Martin Chalfie

Columbia University
Biological Sciences
1012 Fairchild Center, M.C. 2446
New York, N.Y. 10027

Neurolunch Schedule |
Go to Chalfie HomePage
Return to Biology HomePage

We are using the nematode Caenorhabditis elegans to investigate aspects of nerve cell development and function. The wealth of developmental, anatomical, genetic, and molecular information available for C. elegans provides a powerful and multifaceted approach to these studies. Our work has focused on the study of a set of six neurons that are the sensory receptors for gentle touch (the touch cells), to address two questions: 1) How is neuronal cell fate determined? and 2) What is the molecular basis of mechanosensation, a sensory modality that underlies a variety of senses(e.g., touch, hearing, and balance)? We also work on neuronal degeneration, microtubule structure and function, channel structure and function, and, most recently, synapse specification and aging. Facilitating these studies is the development of new experimental methods, such as green fluorescent protein as a gene and protein marker and a novel method to generate subtractive cDNA libraries.

We initially approached touch cell development by mutational analysis, obtaining more than 500 mutations (in 17 genes) that produce a touch insensitive phenotype. These touch genes are needed for the generation, specification, maintenance, and function of the cells. The first three groups contain genes that regulate touch cell development, and the last group (function) contains genes that are developmental targets of this regulation. Many of the genes that regulate touch cell differentiation are transcription factors. In addition we have identified seven other genes that in combination with these genes specify the number and differentiation of the touch cells. Twelve touch genes are needed for touch cell function. The cloning and characterization of these genes have provided the first molecular model for eukaryotic mechanosensation. In this model a channel similar to the epithelial sodium channel in vertebrates is attached to the extracellular matrix via an extracellular gating domain on the channel and is attached intracellularly to a unique form of the microtubule. An implication of this dual tethering is that the channel could be deformed (and opened) by displacement of the microtubules by the touch stimulus. We are currently testing the predictions of this model, biochemically and electrophysiologically. In addition, we have recently developed methods to quantify the forces needed to stimulate the touch cells, which we are adapting to look for mutants that are supersensitive to touch.

The unc-4 gene encodes a homeodomain transcription factor needed for the formation of specific interneuron synapses onto a single class of C. elegans motor neurons. We have identified several genes whose expression is reduced in unc-4 animals using a new subtractive library method. Our working hypothesis is that these genes, several of which encode membrane or secreted proteins, permit appropriate synapse formation, prevent inappropriate synapse formation, or mature or maintain appropriate synapses once they have formed.

The subtractive library method serendipitously allowed us to identify a mutation in a C. elegans catalase gene. Unlike previously known animal catalases, the product of this gene is not localized to peroxisomes, but is found throughout the cytosol. We have shown that this catalase is needed for the increase in adult life-span seen in several C. elegans mutants, suggesting that oxidative damage is an important factor in organismal aging. We are currently searching for other mutants that affect life-span in C. elegans.

Representative Publications

J. Wu, A. Duggan, and M. Chalfie (2001) Inhibition of touch cell fate by egl-44 and egl-46 in C. elegansGenes Develop. 15: 789-802.

H. Du and M. Chalfie (2001) Genes regulating touch cell development in C. elegans. Genetics 158: 197-207.

Taub J., Lau, J. F., Ma, C., Hahn, J. H., Hoque, R., Rothblatt, J., and Chalfie M. (1999) A cytosolic catalase is needed to extend adult life-span in C. elegans daf-c and clk-1 mutants. Nature 399: 162-166. Abstract

Duggan, A., Ma, C., and Chalfie, M. (1998) Regulation of touch receptor differentiation by the C. elegans mec-3 and unc-86 genes. Development 125: 4107-4119. Abstract

Hall, D. H., Gu, G., Garcma-Aqoveros, J., Gong, L., Chalfie, M., and Driscoll, M. (1997) Neuropathology of degenerative cell death in C. elegans. J. Neurosci. 17: 1033-1045. Abstract

Gu, G., Caldwell, G.A. & Chalfie, M. (1996) Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 93:6577-6582.Abstract

Du, H., Gu, G., William, C.M. & Chalfie, M. (1996) Extracellular proteins needed for C. elegans mechanosensation. Neuron 16:183-194.Abstract

Garcia-Anoveros, J., Ma, C. and Chalfie, M. (1995) An extracellular domain regulates degenerin channel activity. Curr. Biol. 5:441-448.Abstract

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science 263:802-805.Abstract

Huang, M., and Chalfie, M. (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467-470.Abstract

Savage, C., Xue, Y., Mitani, S., Hall, D., Zakhary, R. & Chalfie, M. (1994) Mutations in the Caenorhabditis elegans beta-tubulin gene mec-7: effects on microtubule assembly and stability and on tubulin autoregulation. J. Cell. Sci. 107:2165-2175. Abstract

Xue, D., Tu, Y. and Chalfie, M. (1993) Cooperative interaction between the C. elegans homeoproteins UNC-86 and MEC-3. Science 261:1324-1328.Abstract

Mitani, S., Du, H., Hall, D.H., Driscoll, M., and Chalfie, M. (1993) Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119:773-783.Abstract

Driscoll, M. and Chalfie, M. (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588-593.Abstract

Chalfie, M. and Au, M. (1989) Genetic control of differentiation of the C. elegans touch receptor neurons. Science 243:1027-1033Abstract

Courses Taught:

Course Number  Title 
W3032 Genetics 

Lab Members

Back to the top | MedLine List of Chalfie's Publications | Return to Biology Homepage