) to DNA gives us the change in free energy: $\Delta G_1 = RT^*ln[K_{E-DNA}] = \sim 5.5$ Kcal/mole. For binding E to transcription factor (TF) we know change in entropy and enthalpy of binding, so we also can calculate change in free energy: $\Delta G_2 = \Delta H T^*\Delta S = -4-1 = -5$ Kcal/mole. For full reaction: $\Delta G = \Delta G_1 + \Delta G_2 = -10.5$ Kcal/mole, and equilibrium constant: $K_A = exp[-\Delta G/(RT)] = \sim 4^*10^7$ 1/M, and $K_D = 2.5^*10^{-8}$ M; We also know that we need enhancer concentration equal to dissociation constant for 50% activation of transcription. By knowing the volume of nucleus we can calculate the actual number of molecules: $N=K_D^*Na^*V = = \sim 1700$ molecules
- 9. $D=kT/(6\pi\eta r)=2.2*10^{-7} \text{ cm}^2/\text{s}$ (You also can calculate it by using the $D \propto 1/r$ proportionality from this formula (see comments for (5) of the provided to exam equations): $D_{1\mu \text{ radius sphere}}=4.4*10^{-9} \text{ cm}^2/\text{s}$, so $D_{0.05\mu \text{ radius virus particle}}=2.2*10^{-8} \text{ cm}^2/\text{s}$)
- 10. The first mechanism linear movement of scanning protein complex with the rate v=30b.p./s=~6x10⁻⁴ cm/s (3Å/b.p.), so scanned distance will be l=t*v
 For diffusion model scanned distance defined by d=ΔX/2, and <ΔX²> = 2D*t.
 For t=1 min= 60 s: l=~5.4x10⁻² cm=~1800b.p., and d=(1/2)*(2DT)^{1/2} =~1.7um=
 =~5800 b.p.
 For t=1 h = 3600s: l=~3cm=108 Kb.p., d==~13.4um= 45Kb.p.
- 11. L=5000bp, rate of synthesis is v=50bp/s, so time of synthesis is T=L/v=100s. Time between moment of transcription initiations t=300bp/v=6 s. 100^{th} copy of RNA will be synthesized in 99*6=594th second after beginning of synthesis of the first RNA molecule, and will finish synthesis in next T=100s, so cycle for synthesis of 10 molecules is t+T=~700 s. And the gene should be activated

700s/30min=~39% of time.

12. Reynold's number: $R = \upsilon L\rho/\eta$, L- here is diameter, $\upsilon -$ speed, $\rho -$ density of obnject (particles), $\eta -$ viscosity of media (we can use viscosity of water here - brain slices are usually covered by thin layer of some liquid). So $\upsilon = \sim 1.7 m/s$