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ML-15 
The Cell as a Machine 
 
  Molecular Mechanics 
 
 The consideration of how forces affect individual molecules is critical for our 
understanding of force transduction and motor activities which underlie many of the 
important functions that we have discussed.  We will consider force effects on the 
kinetics of protein unfolding and on the energetics of motor function.   
 
 In the case of protein unfolding, the problem can be described as the transition of 
a folded protein to an unfolded state.  We will consider here a long protein such as 
spectrin, which has many similar domains that can unfold to produce about a 3-fold 
increase in molecular length.   There is normally an energy barrier that must be overcome 
to unfold a protein.  A plot of the free energy of spectrin versus the overall length of 
spectrin will have a peak corresponding to the energy barrier to unfolding the weakest 
domain.  If we consider the fact that Brownian forces are working at unfolding the 
molecule and domain motions are on the order of 109 - 1010 /s even a high energy barrier 
can be crossed occasionally.  Force on the molecule lowers the energy barrier because 
there is a lengthening of the molecule as it crosses the barrier (the force times the distance 
to the peak of the energy barrier gives the degree to which the free energy was 
decreased).   
 
  ∆Gforce  =  ∆Gnorm -  F.∆X 
 
The rate constant for the unfolding will be increase by the Boltzmann relationship from 
the original rate constant 
 
  k1  = k1

0 exp [F.∆X /kT] 
  
Motor Proteins  
 In the case of motor proteins the hydrolysis of ATP (or other high energy 
compound) is coupled to the movement of the protein along a filament.  Kinesin 
movement on microtubules is a good example in which the details are known.  For 
kinesin, there appears to be one ATP hydrolyzed per 8 nm of movement.  The 
equilibrium energetics of the process bring out some important general aspects of 
reversible force-dependent processes.   
 If we assume that the Substrate (S) is hydrolyzed to the Product (P) by the motor 
enzyme (E), then a simple description of the process is 
 
  S + E = ES = EP = E + P 
 
 We have described this previously in terms of the free energy of the reaction; 
however, it is obvious that the relative concentrations of substrate, [S], and product, [P], 
affect the free energy of the hydrolysis reaction.  The standard free energy of hydrolysis 
of ATP is defined as the free energy of the conversion of ATP to ADP where both are at 
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1M concentration.  The normal cellular values are 2-4 mM and 10-30 µM for ATP and 
ADP, respectively.  Because ATP is much greater than ADP in concentration, there is 
more energy available (mass action favors the hydrolysis of ATP to ADP).  Thus the free 
energy of conversion of S to P can be described as noted below. 
 
  ∆GS-P  =  ∆G0 + kT ln [P]/[S] = kT ln K/Keq = kT ln [P][Seq]/[Peq][S] 
 
 As a motor, the protein generates force through a cycle of ATP hydrolysis and 
ADP release.  When the force on the motor stalls the forward movement of the motor, the 
energy of hydrolysis  is theoretically equal to zero.  The additional term of the force times 
the distance traveled per ATP can theoretically give the stall force from the ATP and 
ADP concentrations. 
 

∆GS-P  = 0 =  ∆G0 + kT ln [P]/[S] + F.∆X   or by rearranging 
 
F.∆X =  -∆G0 - kT ln [P]/[S] 

 
 The energy from a single molecule of ATP is estimated to be 80 pN.nm which 
would correspond to a force of 10 pN moving on a kinesin molecule that moves 8 nm.  In 
fact, the measured stall force for kinesin is 5-7 pN and the estimated distance of 
movement is 8 nm.  The motor can then be said to be 50-70% efficient.   
 
Filament Mechanics 
 Another important aspect of the mechanics of a cell is the consideration of 
polymer or filament packing, which necessarily involves bending of the polymer or 
filament.  A microtubule will have considerable rigidity and resists bending deformation.   
The mathematical description of the bending resistance is given by the beam equation, 
 
    M = E*I /R  
 
Where M is the bending moment (M = F X), and E*I is the flexural rigidity that is the 
product of the Young’s modulus (E) and the second moment (I).  The second moment is a 
geometrical factor that is related to the geometry of the beam.  For a cylinder, I = πr4/4.  
For a rectangular beam of width, b, and height, a, I = ab3/12.  To estimate the bending of 
a beam, we need to adopt a different formulation and a common formulation is to 
describe the tangent angle at each point along the beam, θ(s).  The angle of the bend is 
related to the parallel length displacement, dx, and perpendicular displacement, dy, for a 
given displacement along the beam, ds, by the relationships, dx/ds = cos θ, dy/ds = sin 
θ, and it follows that dθ/ds = 1/R.  The beam equation can then be rewritten as 
 
   dθ/ds  (s) = M(s)/EI   
 
  or      d2y/dx2 = M(x)/EI 
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and this formula can be used to derive the displacement of the end of a beam of length L, 
by a spring constant, Κ.  
 
    K = F/y(L) = 3EI/L3 
 
 
For a small glass rod of radius 0.25 µm and length of 100 µm.  E = 70 Gpa, I = (π/4) r4  = 
3x10-27 which gives a spring constant K = 0.64 pN/nm.  Note that increasing the length to 
400 µm will decrease K to 0.01 pN/nm whereas increasing the radius to 0.5 mm will 
increase K to 2.56 pN/nm 
 
Persistence Length 
 For a polymer it is useful to describe the rigidity in terms of the length over which 
the rod loses any correlation between the angles at the ends.  The principle of 
Equipartition of Energy can be used to derive the relationship that the persistence length, 
Lp, is proportional to the flexural rigidity  
 
    Lp = EI/kT 
 
 
Freely Jointed Chain 
 Another way to treat the matter of the polymer length is to consider the polymer 
as a freely jointed chain with n links of a length, b.  In terms of the persistence length, the 
length of the links in the freely jointed chain can be described as  
 
   2Lp = b 
 
 Thus, some polymers in cells can be considered as a freely jointed chain (for 
example, DNA (persistence length of 53 ± 2 nm), RNA and long fatty acid chains.  
However, many of the filaments have a very long persistence length that exceeds the 
average dimensions of a cell (persistence length of actin filaments is 10-20 µm and of 
microtubules is 1-6 mm). 
 
Problems 

1. Consider a piece of spaghetti 1mm in diameter. Yung’s modulus is ~108 J/m3. 
a. What is its persistence length at room temperature? Is the result consistent 

with your everyday observations? 
b. Please calculate spring constant for 1 cm spaghetti piece. If you consider 

spaghetti as linear spring, how many molecules of ATP have to be 
hydrolyzed in order to displace the end of a spaghetti piece in 3mm? 

2. (extra credit) Suppose that the ratio of substrate to product in a mixture is ten 
times greater then the ratio at equilibrium. How much mechanical work could be 
obtained by converting one molecule of substrate to one molecule of product? 
Suppose that you have a total of N substrate plus product molecules and that the 
equilibrium ratio is 1. What is the total amount of mechanical work that could be 
done with mixture before it becomes completely spent? 


