
200±400 ml 4% paraformaldehyde (PFA) (number S898-07 JT Baker). Approximately
2 3 104 cells were evaluated for forward and side scatter characteristics by ¯ow cytometry
under the direction of J. Nordberg at the VA Core Flow Facility to determine the relative
percentage of lymphocytes, monocytes and granulocytes. For oxidative burst assay, blood
was collected and lysed as above then resuspended at 4 8C in approximately 200 ml
endotoxin and pyrogen-free PBS without Ca2+ and Mg2+ (number 70013-032, Gibco BRL)
containing 5 mM glucose (Sigma number G5146). Before the oxidative burst assay, 200 ml
of PBS at 37 8C containing 1.5 mM Mg2+ and 1.0 mM Ca2+ was added to the cell
suspension. The Fc OxyBURST Green Assay Reagent (Molecular probes number F-2902)
was used to evaluate cell uptake and oxidative burst activity. Background ¯uorescence was
recorded, then oxidative burst reagent added to a concentration of 30 mg ml-1 (5 ml).

Whole blood killing assay

Fresh mouse blood was collected as above and 35 ml added to 10 ml of THB containing
�1±2� 3 102 c:f :u of freshly diluted log-phase GAS. The mixture was incubated for 1 h at
37 8C with gentle agitation, and dilutions of the mixture plated on agar plates for
enumeration of c.f.u. The growth index was calculated as the ratio of bacterial c.f.u.
recovered versus the initial bacterial inoculum. Student's t-test analysis was performed
using the Microsoft Excel statistical package.
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The retinoblastoma tumour suppressor (Rb) pathway is believed
to have a critical role in the control of cellular proliferation by
regulating E2F activities1,2. E2F1, E2F2 and E2F3 belong to a
subclass of E2F factors thought to act as transcriptional activators
important for progression through the G1/S transition3. Here we
show, by taking a conditional gene targeting approach, that the
combined loss of these three E2F factors severely affects E2F target
expression and completely abolishes the ability of mouse embry-
onic ®broblasts to enter S phase, progress through mitosis and
proliferate. Loss of E2F function results in an elevation of p21Cip1

protein, leading to a decrease in cyclin-dependent kinase activity
and Rb phosphorylation. These ®ndings suggest a function for
this subclass of E2F transcriptional activators in a positive feed-
back loop, through down-modulation of p21Cip1, that leads to the
inactivation of Rb-dependent repression and S phase entry. By
targeting the entire subclass of E2F transcriptional activators we
provide direct genetic evidence for their essential role in cell cycle
progression, proliferation and development.

The delineation of a pathway controlling the progression of cells
out of quiescence, through G1 and into S phase, has been
established1,2. Principal events in this pathway include the activation
of cyclin-dependent kinases (CDKs), the coordinated phosphoryla-
tion of Rb and p130 by cyclin±CDK complexes, and the subsequent
release and accumulation of E2F activities1,2. Although E2F has an
essential role in control of cell growth during Drosophila
development4,5, current knockout mouse models have failed to
demonstrate a similar requirement for any E2F family member in
mammals6±12. One interpretation of these observations is that under
normal circumstances, loss of a single E2F member can be func-
tionally compensated by other related E2F activities.

Of the six known E2F family members, E2F1, E2F2 and E2F3
can speci®cally interact with Rb, and their expression is cell-cycle
regulated13,14. To test for functional redundancy among this subclass
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of E2F family members, we generated and interbred E2F1, E2F2 and
E2F3 mutant mice6,9 (Fig. 1), and found that although E2F1-/-E2F2-/-

mice were viable and developed to adulthood, E2F1-/-E2F3-/- and
E2F2-/-E2F3-/- animals died early during embryonic development
(Supplementary Information Table 1), at or just before 9.5 embry-
onic days (E9.5), pointing to a central role for E2F3 in mouse
development.

To explore directly the potential role for this subclass of E2F
transcription activators in cellular proliferation, we measured the
ability of cells de®cient for these E2F family members to prolif-
erate. We introduced a conditional or ¯oxed E2F3 allele (E2F3f/f;
Fig. 1) into E2F mutant backgrounds and obtained E2F1-/-E2F3f/f,
E2F22=2E2F3f =f andE2F12=2E2F22=2E2F3f =f embryos at the predicted
frequencies (Supplementary Information Table 1 and data not
shown), con®rming that the ¯oxed E2F3 allele did not have any
adverse effect on the development of animals. Infection of mouse
embryonic ®broblasts (MEFs), which were derived from these
embryos, with a retrovirus expressing the Cre recombinase resulted
in the speci®c deletion of the ¯oxed exon 3 (Fig. 1d) and complete
loss of both E2F3a and E2F3b proteins15 (Fig. 2c, top panel). As
shown in Fig. 2a, the differences in the growth rates between
control- and Cre-treated wild-type cells were insigni®cant
(P � 0:455), suggesting that ectopic Cre expression from our retro-
viral vectors does not affect cell growth to any appreciable extent.
However, Cre-mediated ablation of E2F3 from E2F3f/f MEFs
resulted in a slight decrease in their rate of proliferation relative

to control retrovirus-infected cells (P � 0:024). Moreover, co-
culture of control- and Cre-infected E2F3f/f MEFs eventually led
to the outgrowth of non-deleted E2F3f/f cells (data not shown).
These ®ndings, together with the observation that E2F3-/- MEFs
proliferate slower than their wild-type counterparts8 (Supplemen-
tary Information Fig. 1), suggest a cell-autonomous role for E2F3 in
the control of cellular proliferation.

Whereas cells de®cient for E2F1 and E2F2 proliferated robustly,
Cre-mediated ablation of E2F3 from E2F1-/-E2F3f/f or E2F2-/-E2F3f/f

MEFs severely impaired proliferation (Fig. 2a; P � 0:002 for both).
Notably, loss of the three E2F family members abolished any
measurable proliferation (P p 0:0001). A statistical test designed
to account for serial correlation (see Methods) con®rmed that the
cell growth defect is due to Cre-mediated inactivation of E2F3. We
also determined the long-term growth potential of MEFs de®cient
for the various E2F family members. Consistent with data presented
above, loss of E2F3 reduced ef®ciency of colony formation by
approximately 50%; additional loss of E2F1 or E2F2 accentuated
this reduction and loss of all three E2F family members almost
completely abolished any colony-forming ability (Fig. 2b). Most
colonies arising from Cre-treated E2F1-/-E2F3f/f or E2F2-/-E2F3f/f

cells were deleted for exon 3, as determined by polymerase chain
reaction (PCR) genotyping of individual colonies (Fig. 2e, top
panel). In contrast, the few colonies that did arise from Cre-treated
E2F1-/-E2F2-/-E2F3f/f cells possessed at least one E2F3 ¯oxed allele
(Fig. 2e, bottom panel; 79 colonies pooled from multiple experi-
ments were analysed, P p 0:0001), supporting the idea that E2F
activators are essential for cellular proliferation. We conclude that
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E2F1 and E2F2 cooperate with E2F3 to sustain normal proliferation
and suggest that the severe growth defect resulting from their
loss leads to the early embryonic lethality of E2F1-/-E2F3-/- or
E2F2-/-E2F3-/- animals.

To con®rm that loss of E2F3 was the primary factor responsible
for the lack of growth observed on Cre treatment of E2F1-/-E2F2-/-

E2F3f/f cells, we assessed the ability of Myc-tagged versions of E2F3a
and E2F3b to rescue the growth defect of triple-knockout (TKO)
cells. Western blot analysis demonstrated that the levels of ectopi-
cally expressed E2F3 proteins were similar to those of endogenous
E2F3 normally found in wild-type or E2F3-¯oxed cells (Fig. 2c).
Reintroduction of E2F3a or E2F3b partially restored the colony-
forming ability of TKO cells, and the combined expression of both
proteins almost completely rescued the defect in colony formation
(Fig. 2d). Furthermore, PCR genotyping con®rmed that in cells
where E2F3a and/or E2F3b was reintroduced, most of the emerging
colonies were deleted for exon 3 (Fig. 2e), demonstrating that the
rescue was due to the ectopic expression of E2F3 proteins and not to
a failure in the Cre-mediated ablation of E2F3.

The proliferation assays described above suggest a particularly
important function for E2F3 in growth control, but also show
signi®cant contributions made by E2F1 and E2F2 towards the
control of cellular proliferation. These data, however, can not

distinguish between a model where individual E2F transcription
factors might execute speci®c functions, such as the regulation of
unique sets of gene targets, or a model where each E2F would
contribute towards a pool of total E2F activity. To address this issue
we sought to rescue the growth phenotype of TKO cells with
haemagglutinin (HA)-tagged versions of each E2F activator. The
results shown in Supplementary Information Fig. 2 indicate that
E2F2 could only partially rescue the growth defect of TKO cells.
Western blot assays indicated that E2F2 and E2F3 were expressed to
equivalent levels, but E2F1 was consistently expressed at lower levels
(Supplementary Information Fig. 2). The inherent ability of E2F1 to
induce apoptosis probably led to the selection of cells with low
expression of E2F1, making the comparison of their growth proper-
ties with those cells expressing exogenous E2F2 or E2F3 dif®cult to
evaluate. Although some redundancy in their function is evident,
our current data support a model where each E2F activator con-
tributes unique functions towards the control of cell cycle and
proliferation. The replacement of speci®c E2Fs by other family
members using knock-in strategies in vivo might provide more
de®nitive answers to this issue of functional speci®city among E2F
family members.

We next addressed whether the reduced growth rates of E2F
mutant MEFs could be attributed to a speci®c defect in the G1/S
transition. MEFs treated with either the Cre-expressing or control
virus were synchronized by serum deprivation, then stimulated to
proliferate by the addition of serum, and assayed for E2F-target gene
activation and S-phase entry. Although peak levels of E2F target
genes were not markedly affected by loss of E2F3 alone, their normal
serum-induced accumulation was delayed by 2±3 h, a delay that was
augmented further by the additional loss of either E2F1 or E2F2
(Supplementary Information Fig. 3 and data not shown). Cells
de®cient for all three E2F activators failed to induce many, but not
all, E2F target genes in response to serum, including Dhfr, Cdc6,
Mcm3, thymidine kinase (Tk) and DNA polymerase a (DNA pola)
(Fig. 3). Moreover, the low levels of these transcripts in unsynchro-
nized cell populations correlated with their inability to be induced
by serum (Fig. 3a, both lanes labelled P). Notably, other putative
E2F targets, including the cyclin E gene, were consistently elevated in
quiescent TKO cells, were further induced on serum stimulation,
and their levels remained relatively unaffected in unsynchronized
cell populations (Fig. 3a, top panel). This ®nding is consistent with
these targets being regulated mainly by Rb-mediated repression.
Finally, reintroduction of E2F3 into TKO cells restored the normal
activation of E2F target genes that occurs after mitogenic induction
of quiescent cells (Fig. 3b). The levels of exogenous E2F3 protein
introduced into these cells were nearly physiological, as indicated by
western blot assays and its inability to activate E2F targets under
conditions of low serum (Figs 2c and 3b, time 0). These ®ndings
support the idea that E2F activators are critical factors important for
cell-cycle-dependent gene expression.

Cre-mediated loss of E2F3 from each of the E2F3-¯oxed cell
lines impaired S phase entry, as measured by incorporation of
5-bromodeoxyuridine (BrdU) (Fig. 4a), to an extent that correlated
with the severity of the proliferation and target activation defects
described above. The defect of cell cycle entry of TKO cells is not due
to their general inability to respond to growth signals, as the growth-
factor-induced activation of the mitogen-activated protein kinase
kinase and phosphatidylinositol-3-OH kinase immediate±early
pathways remained unaffected by the loss of E2F family members
(Supplementary Information Fig. 3c). These ®ndings indicate that
E2F members grouped in the activator subclass, namely E2F1, E2F2
and E2F3, function at the G1/S transition to regulate entry into S
phase and thereby promote cellular proliferation.

To determine whether the loss of E2F function would lead to an
accumulation of cells in a speci®c phase of the cell cycle, TKO cells
were analysed for DNA content by ¯ow cytometry. As shown in
Fig. 4b, control virus-treated E2F1-/-E2F2-/-E2F3f/f cells, rendered
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quiescent by serum deprivation, accumulated a G1 content of DNA,
and could be ef®ciently induced to enter the cell cycle after serum
addition, as suggested by the timely accumulation of an S phase
content of DNA. The similar pro®les of control- and Cre-treated
wild-type cells indicated that expression of Cre itself had little or no
effect on the ability of cells to proliferate or progress through the cell
cycle (Fig. 4b). Unsynchronized TKO cell populations had a similar
pro®le of DNA content as control cells, except that most of these
cells were also negative for BrdU incorporation (Fig. 4c, compare
top and bottom samples; and data not shown). Moreover, TKO cells
failed to accumulate a G1 content of DNA on serum deprivation and
failed to respond to serum addition (Fig. 4c). Together, these
®ndings show that ablation of all three E2F family members arrests
cell growth irrespective of cell cycle position, indicating a role for
these E2Fs throughout the cell cycle. Recent work also suggests a
continuing role for E2F during S phase that seems to be important
for the regulation of mitotic regulators and progression of cells
through G2/M16. This view is consistent with recent genome-wide
analyses of cell-cycle-regulated genes, where a large fraction of E2F-
regulated gene targets were found to encode proteins known to be
involved in the progression of cells into G2 and through mitosis17,18.

To identify relevant downstream activities that might be respon-
sible for mediating the growth arrest observed upon loss of E2F3, we
assessed the status of various inhibitors of the cell cycle. Whereas
p53 or p27Kip1 remained unchanged, p21Cip1 protein levels were
markedly elevated in TKO cells (Fig. 5a). This increase in p21Cip1

protein could be accounted for by a concomitant increase in its
levels of messenger RNA (Fig. 5b). Consistent with these ®ndings,
Cdk2-associated activities were markedly reduced and Rb was
found to be predominantly in its hypophosphorylated state
(Fig. 5a, c). Furthermore, cyclin-B-associated kinase activity was
also signi®cantly reduced in TKO cells, even though a large

population of the cells possessed either an S phase or G2 content
of DNA. These results might, at least in part, explain the apparent
growth arrest that occurs through various phases of the cell cycle,
namely in G1, S and G2/M of TKO cells. The fact that overexpres-
sion of cyclin E/Cdk2 could drive TKO cells into S phase (Fig. 5d)
suggests that the upregulation of p21Cip1 protein is probably a
relevant consequence resulting from the ablation of E2F1, E2F2
and E2F3.

The status of Rb-E2F-associated DNA binding activities were also
assessed in these cells. Consistent with previous studies, electro-
phoretic mobility shift assays (EMSA) of lysates from control- or
Cre-treated E2F1-/-E2F2-/-E2F3f/f cells synchronized by serum
deprivation, revealed the characteristic Rb-related p130±E2F4/5
protein complexes14. These G0-speci®c complexes are thought to
recruit histone deacetylase and remodelling activities, and are
presumed to mediate transcriptional repression of E2F target
genes19±25. In contrast to control-treated MEFs, serum stimulation
of TKO cells did not lead to the dissociation and disappearance of
p130±E2F4/5 complexes nor to the appearance of the S-phase-
speci®c p107±E2F4 complex (Fig. 5e). These ®ndings are consistent
with the observed increase in p21Cip1 protein and decrease in Cdk
activity and Rb phosphorylation (Fig. 5a, c). We propose that E2F
activators mediate cell cycle progression by two mechanisms: ®rst,
they can directly activate cell-cycle-dependent gene expression, and
second, they can activate a positive feedback loop, through inhibi-
tion of p21Cip1 protein accumulation, that would promote Rb
phosphorylation and complete derepression of Rb-E2F target
genes. The decrease in E2F target gene expression observed in
TKO cells (Fig. 3a) could be viewed to result from both the
continued Rb-mediated transcriptional repression and the absence
of E2F-mediated transcription activation. Although our results
establish the critical nature of E2F1, E2F2 and E2F3 in the control
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Figure 4 E2Fs are required for S phase entry and cell cycle progression. a, BrdU

incorporation assays of MEFs that were infected with a control (open boxes) or a Cre

retrovirus. b, c, Cell cycle analysis by FACS for wild-type MEFs (c) or E2F1-/-E2F2-/-E2F3
f/f MEFs (c) that were infected with a control (top panels (-)) or a Cre retrovirus (bottom

panels (+)). In c, a fraction of cells had become tetraploid by the time the experiment was

performed, as indicated by the appearance of two distinct peaks in serum-starved

samples (0 h). Hatched areas indicate the percentage of cells (S) containing an S-phase

content of DNA.
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of cellular proliferation, the relative importance of E2F-mediated
transcriptional repression versus activation remains to be deter-
mined. The mechanism by which E2F family members regulate
p21Cip1 expression and its in vivo consequences will be an important
topic of future experimentation.

Although a role for E2F in the regulation of the cell cycle and
proliferation has been speculated for over a decade1,2,26±28, the
complexity of the E2F network has precluded previous loss-of-
function mouse models from demonstrating the essentiality for
individual E2F family members in mammalian cell proliferation.
The `conditional' gene knockout strategy described here allowed us
to circumvent detrimental consequences that arise from the inacti-
vation of multiple E2F family members in mice. By making genetic
modi®cations to the entire E2F activator subclass, as opposed to
individual members, we provide direct genetic evidence suggesting
that E2F activators are essential for cell cycle progression, prolifera-
tion and development. M

Methods
Construction of the targeting vector

We used a triple loxP vector system (R. Premont, personal communication) to construct
our targeting vector. We used a 1.7-kilobase (kb) EcoRV±SpeI fragment as the short
recombination arm, a 2.3-kb SpeI fragment, which includes exon 3, as the ¯oxed fragment,

and a 6-kb SpeI fragment spanning exons 4 and 5 as the long recombination arm. The ®nal
targeting vector shown in Fig. 1a was constructed using standard subcloning procedures.
We veri®ed all of the constructs by restriction analysis and sequencing.

Generation of E2F3 knockout mice

Strain 129 E14 embryonic stem (ES) cells were electroporated with 50 mg NotI linearized
targeting vector. Homologous recombination was selected with G418 and diphtheria toxin
and veri®ed by Southern blot and PCR analysis. The properly integrated ES cell clones
were transiently transfected with a Cre-expressing plasmid. After negative selection with
gancyclovir, clones with either a conventional null allele or a conditional null allele were
screened and con®rmed by Southern blot and PCR analysis. Appropriate ES cell clones
were injected into E3.5 C57BL/6 blastocysts that were subsequently implanted into foster
mothers. We bred the resulting chimaeras with C57BL/6 females to achieve germline
transmission. Genotypic analysis of offspring was performed by Southern analysis and
multiplex PCR using the three primers shown in Fig. 1a (primer A, 59-GTGGCTGG
AAGGGTGCCAAG-39; primer B, 59-TGAATCATGGACAGAGCCAGG-39; and primer C,
59-GATTGATTCTGGGTTGTCAGG-39).

MEF generation and establishment of MEF cell lines

Primary MEFs were isolated from E13.5 embryos using standard methods. The relative
contributions from 129/Sv and C57BL/6 genetic backgrounds in each of the E2F-de®cient
MEF lines used in this study are very similar. Moreover, the experiments presented here
were repeated in at least two different MEF preparations, most of which were from
different litters. We generated immortalized cell lines from primary MEFs using the 3T9
cell line preparation protocol.

Retroviral infections

Full-length complementary DNAs for Cre recombinase, Myc-tagged versions of mouse
E2F3a and E2F3b and HA-tagged versions of human E2F1, E2F2 and E2F3a were
subcloned into the pBabe retroviral vector containing either a puromycin-(pBpuro),
hygromycin-(pBhygro), or phleomycin-resistant gene (pBbleo). High-titre viruses were
produced by transient transfection of retroviral constructs into the Phoenix-Eco
packaging cell line as described previously29. We infected MEFs with the retrovirus using
standard methods. Infected cells were then selected for a total of ®ve days in the presence of
one or more antibiotics using the following concentrations: 2.5 mg ml-1 for puromycin,
400 mg ml-1 for hygromycin and 25 mg ml-1 for phleomycin.

Proliferation assays

Immortalized MEFs were seeded at 7 3 104 cells per 60-mm dish. Duplicate plates of cells
were counted daily and were replated every 72 h at the same density of the initial plating.
Colony formation assays were performed by plating 600 or 3,000 immortalized cells per
100-mm dish with ®ve dishes at each concentration. Cells were cultured in DMEM with
15% fetal bovine serum (FBS) until colonies formed, and then stained with 5 mg ml-1

crystal violet in 20% methanol. The number of colonies arising in ®ve plates was
determined and the mean and standard deviations of ®ve cultures from one representative
experiment are reported. Single colonies were isolated from parallel, 96-well culture plates.
DNA was collected from individual colonies and was genotyped by PCR.

Serum starvation and serum stimulation

Subcon¯uent MEFs were synchronized by incubation in DMEM with 0.2% FBS for either
60 h (for primary MEFs) or 72 h (for immortalized MEFs). Synchronized cells were then
stimulated to proliferate by the addition of DMEM supplemented with 15% FBS. Cells
were collected at different time points after serum stimulation and were processed for
BrdU incorporation assays14, ¯ow cytometry14, histone H1 kinase assays14, EMSA30,
western blots, or northern blots. For BrdU incorporation assays, we counted at least 300
4,6-diamidino-2-phenylindole (DAPI) counter-stained nuclei for each time point.

Western and northern blot analyses

Cell protein lysates were separated in SDS acrylamide gels and blotted into polyvinylidene
¯uoride membranes. Blots were incubated in blotto buffer (5% skim milk in Tris-buffered
saline) with antibodies speci®c for E2F3 (SC-878, Santa Cruz), phospho-Akt (Cell
Signalling, no. 9271L), phospho-Erk (Cell Signalling, no. 9101S), p21Cip1 (M-19 and C-19,
Santa Cruz), p27Kip1 (Transduction Laboratory), p53 (14461C, PharMingen and Ab-1,
Oncogene), Rb (G3-245, PharMingen), c-Myc-epitope (C-33, Santa Cruz), HA epitope
(Y-11, Santa Cruz), cyclin B1 (GNS1, Santa Cruz) and Cdk2 (M2, Santa Cruz). The
primary antibodies were then detected using horseradish-peroxidase-conjugated
secondary antibodies and ECL reagent as described by the manufacturer (Amersham).

Total RNA for northern blot analysis was isolated using TRIzol (GibcoBRL), and mRNA
was subsequently puri®ed using the PolyATract mRNA isolation system as described by the
manufacture (Promega). Puri®ed mRNAwas separated on a 1% agarose gel containing 6%
formaldehyde and transferred onto a GeneScreen membrane (NEN Life Science
Products). The cDNA probes were labelled using Prime-It RmT (Stratagene) with 50 mCi
[a-32P]dCTP.

Statistical analysis

We performed statistical analyses using Splus 4.5 (Mathsoft). Observed versus expected
progeny proportions were tested as deviations from the null binomial distributions
conditioned on the ®xed number of examined progeny. Con®dence intervals were based
on standard normal approximations. Cell growth (control versus Cre) kinetics for each
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genotype group were compared as follows: the ratios of cell numbers at each time point
and the previous time point were compared in control versus Cre to account for serial
correlation. Graphical summaries revealed that the ratios for control versus Cre were
positively correlated, and we used two-sided t-comparisons (9 degrees of freedom) to
compare the ratios. The average control versus Cre growth rates showed a monotonically
increasing trend across the genotypes shown. We applied a simple nonparametric test bed
on all possible orderings. Similar techniques were applied for per cent BrdU incorporation
after serum stimulation, using the differences of successive observations to account for
serial correlation. Percentages were converted to the logarithmic scale and time points
after the apparent detection threshold at 8 h were used.
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Arbuscular mycorrhizas are the most common non-pathogenic
symbioses in the roots of plants. It is generally assumed that this
symbiosis facilitated the colonization of land by plants1. In
arbuscular mycorrhizas, fungal hyphae often extend between
the root cells and tuft-like branched structures (arbuscules)
form within the cell lumina that act as the functional interface
for nutrient exchange. In the mutualistic arbuscular-mycorrhizal
symbiosis the host plant derives mainly phosphorus from the
fungus, which in turn bene®ts from plant-based glucose2. The
molecular basis of the establishment and functioning of the
arbuscular-mycorrhizal symbiosis is largely not understood.
Here we identify the phosphate transporter gene StPT3 in
potato (Solanum tuberosum). Functionality of the encoded pro-
tein was con®rmed by yeast complementation. RNA localization
and reporter gene expression indicated expression of StPT3 in
root sectors where mycorrhizal structures are formed. A sequence
motif in the StPT3 promoter is similar to transposon-like ele-
ments, suggesting that the mutualistic symbiosis evolved by
genetic rearrangements in the StPT3 promoter.

Phosphorus is usually taken up in the form of orthophosphate
(Pi). It is well known that Pi transport into the root is mediated by a
secondary transport mechanism dependent on the activity of the
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Figure 1 Phylogenetic relationship of StPT3 with other Pi transporters. Phylogenetic

analysis of plant Pht1 and related high-af®nity Pi transporters from fungal species. Protein

names are followed by SwissProt (SP) or GenBank (GB) accession numbers:

LePT1(O24029, SP) and LePT2 (O22549, SP) from Lycopersicon esculentum; NtPT1

(AAF74025, GB) and NtPT2 (BAA86070, GB) from Nicotiana tabacum; StPT1 (Q43650,

SP), StPT2 (Q41479, SP) and StPT3 (AJ318822, GB) from Solanum tuberosum; MtPT1

(O22301, SP) and MtPT2 (O22302, SP) from Medicago truncatula; AtPT1 (Q96302, SP)

and AtPT2 (Q96303, SP) from Arabidopsis thaliana; PHO84 (P25297, SP) from

Saccharomyces cerevisiae; PHO-5 (L36127, GB) from Neurospora crassa, and GvPT

(U38650, GB) from Glomus versiforme.

© 2001 Macmillan Magazines Ltd


