In-Situ CO₂ Capture Using CaO/γ-Al₂O₃ Washcoated Monoliths for Sorption Enhanced Water Gas Shift Reaction

Melis S. Duyar, Robert J. Farrauto, Marco J. Castaldi, Tuncel M. Yegulalp

ABSTRACT:

In-situ capture of CO₂ allows the thermodynamically constrained water gas shift (WGS) process to operate at higher temperatures (i.e. 350°C) where reaction kinetics are more favorable. Dispersed CaO/ γ -Al₂O₃ was investigated as a sorbent for in-situ CO₂ capture for an enhanced water gas shift application. The CO_2 adsorbent (CaO/ γ -Al₂O₃) and WGS catalyst $(Pt/\gamma-Al_2O_3)$ were integrated as multiple layers of washcoats on a monolith structure. CO₂ capture experiments were performed using thermal gravimetric analysis (TGA) and a bench scale flow through reactor. Enhancement of the water gas shift (EWGS) reaction was demonstrated using monoliths (400 cells/in²) washcoated with separate layers of dispersed CaO/γ -Al₂O₃ and Pt/ γ -Al₂O₃ in a flow reactor. Capture experiments in a reactor using monoliths coated with CaO/γ -Al₂O₃ indicated that increased concentrations of steam in the reactant mixture increase the capture capacity of the CO₂ adsorbent as well as the extent of regeneration. A maximum capture capacity of 0.63 moles CO₂/kg sorbent (for 8.4% CaO on γ -Al₂O₃ washcoated with a loading of 3.45 g/in³ on monolith) was observed at 350°C for a reactant mixture consisting of 10% CO₂, 28% steam and balance N₂. Hydrogen production was enhanced in the presence of monoliths coated with a layer of $1\% Pt/\gamma - Al_2O_3$ and a separate layer of 9.4% CaO/ γ -Al₂O₃; A greater volume of hydrogen compared to the baseline WGS case was produced over a fixed amount of time for multiple cycles of EWGS. The CO conversion was enhanced beyond equilibrium during the period of rapid CO₂ capture by the nano-dispersed adsorbent. Following saturation of the adsorbent, the monoliths were regenerated (CO₂ was released) in-situ, at temperatures far below the temperature required for decomposition of bulk CaCO₃. It was demonstrated that the water gas shift reaction could be enhanced for at least 9 cycles with in-situ regeneration of adsorbent between cycles. Isothermal regeneration with only steam was shown to be a feasible method for developing a process.

http://pubs.acs.org/doi/abs/10.1021/ie402999k