
Encoding a temporally structured stimulus with
a temporally structured neural representation

Stacey L Brown, Joby Joseph & Mark Stopfer

Sensory neural systems use spatiotemporal coding mechanisms to represent stimuli. These time-varying response patterns

sometimes outlast the stimulus. Can the temporal structure of a stimulus interfere with, or even disrupt, the spatiotemporal structure

of the neural representation? We investigated this potential confound in the locust olfactory system. When odors were presented in

trains of nearly overlapping pulses, responses of first-order interneurons (projection neurons) changed reliably, and often markedly,

with pulse position as responses to one pulse interfered with subsequent responses. However, using the responses of an ensemble of

projection neurons, we could accurately classify the odorants as well as characterize the temporal properties of the stimulus. Further,

we found that second-order follower neurons showed firing patterns consistent with the information in the projection-neuron

ensemble. Thus, ensemble-based spatiotemporal coding could disambiguate complex and potentially confounding temporally

structured sensory stimuli and thereby provide an invariant response to a stimulus presented in various ways.

Visual1–4, auditory5–7, tactile8–10, and olfactory11–15 senses all use
temporal coding mechanisms16 for which the timing, rather than just
the rate, of action potentials is important for the neural representation
of the stimulus17,18. If a neural response pattern significantly outlasts
the stimulus, new stimuli might arrive before the response to a previous
stimulus is complete19. This situation is particularly interesting in
olfaction; in principal neurons, odor pulses can elicit response patterns
that endure beyond the pulse’s offset11,14 and, further, natural odor
plumes can have repeated, rapid and nearly overlapping encounters
with olfactory receptors20. Given these potential confounds, how can
neural systems use spatiotemporal representations to encode and
decode temporally structured stimuli?

In the locust, projection neurons in the antennal lobe—the analogs
of vertebrate mitral cells21—respond to odors with complex spiking
patterns that consist of epochs of excitation, inhibition and quiescence.
These patterns vary with odor identity and concentration, and can
greatly outlast the odor receptor neurons’ encounter with the odor11,14.
The antennal lobe’s network of excitatory projection neurons and
inhibitory local neurons generates these firing patterns when driven
by input from olfactory receptor neurons22,23. These spiking patterns,
distributed broadly across the projection neuron population, are parsed
into brief segments by odor-evoked oscillations and are read by
downstream follower neurons (the Kenyon cells) which receive con-
vergent input from many projection neurons15,24 (R.A. Jortner and
G. Laurent, Soc. Neurosci. Abstr. 412, 21, 2004). The oscillating projec-
tion neuron ensemble, through feed-forward inhibition, generates brief
integration windows in the Kenyon cells24. Kenyon cells respond to
odors with very sparse spiking, often demonstrating great specificity
with respect to odors and even particular concentrations of odors25,26.

Here we examine how the locust olfactory system responds to very
short (100-ms) repeated odor pulses; the timing was chosen to approx-
imate that observed in natural odor plumes20. In a turbulent environ-
ment, odor is carried in an intermittent fashion in the form of filaments
of odor-laden air that vary in concentration, duration and frequency
with which they appear. These factors are modulated by wind speed,
amount of turbulence, delivery mechanism and distance from the odor
source20,27. We selected stimulus parameters on the basis of odor plume
measurements made outdoors, in which filaments were observed to
encounter a sensor in a series of bursts that averaged about 100 ms in
duration and arrived, on average, at approximately 500-ms intervals20.

We made intracellular recordings from projection neurons and
extracellular tetrode recordings from projection neurons and Kenyon
cells in adult locusts. We delivered brief (100-ms) odor pulses in trains
of 3 or 10 pulses; inter-pulse intervals ranged from 500 to 1,250 ms but
were constant within a train. For each pulse pattern, we delivered blocks
of 10 trials (15–30 s inter-trial interval), with the blocks given in random
order. We used a variety of odorants and concentrations (see Methods).

Our results showed that ensemble-based coding mechanisms can
disambiguate complex and potentially confounding temporally struc-
tured sensory stimuli, thus providing an invariant response to a
stimulus presented in different ways while preserving information
about the stimulus timing.

RESULTS

Projection neuron responses vary with odor pulse pattern

For most odor–projection neuron combinations, the number of spikes
elicited by odor pulses changed reliably, and sometimes substantially,
with pulse position, because lengthy responses to one pulse interfered
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with responses to subsequent pulses. We recorded intracellularly from
211 projection neurons (in 92 experiments) and extracellularly (with
tetrodes) from 117 projection neurons (in 14 experiments) and 67
Kenyon cells (in 10 experiments). In a typical intracellular recording
(Fig. 1), the projection neuron responded reliably to a single, brief
pulse of diluted (0.1) hexanol (see Methods) with a quick burst of
spikes which was followed by another, smaller burst and a lengthy
hyperpolarization. The projection neuron also spiked reliably in
response to each of the pulses in a three-pulse train (with inter-pulse
intervals, IPIs, of 500 ms and 750 ms). Note that the electroantenno-
gram (EAG) response decreased in amplitude over the pulse trains,
probably indicating olfactory receptor adaptation; this recovered
within seconds, before the next trial. For another odorant (1 octanol),
single pulses elicited only inhibition, whereas trains of three pulses

reliably elicited spikes for the second and third pulses (but not the first).
For 0.1 trans-2-hexanol, single pulses and trains with a 750-ms IPI
elicited reliable spiking, whereas trains with the 500-ms IPI elicited
reliable spiking only for the first and third pulses (but not the second).
Responses to trains of odor pulses often included strong and reliable
bursts of spikes after the last pulse; these ‘after-responses’ became
longer and more intense as the duration of individual odor pulses
increased (see, for example, Fig. 1, bottom, 1-s odor pulse). The timing
and intensity of excitatory and inhibitory odor response components in
this projection neuron reflected multiple underlying mechanisms (see
Discussion) and determined how closely the bursts of spikes could
track each separate odor pulse within a train.

We obtained similar results from extracellular recordings made
simultaneously from multiple projection neurons (Fig. 2). Different
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Figure 1 The responses of projection neurons

change with odor and inter-pulse intervals. Rapid

trains of odor pulses evoked responses that

interfered with one another (see text). Example of

a projection neuron (intracellular recording),

responding to three odors (columns) presented in

four patterns (rows). Black bars on abscissa: odor

presentation times. Gray histograms, responses
to ten consecutive trials exemplified by the

intracellular trace; gray lines, simultaneous EAG

recordings indicating afference from the antenna;

note that the responses of the projection neurons

may outlast this afference. Top row, single 100-ms

pulse; second row, train of three 100-ms pulses

with a 1,250-ms IPI; third row, train of three

100-ms pulses with a 500-ms IPI; bottom row,

single 1,000 ms pulse. Scale bar, 10 mV. 0.1

HEX, diluted hexanol; 1 OCT, octanol; 0.1 T2H,

diluted trans-2-hexen-1-ol.
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Figure 2 The responses of projection neurons to odors

and the extent of interference between overlapping

responses patterns vary greatly depending on the odor

and the cell. Spike-time raster plots show simultaneous

extracellular recordings from nine projection neurons, in

response to four odor-pulse delivery patterns (ten trials

each) for four odorants, each at two concentrations. Inset,

enlarged example of a particular combination of odor and

projection neuron. Gray bars indicate odor delivery times.

Stimuli were delivered in random order but are organized

here in the sequence shown in the inset. Note the variety

of responses observed in different projection neurons

and to different odors and concentrations.
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projection neurons responded in different ways to the same stimulus
pulses. In some neurons, spikes elicited by some odors faithfully
tracked every pulse in a train (see, for example, the response of cell 8 to
0.01 hexanal, Fig. 2 inset); however, this was atypical, and such a
projection neuron responded differently when the animal was pre-
sented with a different odor (see cell 8’s response to 1 OCT). None of
the 117 projection neurons in our extracellular set were able to reliably
track the pulse timing of all odor-concentration combinations.

Of the 936 odor–projection neuron combinations in our set,
719 elicited spikes. For most of these combinations, the number of
spikes generated varied significantly (P o 0.05; see Methods) with
pulse position: 59% showed significant changes over three pulses with a
500-ms IPI, and 68% showed significant changes over ten pulses with a
500-ms IPI. In about one-third of the cases in which spikes were
elicited, the changes were substantial. For example, 10% of the odor–
projection neuron combinations resulted in spiking in response to only
the first pulse; 10% to all but the first pulse; 7% to only the last pulse;

and 3% to all but the last pulse. Thus, for most projection neurons, the
temporal structure of the odor interfered with the temporal structure of
its neural representation.

Analyzing responses of an ensemble of projection neurons

Multiple projection neurons converge onto their follower neurons
(which include Kenyon cells; R.A.J. and G.L., Soc. Neurosci. Abstr.
412, 21, 2005), and odors are represented by spiking activity distributed
across ensembles of projection neurons11,14. We considered that,
despite the interference-induced variability observed in the responses
of individual projection neurons, invariant properties of the stimulus
might emerge at the ensemble level. Thus, we pooled our set of
extracellularly recorded projection neurons so as to approximate a
portion of the projection-neuron population found in the antennal
lobe (see Methods) and then examined the set’s information content.

We sought to analyze the projection-neuron ensemble response as it
evolved during and after each stimulus presentation. Therefore, we
binned the firing patterns of each projection neuron into brief (50-ms
or 100-ms) time segments and then constructed, for each time seg-
ment, a separate response vector consisting of the binned firing of each
of the 117 projection neurons26. Thus, each vector had 117 elements
and represented a ‘snapshot’ of the transient coactivity of projection
neurons in the ensemble at a given point in time. This technique
allowed us to make rigorous comparisons between responses. The
vectors could be treated as points within a 117-dimensional response
space; the Euclidean distance between these points provided a measure
of the similarity of the response patterns. By considering a series of
vectors representing consecutive points in time, we were able to
compare responses as they evolved. We found that (as is already evident
from the examples in Figs. 1 and 2) the responses were reliable (Fig. 3):
(i) repeated trials with the same odor and concentration elicited
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Figure 3 Over time, the responses of projection neurons varied more across

odors and concentrations than across trials. The average Euclidian distance

(see text and Methods) for every 50-ms snapshot of the projection-neuron

ensemble response is shown for each of the odor pulse patterns tested

(indicated by red bars on the abscissa). In the ensemble response over time,

repeated trials of the same odor and concentration elicited small variations

from the baseline (red line), whereas trials with changes in concentration of

the same odor (green) or changes of odors at the same concentrations (blue)
elicited, respectively, larger variations from the baseline and from each other.

From top: single 100-ms pulse; three pulses with a 500-ms IPI; three pulses

with a 1,250-ms IPI; ten pulses with a 500-ms IPI. Error bars, s.d.
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Figure 4 Cross-correlations indicate that the response of the projection-

neuron ensemble evolves gradually over the duration of the response.

(a–d) For each delivery pattern of the 1 hexanol odorant, the cross-correlation

coefficients (P o 0.001; see Methods) were calculated between consecutive

50-ms bins of the ensemble response. The cross-correlations obtained from

other odorants were similar. Comparing the response to a single pulse with

itself over time shows a correlated region between 150- and 300-ms wide,

indicating that the subset of projection neurons active during the response
evolves gradually. Also, responses to any given pulse in a train were highly

correlated with other responses to pulses in that train. Red bars, odor pulse

times. (a) Single 100-ms pulse; (b) three pulses with a 500-ms IPI; (c) three

pulses with a 1,250-ms IPI; (d) ten pulses with a 500-ms IPI. Note the

different time scales.
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responses that were similar to one another; (ii) changing the odor
concentration elicited response patterns that quickly began to differ
from baseline and also from patterns elicited by different concentra-
tions; and (iii) changing the odor identity elicited response patterns
that were even further from baseline and from each other.

The patterns of activity elicited by the odorants changed gradually
during and after the stimulus for any given coactivity snapshot,
ensemble responses were highly and significantly correlated with the
responses obtained from snapshots before and after it as is evident in
the correlation plots (Fig. 4a). Further, responses to multiple odor
pulses were highly and significantly correlated with each other
(Fig. 4b–d). Notably, relatively abrupt changes in correlation occurred
during the pulse trains, as new responses appeared to truncate ongoing
responses (Fig. 4b–d).

Visualizing ensemble responses to odor pulses

To visualize the gradually evolving ensemble responses, we first reduced
the dimensionality of the snapshot vectors using local linear embedding
(LLE), a technique suitable for high-dimensional, nonlinear and
gradually changing data26,28 (see Methods). Then, we plotted the first
three dimensions so as to obtain a series of points that, when joined in
sequence, formed a trajectory representing the response over time to
each odor presentation (Fig. 5).

Single, brief pulses of odorant elicited simple response trajectories
looping away from, and then back to, the rest point (Fig. 5a). These
trajectories were constructed by sampling, in brief time bins, the firing

patterns of the projection-neuron ensemble; thus they illustrate the fact
that gradually changing subgroups of projection neurons within the
ensemble were transiently coactive during and after the odor presenta-
tion. Trajectories representing repeated trials were superimposable,
which indicates that ensemble responses were reliable and reproduci-
ble. The trajectories elicited by different odorants looped through
separate regions of the response space because different odors transi-
ently activated different subgroups of projection neurons within the
ensemble. Also, we found that each odor pulse within a train, regardless
of the IPI, elicited a trajectory that looped through and re-circled the
same odor-specific regions of response space as did the single odor
pulse (Fig. 5b–d). The response of the projection-neuron ensemble,
considered piecewise, was odor specific and invariant with respect to
the odor-pulse pattern.
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Figure 5 Visualization of the projection-neuron ensemble responses over time

reveals invariant odor-specific trajectories, regardless of odor delivery pattern.

(a–d) Different odor delivery patterns; colors indicate different odorants. The

trajectories, describing the evolution of the ensemble response over time,

return to the same areas of response space over repeated trials and remain in

the same orientation, regardless of odor delivery pattern. The longer IPI

allows the trajectory to return to the spontaneous state after each pulse;

however, the shorter IPI causes the trajectories to loop away from the
spontaneous state within the odor space. Three-dimensional embedding

using LLE was computed for each time point (100-ms bins), for 5 s from the

onset of the first odor pulse, averaged over three trials. Consecutive time

points were joined together to form distinct trajectories for each odor

response. Short black lines indicate the trajectory point 0.5 s after the onset

of the stimulus; gray arrows indicate the direction of the trajectory over time.

GER, geraniol; OCT, octanol; HEX, hexanol; HXA, hexanal. For clarity, only

responses to the higher concentration of each odor are shown here; the

response trajectories for the lower concentration were shorter but occupied

the same manifolds as did the higher ones. (High- and low-concentration

response trajectories are shown together in Supplementary Fig. 2.)
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Figure 6 Ensemble responses are well classified, regardless of odor delivery

pattern. Any given 50-ms template could effectively classify the odors. Blue

line, result of an unsupervised classification algorithm applied separately to

every 50-ms time bin for all the different odor delivery patterns (red bars on
abscissa). Chance level, 12.5%. Classification success exceeded 80%

throughout, independent of the pulse sequence. Red and green lines

indicate classification performance obtained by applying a single 50-ms bin

‘template.’ Arrows indicate the templates (red, from the single pulse; green,

from the second in the train of ten pulses). Classification success far

exceeded chance for all delivery patterns and registered a peak at the

time of each odor pulse.
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The existence of odor-specific, transiently
coactive subgroups of projection neurons (as
revealed by the distance, correlation and tra-
jectory analyses) suggested that the responses
should contain sufficient information about
the odorants to allow the stimulus to be
effectively classified—even given only brief
snapshots of time. Indeed, we found that a
simple, unsupervised classification algorithm,
using only the eight most significant dimen-
sions in the dataset (see Methods), could
effectively distinguish the eight odor-concen-
tration combinations from one another; using
any given 50-ms time bin during the odor
response, the algorithm was successful at clas-
sifying the odors (80–100% classification suc-
cess), regardless of the pulse pattern (Fig. 6).
Thus, the information available in any brief
snapshot of the ensemble response is sufficient
to classify the odors, independent of their
temporal presentation characteristics.

Recognizing time-varying features of the

odor stimulus

However, the evolving trajectories indicate
gradual, continuous changes in the composi-
tion of odor-specific sets of transiently coactive projection neurons.
This raises interesting questions: (i) if odor recognition requires the
matching of a transient stimulus-elicited activity pattern with a stored
template, do many different templates—each representing different
points along the trajectory—need to be stored?; and (ii) does a template
representing one odor-presentation pattern match the projection-
neuron ensemble activity created by a different presentation pattern
of the same odorant?

We found that projection-neuron ensemble responses evoked by one
presentation pattern were highly and significantly correlated with the

responses evoked by the same odorant presented in a different pattern
(Fig. 7a–d). This suggests that cross-classification should be successful.
We then used our projection-neuron activity vectors as templates, each
template representing a 50-ms snapshot of the ensemble activity evoked
by different odors presented in different patterns. We tried to classify
responses evoked by one presentation pattern using responses evoked
by the other patterns (Fig. 7e–h). The resulting template classification
diagram for single, brief (100-ms) odor pulses reveals an evolving series
of useful templates (Fig. 7e)—no single time bin was optimally effective
during and after the stimulus. However, because the ensemble response
patterns evolved gradually, any given 50-ms template could effectively
classify much longer (150–300 ms-long) portions of the response.

When we applied the template sequence formed from the single
pulse to the responses evoked by a widely spaced (1,250-ms IPI) train of
three pulses, a similar effect emerged (Fig. 7f): odors were successfully
classified throughout the responses—although with the greatest success
during the first part of each response. When the single-pulse template
was applied to a three-pulse train with a shorter (500-ms) IPI,
classification was again successful throughout the responses, but this
time the best classification occurred at the beginning and the end of
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Figure 7 Correlation and classification analyses show that responses to single odor pulses are

comparable to responses during odor pulse trains. (a–h) Correlation (a–d) and classification (e–h)

analyses, comparing responses to single pulses (ordinate) to responses to trains of three or ten pulses

(abscissa) over time, show common response features regardless of the odor presentation pattern. The

common features (subgroups of transiently coactive projection neurons) allow for high levels of

successful response classification, particularly during the onsets and offsets of responses. Correlations

shown are significant (P o 0.001). Classification probabilities were determined as described in Methods

and in Supplementary Figure 5. Red bars on axes represent odor pulse times.
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Figure 8 Kenyon cells fire sparsely throughout the odor responses.

(a) Examples of Kenyon-cell responses to different odors and presentation

patterns. Individual Kenyon cells revealed preferences for odors and response

times. KC 1 and KC 2 were recorded simultaneously; odor 1: 1 octanol; odor

2: trans-2-hexen-1-ol. For KC 3, odor 1: 1 octanol; odor 2: 1 hexanol. KC 1

responded to most presentations of one odorant regardless of presentation

pattern, but did not respond to a different odorant. KC 2 responded reliably

but exclusively to the onset of an odor pulse or train for one odorant, but did
not respond to other odorants. Finally, KC 3 responded to both odorants,

although with differently timed responses for each, firing throughout odor 1,

but only during the ‘after-response’ of odor 2. (b) Histograms of the firing

frequencies, over time, of all 67 examined Kenyon cells, shown for each odor

delivery pattern. Spiking occurred throughout the odor response but was most

frequent at the beginning.
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each pulse in the series (Fig. 7g). The arrival of each new pulse seemed
to truncate the period of classification success, because the onset
responses differed from the offset responses; however, the last pulse
of the train elicited a lengthy offset response that matched the offset
of the single pulse. The response to a ten-pulse train with a
500-ms IPI effectively matched the response to the single pulse, mainly
during the train’s onset but also at other times during each of the ten
pulses (Fig. 7h). We obtained similar results from all possible cross-
classification matches (data not shown).

Thus, a single stored 50-ms template was sufficient for recognizing
the ensemble-wide activity patterns evoked by an odorant, regardless of
the odorant’s presentation pattern (Fig. 6); by tracking the template-
matches over time, we were able to obtain a description of the time-
varying features of the stimulus (its odor, concentration and timing
pattern). Multiple templates, if available, could serve to distinguish and
recognize the onsets of pulses of a given odor.

Responses of downstream neurons to odor pulses

Our analysis of the ensemble response was based on the integration
properties of the projection-neuron followers, the Kenyon cells. Thus,
our analysis leads to predictions for Kenyon cell behavior. Because
different subsets of projection neurons were coactivated by different
odors and because these subsets converge onto Kenyon cells, we
expected the responses in some Kenyon cells to be odor specific.
Further, because the projection-neuron subsets that were coactive
during the brief Kenyon cell integration window continuously changed
during the odor response, we expected that Kenyon cells would respond
to different odors at different times during this evolution. Also, because
the ensemble response patterns elicited by trains of odor pulses tended
to repeat with each pulse (that is, the trajectories re-circled portions of
the same response space), we expected that the Kenyon cells would
respond at particular times during the odor trains. Our recordings
from Kenyon cells confirmed these predictions (Fig. 8), showing that
individual Kenyon cells can respond with some specificity to different
odors and to different temporal features of an odor presentation. Taken
collectively, the data show that the Kenyon cells responded throughout
the ensemble response but most prominently during response onset.

DISCUSSION

We examined how a temporally structured stimulus is encoded by a
temporally structured distributed neural representation. The responses
of individual first-order interneurons (projection neurons in the locust
antennal lobe) indicated that the two types of temporal structures
significantly interfered with each other. However, this potential con-
found was resolved by considering the responses of these neurons in the
context of their ensemble activity; this activity was sufficiently infor-
mative to allow the accurate detection and classification of the invariant
properties of the stimulus and its temporal structure. Second-order
‘decoder’ interneurons (Kenyon cells) responded as predicted on the
basis of the information available in the first-order ensemble response.

Spatiotemporal coding mechanisms—including those subserving
vision1–4, audition5–7, touch8–10 and olfaction11–15—are common in
neural systems. In most cases, neural responses are brief (although
some neurons, such as those in inferior temporal cortex, show
sustained firing following brief visual stimuli1) and seem to track the
stimuli closely. The potential for confounds between temporally
structured stimuli and their neural representations seems greatest in
olfaction, where the response duration in principal neurons often
outlasts the odor stimuli11,14,15.

Olfactory receptor neurons in insects can follow rapid odor-pulse
trains29–32 precisely; in particular, macroglomerular projection

neurons, specialized for pheromone detection, have been shown to
track the timing of pheromone plumes reliably33–35. Some insects, for
example, seem to use this information when moving toward pher-
omone sources36–38. However, non-pheromonal afferent activity that is
relatively stimulus locked is reformatted by the circuitry of the antennal
lobe into complex spatiotemporal activity patterns distributed across
the population of projection neurons11,15,22,26,39. These activity
patterns, which vary with—and thus contain information about—
odor identity and concentration (Figs. 1 and 2), are further parsed into
a series of gradually evolving snapshots, roughly 50 ms long, by an
oscillatory synchronization mechanism driven by the circuitry of the
antennal lobe24. Projection neurons provide the only pathway for
olfactory information from the antennal lobe to reach other neural
targets, including the Kenyon cells. The locust antennal lobe contains
about 830 projection neurons19; recent results suggest that more than
100 of these converge onto each of about 50,000 Kenyon cells (R.A.J.
and G.L., Soc. Neurosci. Abstr. 412, 21, 2004). Odor identity informa-
tion has been shown to be broadly distributed across the ensemble of
projection cells11,24,26. (In the locust, the extent to which this conver-
gence is genetically or otherwise specified is not known; by comparison,
genetic labeling techniques have shown thatDrosophila have some well-
specified connectivity40,41.)

Our analysis adhered to these features of olfactory anatomy and
physiology; we used techniques that permitted us to examine the odor-
elicited responses in an ensemble of more than 100 projection neurons
in a series of brief time bins (Supplementary Fig. 1). Odorants evoked
responses in most projection neurons (Fig. 2). Measures of the inter-
response Euclidean distance (Fig. 3) and cross-correlation (Fig. 4)
indicated (i) that the responses evolved gradually during and after
the stimulus, (ii) that different odor concentrations evoked responses
that differed from each other to some extent, and (iii) that different
odorants evoked responses that differed to a greater extent.
These responses were reliable over repeated trials and could be
visualized as trajectories looping through a high-dimensional repre-
sentation space (Fig. 5, Supplementary Fig. 2). These results confirm
our earlier work26.

Odor stimuli tend to repeat in nature because of iterative olfac-
tory behaviors such as sniffing42 and antennal sweeping43 and also
because of turbulence, which can deliver an odor to receptors as a
series of transient encounters with odor filaments20. We found that,
most of the time, the long, complex projection-neuron responses
to each of the odor pulses within a train interfered with each
other (Fig. 1). Yet we found no projection neurons that closely tracked
trains of all odors, and thus no evidence for a specialized ‘channel’
for stimulus timing as exists in auditory systems. Nonetheless, when
our set of 117 projection neurons was considered together, responses
to multiple and rapid pulses were sufficiently correlated with one
another (Fig. 7) to permit the odors to be accurately classified,
regardless of the odor-pulse presentation pattern (Figs. 6 and 7).
Indeed, trajectory representations of the ensemble response show
largely overlapping, re-circling patterns corresponding to each odor
pulse in a train (Fig. 5). Any given 50-ms time bin contained enough
information to successfully serve as a template to classify odors (Fig. 6).
Further, we found that single 50-ms templates taken from one
presentation pattern could successfully classify responses to other
presentation patterns (Fig. 6); thus, the olfactory system need not
memorize every permutation of odor and presentation pattern in
order to recognize a particular odor in the future. Additionally, by
describing brief portions of odor responses, such as the response onset
(as in Fig. 6), templates can characterize the temporal properties of the
odor stimulus.
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When the IPI was brief, each new ensemble response truncated the
previous one, as is evident in the correlation analyses (Figs. 4 and 7)
and trajectory representations (Fig. 5). This truncation left the early
portion of each response largely intact. Although useful templates
could be drawn from any time in the response, the onset of the response
to each pulse in the train provided the most reliable across-pulse and
across-pattern templates (Fig. 6). Notably, the most effective temp-
lates occurred about 300 ms after the ensemble response onset
(Supplementary Fig. 3)—the earliest time at which maximal odor-
identifying information is available from projection-neuron responses
(see Fig. 6d in ref. 26). Thus, the circuitry of the antennal lobe seems to
be largely ‘reset’ by each new stimulus pulse. As a result, regardless of
the presentation pattern, each odor-specific ensemble response begins
similarly and then follows a similar trajectory.

We observed up to 68% variability in the responses to each
combination of projection neuron and odor; these responses were
calculated cumulatively over either three or ten pulses. However, the
response variability between any one pulse and any other was less than
68%. For example, for the series of three pulses with a 500-ms IPI,
the percentages of neurons that changed their responses significantly
(P o 0.05; see Methods) between the first and second, first and third,
and second and third pulses were 26.67%, 30.1% and 22.3%, respec-
tively. In addition, of the projection neurons that changed their
responses, only 20.62% of the neurons changed their responses across
all pulse pairs. Thus, considered only pair-wise (that is, between any
given pulse and another), most individual projection neurons had
similar responses, thus providing a foundation for extracting invar-
iance. It is critical to note, however, that the subset of projection
neurons that responded consistently for one pair of pulses was not the
same as the subset that responded consistently for a different pair. For
example, only 54.8% of the projection neurons that significantly
changed their responses between the first and second pulses also
changed their responses between the first and third pulses. Our analysis
shows that the problem of response classification can be solved by the
convergence of many projection neurons onto Kenyon cells. The
Kenyon cells each examine a large ensemble of projection neurons,
which—by virtue of its large size—will contain enough projec-
tion neurons that respond consistently to a given stimulus. The
remaining highly variable responses, which could dominate a smaller
ensemble (Supplementary Fig. 4), would be insufficient to prevent
successful classification.

How large should a projection-neuron ensemble be if responses are
to be classified successfully? If we assume that the connectivity between
projection neurons and Kenyon cells is imprecisely specified, Kenyon
cells cannot know which subset of the projection neurons will provide
faithful, stimulus-tracking responses for any given odor and pulse
pattern. With our set of 117 projection neurons, we achieved classifica-
tion success far better than chance (Fig. 6). We also found, not
surprisingly, that response classification deteriorated when we used
successively smaller subsets of projection neurons for our analysis
(Supplementary Fig. 4; see also Fig. 6e in ref. 26). Classification with
smaller projection-neuron ensembles might be possible with more
precisely specified mapping between projection neurons and Kenyon
cells, experience-dependent plasticity or both.

We analyzed brief (50-ms) time bins of activity because Kenyon cells
seem to sample the projection-neuron ensemble on this time scale24. It
is not known whether neurons that succeed Kenyon cells in the
olfactory pathway are able to integrate olfactory information over
longer durations (as was predicted in a previous study44). Not surpris-
ingly, we found that longer templates, formed by concatenating up to
20 of the 50-ms templates, marginally improved odor classification, but

once the template duration exceeded the IPI of the odor train, classi-
fication deteriorated (data not shown). Thus, if the IPI is unpredictable
or variable, as is the case in most natural odor plumes, brief samples of
activity may be of the most general utility. A system designed to use
such samples would function well when it encounters rapid trains of
brief odor pulses (such as, for instance, when an odor source is distant).
When odor samples are encountered at longer and more widely spaced
intervals, the same system could continue to extract and memorize the
additional, partially redundant information available in the longer
responses—consistent with behavioral results showing that animals
require more time to solve difficult olfactory tasks45.

In Kenyon cells, the responses to odors were consistent with the
information detectable by the convergence of multiple projection
neurons: as previously described26, Kenyon cells fired in response to
particular odors and concentrations, and at particular times. Over the
trains of odor pulses, individual Kenyon cells responded reliably at
particular times to the pulses (Fig. 8a, KC 1,2). If a Kenyon cell
responded to more than one test odorant, the response time could
be different for different odorants (Fig. 8a, KC 3). This timing
preference probably results from the transient coactivity of subgroups
of projection neurons that converge onto a given Kenyon cell; through
such convergence, Kenyon cells correspond to particular points along
the response trajectory of the projection-neuron ensemble. As a group,
Kenyon cells responded during and briefly following odor presenta-
tions, with small activity peaks for each pulse; notably, however, most
responses occurred at the onset of each odor train (Fig. 8b). When the
inter-pulse interval was brief (that is, 500 ms), Kenyon cells responded
most often to the first pulse but continued to respond throughout the
train. Given our relatively sparse sampling of the large Kenyon-cell
population, it remains an open and interesting question why the first
pulse elicited the strongest responses.

There is no behavioral evidence to suggest that locusts use informa-
tion about the temporal presentation characteristics of odors. Our
results, however, suggest that such timing information is available
within the olfactory response. We speculate that animals would benefit
from detecting and recognizing characteristic timing features of an
odor plume, such as its onset, continued presence and offset; we predict
that one could, for example, train animals to respond behaviorally to
specific, rewarded temporal features in a complex odor sequence.

Multiple factors seem to underlie the changes in the response
patterns of projection neurons and Kenyon cells over the course of a
rapid train of odor pulses. In projection neurons, these factors include
the cumulative superimposition of long-lasting, odor-driven excitatory
and inhibitory inputs from afferent, projection and local neurons
within the antennal lobe. These factors constrain the firing patterns
of projection neurons and thus constitute the mechanism underlying
the partial circuit reset triggered by each odor pulse. In addition, there
are at least two forms of plasticity: rapid but short-lived adaptation in
odor receptors (detected as decreasing EAG amplitude, Fig. 1); and
gradual but long-lasting ‘fast learning’ within the lobe46,47. Kenyon cells
are additionally influenced by feed-forward inhibition from the lateral
horn24. We are presently exploring these mechanisms and their inter-
actions in detail (S.L.B. and M.S., unpublished data).

METHODS
Animals. Experiments were performed on 116 intact adult locusts (Schistocerca

americana) of both sexes from our crowded colony. Animals were immobilized

and stabilized with wax; one antenna was secured intact and the other

was removed and used to record an electroantennogram (see below).

The brain was exposed, desheathed and superfused with locust saline as

previously described11.
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Odor stimulation. Dried and activated carbon-filtered air (0.75 liter min–1)

flowed continuously across the antenna through a Teflon tube (6.35 mm inner

diameter) placed perpendicular to and within 4 mm of the intact antenna.

A large vacuum funnel was placed 10 cm behind the antenna so as to quickly

remove odorants. Twenty milliliters of each liquid odorant—either neat or

diluted in mineral oil (J.T. Baker)—were placed in 60-ml glass bottles;

the odors, drawn from the headspace above these odorants, were puffed by a

pneumatic picopump (WPI) into the continuously flowing air stream, thus

further diluting the odorant. The timing of odor release was controlled by a

Master-8 stimulus generator (A.M.P.I.) or by a custom computer program. The

odorants used in the intracellular recordings were 1-hexanol, 1-octanol, hexanal

(Fluka), geraniol (Sigma), trans-2-hexen-1-ol and 2-heptanone (Aldrich) as

well as extracts of strawberry, cinnamon, peach, lime (Balducci’s), wintergreen

and Sambuca (Wagner’s), used neat or dilutions of 10:1 and 100:1. For the

extracellular recordings, 1-hexanol, geraniol, 1-octanol and hexanal were used

neat and at 100:1 dilutions (denoted throughout the text as 1 and 0.01).

Electrophysiology. Electroantennogram recordings (EAGs) were made by

inserting chlorided silver wire electrodes (0.127 mm diameter, WPI) into the

cut ends of an isolated antenna. Wires were secured with small drops of wax

and fed into a DC amplifier (Brownlee Precision). Intracellular recordings were

made from neurons in the antennal lobe using sharp glass micropipettes (outer

diameter 1.0 mm; Warner Instruments); these had been pulled with a

Sutter P97 horizontal puller (Sutter Instruments) and filled with 0.5 M

potassium acetate and 5% neurobiotin (Vector Laboratories) to yield resis-

tances of 80–230 MO. The data were digitally acquired at a sampling rate of

5 kHz (LabView software; PCI-6602 DAQ and PCI-MIO-16E-4 hardware,

National Instruments) and stored on a PC hard drive; they were then analyzed

off-line using MATLAB (MathWorks).

Multiunit recordings from the projection neurons were made using

16-channel, 4 � 4 silicon probes (NeuroNexus Technologies) and from the

Kenyon cells using custom-made twisted wire tetrodes24 with a 16-channel DC

amplifier (Biology Electronics Shop, Caltech). The data were digitally sampled

at 15 kHz. Multiunit projection-neuron and Kenyon-cell spike sorting was

achieved offline by a four-wire, whole-waveform algorithm (Spike-O-Matic48)

implemented in Igor (Wavemetrics). Spike sorting was conservative: we

analyzed only those clusters that were unambiguously defined and clearly

separated from one another throughout the experiment. The criteria we used to

select these clusters included the following: (i) nearest cluster projections had to

lie at least 5 standard deviations (s.d.) apart, (ii) no more than 2% of the ISIs

were under 20 ms and (iii) the waveform s.d. could not exceed 5%. These

criteria are described elsewhere48.

Analysis. All analyses were performed using custom programs in MATLAB. To

determine whether the odor-elicited spike numbers changed significantly with

pulse position, we used the following algorithm: (i) we evaluated whether a

particular combination of odor and projection neuron elicited spikes—defined

as an increase over the baseline firing rate by 6.5 s.d., in any post-stimulus

50-ms bin (this procedure yielded response detection that closely matched an

observer’s judgments); (ii) we then performed a two-way analysis of variance

(ANOVA) on the spike counts obtained, over ten repeated trials, during the

500 ms after each pulse.

To analyze the response of the projection-neuron ensemble (117 projection

neurons) over time, we constructed a series of 117-dimensional vectors, each

representing the ensemble’s firing during a single 50- or 100-ms time bin; each

vector element consisted of the number of spikes in a single projection neuron

during the time bin. We refer to these vectors as snapshots, as they represent the

ensemble response at a moment in time.

Beginning at 2 s before the first odor pulse, we collected data for a total of

15 s; then, to measure the Euclidean distance between ensemble response

vectors, these data were binned into 50-ms time bins. The Euclidean distance

for one group (that is, all trials, odors or concentrations) is given by the average

across all pairs within the group. For two groups, the distance is given by the

average across all pairs from the two groups.

The cross-correlations between the response vectors were computed for each

combination of time bins in the ensemble response as follows: if x is the

117-dimensional vector representing the response to a given odor, then for the

ith trial, x(i), the cross-correlation between the responses at times k and l (that

is, xk(i) and xl(i)) is calculated as

X10

i¼ 1

xT
k ðiÞxlðiÞ

 !
=

X10

i¼ 1

xT
k ðiÞxkðiÞ

 ! X10

i¼ 1

xT
l ðiÞxlðiÞ

 ! !1=2

We then averaged across odors to get the cross-correlation at the (k,l)th point in

the plot. Estimates were made using ten trials, and only correlations with

significance of P o 0.001 (t-test) are shown.

For nonlinear dimensionality reduction with locally linear embedding

(LLE)28, we used code from S. Roweis (http://www.cs.toronto.edu/~roweis/

lle). The LLE method first finds a linear transformation, invariant to rotation

and scaling, that represents each point in terms of each of its neighbors. Then a

representation with reduced dimensionality is calculated by estimating a new set

of points that satisfies the above transformation with respect to all the points.

When applied to our data, principal component analysis (PCA) yielded results

that were qualitatively similar to those from LLE, but—because our high-dimen-

sional data were not well described by linear functions—LLE characterized and

separated the response trajectories more effectively. The input to LLE consisted

of the 117-dimensional snapshot vectors, each 100-ms wide and averaged over

three trials. Qualitatively similar results were obtained using 50-ms time bins.

LLE was calculated for the four different pulse sequences jointly and later plotted

on separate, matching axes. LLE gave qualitatively similar results for a wide

range of neighborhood values (between 10 and 20), indicating the genuine pres-

ence of low-dimensional manifolds that are well characterized by this analysis.

For the classification analysis, we used the 50-ms time bins. The high

dimensionality of our dataset could permit spurious over-classification of

odors; to avoid this, we first reduced the dimensionality of our dataset using

PCA. For classification based on templates, we applied the k-means function in

MATLAB to the first eight dimensions in our dataset. Our choice of eight

dimensions (which together contributed 32% of the variance) was based on

standard practice: we identified the elbow in a scree plot of our eigenvalues49.

Neighbors were decided on the basis of the Euclidean distance. For template-

based classification, the templates were the centroids of ten repeated trials. To

estimate the confidence level of our template-based classification, a histogram

of the percentage of template-based classification was calculated from ensemble

activity at times before the odors were presented; the probability of obtaining

430% classification success in the absence of a stimulus was o0.002

(Supplementary Fig. 5).

We pooled projection neurons sampled from 14 experiments to approxi-

mate a single, large (technically unfeasible) recording from a single animal.

This raises the possibility of including in our set multiple examples of the same

projection neuron from different animals. However, an inspection of the odor

responses of our 117 projection neurons suggested that no duplicates existed.

Further, we performed a 10,000-iteration Monte Carlo simulation of our

sampling process with the same numbers of projection neurons (between 3

and 17) and animals (14) as in our data. Results showed a non-zero, but very

small, probability for the duplication of any projection neuron (see Supple-

mentary Fig. 6; for a discussion of this issue, see ref. 26).

Note: Supplementary information is available on the Nature Neuroscience website.
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