
Lecture #8 
The Cell as a Machine 
 
 

High Specificity and Reversibility 
 
 
 In considering the problem of transcription factor binding in the nucleus and the 
great specificity that is called for to transcribe the right and not the wrong gene, there is a 
need to understand the important elements of protein-protein bonding.  The treatment of the 
problem is slightly different than what we have discussed.  As we will show today, the 
lifetime of large complexes is too long for an active cell to function.  The basic problem is 
the dissociation of a complex once formed.   
  
Signal Transduction From the Periphery to the Nucleus  
 There are a variety of characterized pathways that signal the differentiation of a cell 
from state A to state B.  One of the simplest changes in cell state is the transition from G0 
to G1 with the addition of serum hormones to cells grown without serum.  The hormone 
receptors at the plasma membrane cause changes in the nucleus.  These are typically 
designated as signaling pathways and they often involve the successive activation of a 
series of linked kinases that ultimately activate the transcription of specific genes in the 
nucleus.   
 
Consideration of Solution Binding Equilibria (adapted from notes from Harold 
Erickson, Duke) 
Consideration of the Entropy term and the implication for multiple interactions.   
 
1.     RT ln K A = - ∆G A (Note that favorable association requires 
a negative free energy of association.)  

This free energy describes all of the chemical and energetic factors involved in the 
association reaction. It is extremely useful to break this term down into two opposing 
energies. The importance of explicitly separating these two terms has been recognized 
since the work of Doty and Myers on insulin dimerization in 1953; it has been rediscovered 
about every ten years since; it was a crucial point in the analysis of Chothia and Janin; and 
it forms the basis for the analysis of cooperativity (Erickson, 1989). The two terms are the 
intrinsic bond energy, which includes all the chemical forces acting across the subunit 
interface, and the intrinsic subunit entropy (expressed as a free energy).  

2.  ∆G A = ∆G bond + ∆G s  
The term ∆G bond is the intrinsic bond energy. All the chemical forces intrinsic to 

the protein-protein interface are included in the term ∆G bond ; it is a negative number for 
all favorable associations; the stronger the bond, the larger its absolute value. The C & J 
analysis is directed at estimating this bond energy and stating all of the chemical forces that 
contribute to it. The term ∆G s is the intrinsic subunit entropy, expressed in units of free 
energy. It may be considered the free energy required to immobilize a subunit in a dimer or 
polymer, independent of the type or number of bonds formed. Free energy is required 



because entropy (translational and rotational entropy of the protein subunit) is lost when the 
subunit is immobilized in the polymer. The magnitude of this term is still under discussion. 
Chothia and Janin, and most previous authors, estimated it to be 103-145 kJ/mol. However, 
these calculations did not include any compensation for motion or vibration of subunits in 
the bonded state. In Appendix I of Erickson, 1989, a much lower value is calculated, 29-45 
kJ/mol. Surprisingly, the intrinsic entropy depends very little on the size and shape of the 
protein subunit (these dimensions enter the calculation as a logarithm), so a single value 
can be used for all protein association reactions. In the present analysis we will use the 
value DG s = +29 kJ/mol. Let's put this in perspective and illustrate the calculations with 
some numbers. A typical modest protein-protein association will have a K D = 10 –6 M (so 
K A = 10 6 M –1 ). In eq. 1, R has the value 8.31 J/deg.mol, and T is the absolute 
temperature = 300 degrees. 1a. RT ln K A = –DG A = 2.5 kJ/mol.X ln (106 ) = 34.5 kJ/mol  

 
2a.  ∆G A = ∆G bond + ∆G s = –34.5 kJ/mol; ∆G s = +29 kJ/mol;  thus ∆G A = –

34.5 = ∆G bond +29 , which gives  ∆G bond = –63.5 kJ/mol 
 
Thus the net free energy of association, –34.5 kJ/mol, is very similar in magnitude 

to the intrinsic entropy term, 29 kJ/mol; and the intrinsic bond energy is the sum of the two, 
–63.5 kJ/mol. The intrinsic bond energy must be sufficient to compensate for the entropic 
energy loss, and to produce the favorable association constant. Note that DG bond is a 
negative free energy, indicating that it favors association. DG s is a positive number, 
opposing association. The nature of the protein-protein bond, à la Chothia and Janin. The 
crucial observation of C & J (actually this is based on work of F. Richards several years 
earlier) was that the interface between subunits looked exactly like the interior of a protein 
molecule - in particular it consisted of closely packed atoms with no spaces. This means 
that the two surfaces must fit together very snugly. Water was completely excluded, and 
there were van der Waals contacts between the surface atoms across the interface. It was 
also clear that hydrogen bonds and ionic bonds (salt bridges) were made across the 
interface. C & J then pondered the question of how each of the many interactions would 
contribute to the free energy of the protein-protein bond. The key to this analysis was to 
realize that when the protein-protein bond is broken the interface surfaces are not placed in 
a vacuum, but are exposed to the solvent. Many of the bonds that are formed across the 
interface when the subunits are together are made to solvent molecules when the subunits 
are apart. 

The conclusion from this diagram, incredible as it may sound at first, is that (a) 
ionic bonds, (b) hydrogen bonds, and (c) van der Waals forces make little contribution to 
the net free energy of the protein-protein bond. The reason is, these bonds are not lost when 
the subunits are separated, but are just replaced with equivalent bonds to the solvent. C & J 
argue that an ionic bond (or H- or vdW bond) to the solvent is similar in free energy to the 
bonds across the interface, so there is little change in free energy when one bond is 
replaced by the other. The nature of the protein-protein bond is enormously simplified if we 
simply set all these contributions to zero. Saying that the net contribution of ionic bonds is 
zero does not mean that they are ignored. These bonds play a crucial role in protein 
association, namely in determining the specificity of the interaction. Protein association is 
not promiscuous: e.g., pancreatic trypsin inhibitor associates very strongly with trypsin, but 



not at all with most proteins. The basis for the high specificity is that the interfaces must be 
precisely complimentary. This complimentarity comprises three features. (The classic C&J 
theory is given first; italics introduce corrections from more recent analysis, especially 
Wells' - see reading list.) a) Ionic complimentarity. All possible salt bridges must be made. 
If there is a minus charge group on one subunit, there must be a plus charge opposite on the 
other side. Otherwise the subunit association would require breaking an ionic bond to 
solvent (8.3-25 kJ/mol or 2-6 kcal/mol) and replacing it with nothing. Burying a charge 
might be very expensive in free energy and could strongly destabilize the protein-protein 
interaction. b) Hydrogen bond complimentarity. The argument for H bonds is exactly 
analogous to that for ionic bonds. Any hydrogen bond donor on one subunit must find a 
hydrogen bond acceptor on the opposite. Losing a hydrogen bond would cost 4 - 25 kJ/mol, 
depending on the chemical nature and charge of the buried group (see Fersht et al., 1985 
for this important experimental analysis, and also Wells for exceptions where H-bonds can 
be eliminated without much cost). c) Steric complimentarity. When separated, the subunit 
interfaces are covered with H 2 O, the water molecules making van der Waals contacts with 
all exposed atoms on the surface. The van der Waals bonds are less than 4 kJ per atom, but 
there art lots of atoms. In order not to lose the energy of the van der Waals interactions, 
contacts with solvent must be replaced by contacts with the other subunit when the bond is 
made. This means that the subunits have to fit together very snugly. Separating a pair of 
atoms even 1 Å will eliminate the van der Waals energy.  

It costs energy to create a hole in the interface (nature abhors a vacuum). Steric 
complimentarity is perhaps the most important contribution to specificity. Loss of a large, 
hydrophobic aa leaving a ho le in the center of the interface can greatly weaken binding; 
Mutation of a small aa to a bulky one, especially if it is in a pocket needed for a large aa 
from the other interface, can completely eliminate binding (Wells, see below). 

However, there is one important consistency between the C&J picture and the 
analysis of Wells' group – the important aa's are all concentrated in the hot spot, and the 
non-contributing ones are distributed around the edges. The aa's in the hot spot are 
apparently all contributing to the binding energy with approximately the full 0.025 
kcal/mol-Å 2 . The idea of complimentarity certainly needs to be modified, since it is now 
obvious that some (but not all) partners for H-bonds and ionic bonds can be eliminated 
from one side of the interface without seriously disrupting the bond. Most likely the 
remaining partner undergoes an induced fit to make the bond to solvent or to another aa in 
the interface (see Altwell...Wells, 1997 for demonstration of this kind of plasticity). Some 
holes in the interface can probably be tolerated. However, the most obvious candidate for 
the most important aa was W104, which is right in the center of the interface and buries the 
most surface area. This indeed turns out to be the most important aa in the binding. 
Presumably when it is deleted the hole it leaves cannot be filled by induced fit movements, 
and the missing van der Waals interactions destabilizes the bond by >4.5 kcal/mol. 

 An important problem that can be addressed with the knowledge of the protein-
protein interface. A particularly valuable probe for microtubule studies is tubulin labeled 
with biotin, a small molecule of ~200 daltons that (a) can be attached covalently to reactive 
lysines or other groups on the surface of the protein, and (b) can be subsequently labeled 
with antibodies for localization. What would this biotin molecule do to tubulin assembly if 
it were attached to an amino acid (a lys) in the middle of the tubulin- tubulin interface. 



Tubulin has a MW of 50,000. How could tubulin be labeled to minimize reaction at the 
interface? 

 
C. Kinetics  
Let's approach kinetics from the point of a receptor binding its ligand (growth 

factor, GF). We assume that the receptors on the cell surface are present in very low 
concentration relative to the GF. There are two questions.  

1. Lifetime of the empty receptor. If the receptor is empty, how long will it take to 
be occupied? This depends on the concentration of GF, but in many cases is limited simply 
by diffusion of GF, and does not depend on the bond energy.  

2. Lifetime of the complex. Once a receptor has bound a GF, how long will the 
complex last before the GF dissociates? This is determined largely by the bond energy. 
k2 M - 1 s - 1 
k s - 1 
-1 
The lifetime of the empty receptor is the reciprocal of the association rate: t E = 1/k 2 [GF]. 
This is the average time it will take before an empty receptor is occupied (actually it is the 
time for 1/e of the receptors to be occupied, we will ignore this fine point).   The lifetime of 
the empty receptor depends only on the concentration of GF and k 2 .  
 
 t E = 1/k 2 [GF] = 1/( 2 x 10 6 )[GF]  
 

The second order association rate, k 2 , is a key parameter. In principal k 2 could 
vary considerably depending on the protein pairs, and would require experimental 
measurement for each case. In fact it turns out that a large number of protein-protein 
associations occur at the same rate, k 2 = 2 x  10 6 M -1 s -1 . In the next section we will 
explain that this is the generic, diffusion limited rate constant for protein-protein 
interaction. There are some proteins that associate faster and some slower, so experimental 
measurements are important when they are available. But in the absence of experimental 
data, this is a very good guess. Assume: k 2 = 2 x  10 6 M -1 s -1 - for diffusion- limited 
protein-protein association If the growth factor binding to its receptor is diffusion limited, 
here are some lifetimes to occupy a receptor for difference concentrations of GF. [GF] t E 

GrFac 10-9
 M = 500 s;  10-8 M = 50 s;  (Actin) 10-6 M = 0.5 s 

 2. The lifetime of the complex is t C = 1/k -1 , the reciprocal of the rate of 
dissociation of GF from the receptor complex. t C is completely independent of the 
concentration of free GF but it depends very much on the bond energy (for associations 
with diffusion limited k 2 , K D is determined completely by k -1 ). It frequently happens that 
one does not know the kinetic constant, k -1 , but the equilibrium binding constant, KD , is 
known. Now we can make a good guess, using the principle above that the association rate 
is diffusion limited, and equal to k 2 = 2 x 10 6 M -1 s -1 , for many protein-protein 
associations. For these associations, the dissociation rate is determined directly by K D , and 
we can estimate k -1 directly from K D . t C = 1/k -1 = 1/KD k 2 = 1/KD (2 x 10 6 ). Again some 
examples, starting with the very strong complex of trypsin- trypsin inhibitor. K D t C Trp-
TrIn 10 -13 5 x 10 6 s (58 days) GF 10 -9 500 s (8 min) actin 10 -6 0.5 s It is interesting now to 
consider the association-dissociation as a cyclic event. Consider a GF binding to its 
receptor. If the GF concentration is 10 -9 , equal to K D , the lifetime of the empty receptor is 



500 s, and once a complex is formed its lifetime is also 500 s. This is another way of saying 
that when the concentration of P 1 is equal to K D , the receptor if 50% occupied. If the 
concentration of GF is now increased ten-fold to 10 -8 M, the lifetime of the complex 
remains unchanged at 500 s, but the empty receptor now binds ligand in only 50 s. The 
receptor is ~90% occupied. 

3. The diffusion-limited rate constant for protein-protein association. Koren and 
Hammes (1976) surveyed a number of protein associations, and found that a large number 
of them had k 2 = 0.5 - 5 x  10 6 M -1 s -1 . To some in the field this rate seemed incredibly 
fast. Northrup and Erickson (1992) resolved this question by using Brownian dynamics, a 
computer simulation treating the protein subunits as Brownian particles. It turns out the 
very slow rate, 5 x 10 3 M -1 s -1 , would be appropriate if proteins behaved as spheres in a 
vacuum - where they would bounce apart and separate upon every unproductive encounter. 
In contrast, the protein molecules are in a diffusive environement of water. The Brownian 
dynamics showed that in water each encounter resulted in multiple collisions. If there is an 
unproductive encounter the particles didn't bounce apart, they simply diffused a short 
distance. Because of this "diffusive entrapment" the proteins have a high probability of 
rotating to a new position and bumping into each other again and again. The conclusion of 
the analysis was that k 2 = 2 x 10 6 M -1 s -1 is the generic, diffusion limited rate constant for 
protein-protein interaction. 

It is important to note that there are some protein associations that occur 10-100 
times slower - these have an additional energy barrier to complex formation. Some 
associations are also 10-100 times faster. At least some of these very fast reactions have 
been characterized as due to electrostatic steering. Charge groups on the surface of the 
subunits steer them into correct alignment as they are approaching each other.  

Cooperative association 
 What happens to K D if you double the intrinsic bond energy? A hypotherical 

example would be to compare binding a bivalent Ab to binding of the monovalent Fab. 
Specifically, let's assume we have a HEL dimer, with the two HEL subunits held together 
so they can each bind the Fab of the IgG. HEL Fab Assume that the monovalent Fab binds 
with K A Fab = 4.5 x 10 -7 M -1 HEL Fab Fc What is K A IgG? To make the 
calculation easy we will introduce two assumptions, neither of which are really valid.  

1. Assume that the Ab is rigid. (actually the Fab fragments on an IgG have 
considerable rotational flexibility).  

2. Assume that the crosslinked HEL dimer is also rigid, and that the crosslinking 
presents the HEL epitopes so that the rigid IgG can bind both of them without strain or 
distortion.  

Essentially the problem asks what happens to K A if we double the intrinsic bond 
energy. Is K A also doubled? Do you square it? Both of these quick guesses have been 
proposed for certain cases, but they don't work. We need to consider the intrinsic bond 
energy to do the calculation. Most important, we have to pay close attention to the intrinsic 
subunit entropy. 

1. Calculate DG bond Fab = –RTlnK A –29 kJ/mol = –40 – 29 = –69 kJ/mol.  
2. Calculate DG bond IgG . This is simply 2 x DG bond Fab = – 33.4 kJ/mol.  
3. Calculate K A IgG : – RTln K A IgG = DG bond IgG – 29 = – 33.4 + 29 = – 26.4 

kcal/mol  
4. K A IgG = ln (–26,400) / RT = 1.3 x 1019 M.  



 
This is an enormous enhancement in binding affinity , from 4.5 x 10 7 to 1.3 x 1019, 

from doubling the intrinsic bond energy. The key to this effect, and to this calculation, is to 
realize that the entropy tax is paid only once, while the intrinsic bond energy is fully 
counted twice . Since the IgG is assumed to be rigid, it is fully immobilized when the first 
Fab binds. The second Fab then binds "for free" and all of its energy goes to increasing K. 
Of course this is an oversimplification, since it depends critically on the assumptions of (a) 
rigidity of the Ab, and (b) the perfect fit to the HEL dimer. In a real Ab the second Fab will 
still have substantial rotational entropy after the first one has bound. This will have to be 
compensated when the second head binds (but it should be much smaller than 29 kJ/mol). 
Also an IgG binding to a virus will probably have to strain a bit to make the bivalent 
attachment. Nevertheless, experimental measurements of Abs binding to viruses show 
1,000 X greater affinity for IgG compared to Fab. 
 
PROBLEMS: 
1. If we have a transcription factor that is already bound to DNA near a transcription 
initiation site, then an enhancer can bind to it and activate transcription.  From in vitro 
measurements of binding, the enhancer binds to the transcription factor with a binding 
constant of 106 M-1 in the presence of an enhancer DNA piece only 20 base pairs long.   
The enhancer binds to the appropriate DNA sequence with an affinity of 104 M-1.  Because 
binding to the DNA is a prerequisite for the enhancer binding to the transcription factor and 
chromosomal DNA has mobility, the entropy term for the enhancer-transcription factor 
binding is not the full 29 kJ/mole (assume it is 12 kJ/mole).  Estimate the binding constant 
of chromosomal DNA-bound enhancer for the transcription factor. 
2. What is the off-rate of the enhancer-transcription factor binding (assume that the on rate 
is decreased by 10 fold from a diffusion controlled on rate, because enhancer binds in 
complex with DNA and DNA diffuses quite slowly)?  When the enhancer-transcription 
factor bond is broken, what is the rate of the dissociation of the enhancer from the DNA 
(assume here that the on rate is diffusion controlled)? 


