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Abstract. Systems with multiple time scales, and with forces which can be sub- 
divided into long and short range components are frequently encountered in com- 
putational chemistry. In recent years, new, powerful and efficient methods have 
Iwen developed to reduce the computational overhead in treating these problems in 
lrlolecular dynamics simulations. Numerical reversible integrators for dealing with 
these problems called r-RESPA (Reversible Reference System Propagator Algo- 
rithms) are reviewed in this article. r-RESPA leads to considerable speedups in 
generating molecular dynamics trajectories with no loss of accuracy. When com- 
bined with the Hybrid Monte Carlo (HMC) method and used in the Jump-Walking 
and the Smart-Walking algorithms, r-RESPA is very useful for the enhanced sam- 
pling of rough energy landscapes in biomolecules. 

1 Introduction 

Molecular Dynamics (MD) is one of the major tools in the arsenal of computa- 
tional chemistry and physics. It grew out of attempts to understand the static 
and dynamical properties of hard sphere fluids and its first appearance[l, 21 
was in a form applicable to impulsive forces (1957). Several years later (1964), 
R,ahman extended MD to monoatomic liquids in which the atoms interact 
pairwise through the Lennard-Jones pair potential. [3] This major develop- 
rrient was followed soon after (1968) by the first application of MD to fluids 
containing diatomic molecules[4, 51 interacting through continuous potentials 
and then to triatomic molecules[6] (1971). It was these applications of MD to 
rrlolecules interacting through continuous force fields that set the stage for all 
subsequent applications of MD in computational chemistry. Several excellent 
lnonographs exist which treat the methodology in detail.17, 8, 9, 101 

One of the problems encountered in applying molecular dynamics to the 
simulation of complex systems is the presence of both fast and slow degrees 
of freedom. One must choose a small time step to achieve stable integration 
of the equations of motion for the fast motion and must then generate a 
very large number of time steps to achieve sufficient sampling of the slow 
degrees of freedom. Another major bottleneck is the calculation of the long 
range electrostatic forces. These are called "intrinsic" multiple time scale 
problems. 
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Even with fast methods for generating molecular dynamics (MD) or 
Monte Carlo (MC) trajectories, the problems of sampling conformational 
states separated by large energy barriers remains an obstacle to  progress. 
This problem raises another and more serious kind of multiple time scale 
problem - one due to  the presence of a rugged energy landscape with the 
attendant separation of time scales arising from activated barrier crossing. 
This latter problem will be refered to as the "extrinsic" multiple time scale 
problem. 

In recent years a variety of powerful new molecular dynamics and Monte 
Carlo methods have been developed to address the "intrinsic" and "extrinsic" 
multiple time scale respectively. Accurate numerical integrators are required 
for questions involving real dynamical problems such as transport and en- 
ergy relaxation. Thus in Sec. 2 we discuss accurate numerical integrators for 
"intrinsic" multiple time scale problem. On the other hand, in the simulation 
of biomolecular systems, one is often interested in computing equilibrium 
averages and thermodynamic quantities. For this purpose, the exact time de- 
pendence is not required, since all that is needed is the correct and efficient 
sampling of the thermally accessible configurations of the system, a prob- 
lem made difficult by the "extrinsic" multiple time scales connected with 
the omnipresent energy barriers in systems with rough energy landscapes. 
A variety of techniques, such as stochastic dynamics, Monte Carlo, Hybrid 
Monte Carlo, J-Walking etc can be used, some of which are discussed in 
Sec. 3. First new met hods for generating accurate dynamical trajectories are 
described and then methods based on inaccurate dynamics for sampling state 
space in systems with rough energy landscapes are treated. 

2 Methods for Dealing with the Intrinsic Multiple 
Time Scale Problem in Molecular Dynamics 

In complex systems the set of fast degrees of freedom arises both from vibra- 
tions of stiff bonds or particles with small mass. An example of the latter is 
the fast vibrational motions of the C-H and 0-H bonds in biomolecules and 
the 0-H bonds of water. In systems with multiple time scales it is necessary to 
choose a time step much smaller than the periods of the fastest motions and 
to recalculate the forces after each small time step. It then requires very long 
runs to sample the conformational space of the slower degrees of freedom. 
To bypass this problem some fast degrees of freedom can be eliminated by 
constraining the length of the stiff bonds.[ll] Constrained molecular dynam- 
ics suffers from several problems: (a) bond constraints introduce additional 
angular correlations is torsion angle distribution functions that are not found 
in the flexible systems in nature; (b) constraints cannot be used to eliminate 
problems like the fast librational motion of water; (c) the integrators often 
used in constrained MD are neither reversible nor symplectic. This latter 
problem means that constrained dynamics cannot be wed to Monte Carlo 
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methods like Hybrid Monte Carlo[l2] which require reversible integrators to 
insure detailed balance. 

In conventional MD the forces are recomputed after each time step. The 
force calculations account for as much as 95% of the CPU time in an MD sim- 
~xlation. In systems with long range forces, the force computation becomes the 
rnajor bottleneck to the computation. When using the direct pairwise evalu- 
ation, the computational effort required to compute the long-range Coulomb 
forces on N interacting particles is of order N ~ .  A variety of strategies, such 
:is the fast multipole method and the particle-particle-mesh Ewald method, 
have been introduced to reduce the computational effort in calculating the 
forces. Building on earlier reference system propagator algorithm (RESPA) 
based integrators,[l3, 14, 15, 161 a class of new reversible and symplectic 
integrators have been invented that greatly reduces the "intrinsic" multiple 
tirrie scale problem. By using a reversible Trotter factorization of the classical 
propagatorjl71 one can generate simple, accurate, reversible and symplectic 
integrators that allow one to  integrate the fast motions using small time steps 
and the slow degrees of freedom using large time steps.[l7] This approach al- 
lows one to split the propagator up into a fast part, due to the high frequency 
vibrations, and slow parts, due to short range, intermediate range, and long 
range forces, in a variety of ways. These new integrators, called reversible ref- 
erence system algorithms (r-RESPA), require for the treatment of all-atom 
force fields no more CPU time than constrained dynamics and often lead 
to even larger improvements in speed. Although r-RESPA is quite simple 
to implement, there are many ways to factorize the propagator. A recent 
paper shows how to avoid bad strategies.[l8] Applications of these methods 
to Car-Parrinello ab initio molecular dynamics has resulted in speedups by a 
factor of approximately five in semiconductor materials. [l9, 20, 211 There has 
been significant progress in recent years to apply these methods to systems 
of biological relevance.[22, 23, 24, 25, 261 

2.1 Background 

As is well known, Molecular Dynamics is used to simulate the motions in 
many-body systems. In a typical MD simulation one first starts with an initial 
state of an N particle system = (x l , .  . . , x f ,  p l ,  . . . , p f )  where f = 3 N  is 
the number of degrees of freedom in the system. After sampling the initial 
state one numerically solves Hamilton's equations of motion: 

subject to the initial conditions. Although there are many possible finite 
difference approxirr~:itiork or integrators[i] to solve the equations of motion, 
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we will focus on the Verlet integrator.1271 Over the years this integrator has 
undergone various extensions and modifications. For example, Andersen et 
al. have introduced the velocity Verlet integrator.[28] In this integrator, the 
positions xi(At) and velocities xi(At) after one time step At are related to 
the positions ~ ~ ( 0 )  and velocities ~ ~ ( 0 )  = ~ ~ ( 0 )  = pi(O)/m at  the beginning 
of the time step by: 

At 
xi (At) = xi (0) + [F, ({xi (0))) + Fi ({xi (At)})] 2m 

for i = 1 , .  . . , 3 N ,  where Fi = -aU({xi))/axi is the force on the coordinate 
X i .  The forces at  any time can be computed from the potential function 
U({xi}) and are functions of all of the position coordinates at that time. 

One property of the exact trajectory for a conservative system is that, 
the total energy is a constant of the motion. 1121 Finite difference integrators 
provide approximate solutions to the equations of motion and for trajectories 
,generated numerically the total energy is not strictly conserved. The exact 
trajectory will move on a constant energy surface in the 6N dimensional 
phase space of the system defined by, 

The numerical trajectory will wander off this energy surface. If the trajectory 
is stable it will wander on an energy shell 

The smaller the time step At used in the integrator, the more accurate will 
be the trajectory and the smaller will be the thickness of the energy shell 
on which the trajectory wanders. If the time step is too large the integrator 
will generate an unstable trajectory and the energy will diverge after a small 
number of time steps. This will happen if during a time step the errors in the 
new positions give rise to very large changes in the forces between particles. 
Then on the next time step the particles will speed up giving rise to still 
larger errors in the next positions and to even larger changes in the forces. 
This situation eventually results in disaster. In general, one must choose time 
steps sufficiently small that the forces do not change significantly. This means 
that the time step must be small enough for the fastest motions in the system- 

One of the advantages of the Verlet integrator is that it is time reversible 
and symplectic[30, 31, 321. Reversibility means that in the absence of numer- 
ical round off error, if the trajectory is run for many time steps, say nAt, 
and the velocities are then reversed, the trajectory will retrace its path and 
after nAt more time steps it will land back where it started. An integrator 
can be viewed as a mapping from one point in phase spacr: to another. If this 
mapping is applied to a measurable point set of states a.t ono tirnc, it will 
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rriap these states to  another measurable point set. If the mapping is syrnplec- 
tic, the measure of the initial point set will be equal to the measure of the 
final point set. The mapping then satisfies Liouville's Theorem[l2] and con- 
serves the measure in phase space. Thus, like the exact solution of Hamilton's 
c.clliations of motion, symplectic integrators, such as the Verlet integrator (see 
];;(l. 2) , are reversible and measure conserving. In recent years it has been 
~l~lderstood that symplectic integrators are more stable than non-symplectic 
i~it~cgrators. [31, 321 It can be shown that dynamics generated by a symplectic 
iritxgrator will conserve not the true Hamiltonian, but rather a modified, time 
stcp dependent Hamiltonian, H ( A ~ )  in one dimension and is postulated to 
rlo so in many dimension [33]. This theorem guarantees that Eq. 4 will hold 
for all time, t and that the integrator will be stable. 

2.2 Integrators Generated from Factorizing the Classical 
Propagator 

I3cifore discussing the method for handling the problem of multiple time step 
~rlolecular dynamics, it is useful to show how simple operator algebra can be 
ilsnrl to generate reversible integrators.[l7] The starting point for this is the 
tldinition of the classical Liouvillian, a Hermitian operator on functions of 
t kic state variables. The Liouvillian is defined in terms of the Poisson Bracket, 
{ ,  H), of whatever it operates on with the Hamiltonian H of the system. In 
Cartesian coordinates it has the form, 

where F is the force (F = -dV/dx), V(x) is the potential function, X = p X / m  
is the velocity and p is the momentum. For simplicity of notation we treat 
only a one dimensional system (one position coordinate and one conjugate 
I tiomentum) ; nevertheless it should be recognized that for general systems 
the Liouvillian involves a sum over all degrees of freedom. 

The operator, 

is the propagator of the classical motion. Thus the state of the system after 
one time step At is found by applying the propagator to the initial state so 
that 

Now assuming any decomposition of the Liouvillian into two parts, 
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one can use the reversible Trotter factorization of the propagator to approx- 
imate the true propagator, 

Applying this to an initial state of the system represented by the column 
vector, 

gives the state after one time step At,  

If we subdivide the Liouvillian into the two parts by separating the force and 
velocity terms, 

d 
iL1 = F- d and iL2 =X-, 

~ P X  dx 

and apply this factorization to the propagator, we obtain: 

Each of the factorized operators are displacement operators and can thus be 
applied seriatim to  the initial state vector to give the final solution, 

This procedure is then repeated after each time step. Comparison with Eq. (2) 
shows that the result is the velocity Verlet integrator and we have thus derived 
it from a split-operator technique; which is not the way that it was originally 
derived. A simple interchange of the L1 and L2 operators yields an entirely 
equivalent integrator, 

which by symmetry we call the position Verlet integrator, an integrator of 
the same accuracy as the velocity Verlet integrator. 

An interesting property of these integrators is that the Jacobian of the 
transformation from the state at  time 0 to the time At is 
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Thus these integrators are measure preserving and give trajectories that sat- 
isfy the Liouville theorem.[l2] This is an important property of symplectic 
integrators, and, as mentioned before, it is this property that makes these 
integrators more stable than non-sy mplectic integrators. [30, 331 

By now it should be clear that this kind of operator algebra can be a 
useful method for generating integrators. We show, in the following, how it 
can be applied to generate a wide variety of methods for treating the multiple 
tirne scale problem. 

2.3 Reference System Propagator Algorithms 
Tlle aforementioned factorizations of the classical propagator can be used 
to generate efficient reversible and symplectic integrators for systems with 
lorig and short range forces and for systems in which the degrees of freedom 
car1 be subdivided into fast and slow subsets. All of the methods described 
helow are called Reference System Propagator Algorithms (RESPA); a name 
that we gave to  our initial attempts to use an underlying reference system 
1)ropagator for the fast motion. This early effort resulted in non-reversible 
iritegrators.[l3, 14, 15, 161 If the Liouville operator of the system is decom- 
posed into a "reference system" part, iLref,  and a "correction part", ibL, 
i ts  

Trotter factorization of the propagator then leads to 

e i L A t  i b L A t / 2  i L r e f A t e i G L A t / 2  - e e (18) 

I r l  this context the velocity Verlet integrator is equivalent to  taking the ref- 
crence system to be the dynamical system with all of the forces turned off; 
t h t  is, the ideal gas system. In some cases the reference system can be solved 
;irialytically, and we refer to these methods as the Numerical Analytical Prop- 
agator Algorithm (NAPA). The development of symplectic, reversible RESPA 
(r-RESPA) integration methods grew out of our earlier attempts to devise 
rriiiltiple time scale integrators based on the generation of the dynamics of a 
rcfcrence system and, in principle, exact correction to it.[13, 14, 15, 161 The 
latter, being non-reversible, guided us in the direction of analyzing the struc- 
t.lire of the classical propagator and the use of the symmetric Trotter factor- 
ization. In fact in the development of r-RESPA and r-NAPA we have adopted 
many of many of the strategies used in our earlier non-reversible RESPA (nr- 
R.ESPA).[17] All of these r-RESPA integrators are also symplectic. First we 
tmat the problem where there are fast and slow degrees of freedom (or light 
arid heavy particles). Then we treat the case where the forces can be subdi- 
vided into short and long range components. Finally, we show how the long 
ant1 short range force factorizations can be combined with the fast and slow 
factorization yielding a speedup which is approximately the product of the 
spoedups achieved when thcse factorizations are used separately. There are 
rriany variations o11 the tlhorric intxoduced here. 
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2.4 Fast and Slow Processes 

In many cases the dynamical system consists of fast degrees of freedom, 
labeled X ,  and slow degrees of freedom, labeled y. An example is that of a fluid 
containing polyatomic molecules. The internal vibrations of the molecules arc 
often very fast compared to their translational and orientational motions. 
Although this and other systems, like proteins, have already been treated 
using RESPA,[17, 34, 22, 23, 24, 25, 261 another example, and the one wn 
focus on here, is that of a system of very light particles (of mass m) dissolved 
in a bath of very heavy particles (mass M).[14] The positions of the heavy 
particles are denoted y and the positions of the light particles are denoted by 
X. In this case the total Liouvillian of the system is: 

where 

With this break up the reversible Trotter factorization of the propagator is 

For the slow (y) motion the time step At may be chosen large whereas for the 
fast motion this time will be too large. Thus this propagator can be expressed 
as; 

where 

and At = ndt, where n is a whole number. The r-RESPA integrator involves 
the following: the heavy particles are integrated for one half of one large time 
step At/2, the light particles are then integrated for nl small time steps 6t, 
such that At = ndt, and the heavy particles arc int:c~grstod for onc half of one 
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large time step. A simple example of fortran pseudocode for this is: 

v r - " + 4 $  
end do 

wliere we designate the fast motion by subscript I (standing for light particles) 
i~11d the slow motion by subscript h (standing for heavy particles). 

This procedure is very cost efficient when the fast (or light) particles are 
t,hc? dilute component because then one only has to update the forces on the 
J L C ~ L V Y  particles (the expensive part of the computation) every large time step 
instead of every small time step as would be the case in the straightforward 
;l.pplication of the Verlet integrator. For example when applied to a system 
cboritaining 64 particles of mass 1 dissolved in 800 solvent atoms of mass 
100, the CPU time for the full simulation took only slightly longer than it 
woilld if the complete system was made up of heavy particles.[14] In contrast, 
il.pplication of the usual Verlet integrator using the small time step required 
for the light particles but evaluating all the forces after each one of these 
snlczll time steps required approximately ten times the CPU time used in the 
R.ESPA integrator. The same accuracy was achieved in these two different 
tlreatments. 

Another important application of this strategy was to the vibrational re- 
laxation of a stiff diatomic molecule dissolved in a Lennard-Jones solvent. As 
is typical of such problems, the frequency of the oscillator can be an order of 
lrlagnitude or more larger than the typical frequencies found in the spectral 
clerisity of the solvent. Thus very small time steps are required to to integrate 
tlhe equations of motion, but because there are very few accepting solvent 
rrlodes at the frequency of the oscillator, its vibrational relaxation time will 

very long, largely occurring by a multiphonon mechanism. In the past 
it was not practicable to simulate these processes directly. Using a form of 
1-RESPA modified for the specific case of an oscillator dissolved in a slow 
solvent, we have been able to reduce the CPU time required for these calcu- 
littions by factors of ten in many cases making possible the direct simulation 
o f  such energy tra.rlsfer 1)rohlrms.[34] When this strategy has been applied to 
t;lio calculation of t811(. iuld R.ama11 spectrum of crystalline buckminster- 
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fullerene, speedups of as much as a factor of forty have been obtained.[%] 
It is important to note that the strategy outlined here is a direct generaliza- 
tion of the strategy we introduced in our original RESPA papers,[l3] and is 
distinct from other attempts to deal with multiple time scales. 

2.5 Long and Short Range Forces 

Another immediate application of r-RESPA is to the case when the force 
can be subdivided into a short range part and a long range part. One way 
for effectuating this break up is to introduce a switching function, s(x) that 
is unity at  short inter-particle separations and 0 at  large inter-particle sep- 
arations. We introduced this strategy in our earlier non-reversible RESPA 
paper[l5] where we expressed the total force as, 

The switching function s(x) was taken to be a sigmoidal function (usually a 
cubic spline) whose inflection point (switching point) and skin-depth can be 
optimized. The short range force F,(x) = s(x)F(x) defines the time step to 
be used in a molecular dynamics calculation. In the velocity Verlet integrator 
one must compute the full force after each time step. If only the short range 
force were present, the CPU cost would be small because each particle would 
only interact with its nearest neighbors. It is the long range force 6 ( x )  = 
(1 - s(x)) F (x )  which is costly to calculate. We introduced this strategy into 
the r-RESPA propagator factorization,[l7] and as with the non-reversible 
RESPA, we showed that this can significantly reduce the CPU cost of the 
simulation. 

Introducing the above force breakup into the Liouvillian gives, 

The system defined by the Liouvillian L, is called the reference system. NOW 
applying the Trotter factorization to  the propagator exp(iLs + F I $ - ) A ~  
arising from this subdivision gives the new propagator,[l7] 

where with At = n6t 
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Thus the propagator in Eq. (27) produces the following dynamics algorithm: 

6 t  v + v + F s G  
end do 

Note that while the velocities will be updated on two different time- 
scales, the positions will be updated using only the smallest time-step. This 
I)rocedure[17] allows one to update the expensive long range force much less 
frequently than updating the cheap short range forces and thus saves CPU 
time without sacrificing accuracy. Even for simple systems like a liquid con- 
sisting of atoms interacting through a Lennard-Jones potential this procedure 
I(\ads to  a speedup of as much as 400%. It is important to note that if one 
t,akes the switching function to be a Heaviside function, an approximation 
 lot recommended, the factorization of the propagator introduced reduces to 
t.he so called Verlet I integrator introduced by Grubmuller et aE..[36] How- 
cwr, factorizations like the one in Sections 2.4 and 2.6 are distinct from the 
Vcrlet I integrator and are not treated in ref. [36]. This should dispell some 
c.orlfusion with respect to these issues. 

It is worth calling to attention one difference between the force subdi- 
vision used in r-RESPA[17] and the one used in the original non-reversible 
RESPA.[15] In the non-reversible RESPA paper we included the value of the 
long range force at  the beginning of the time interval into the reference sys- 
tkrn equation of motion which was then integrated for n small time steps. We 
t h n  solved the correction equation involving the difference between the true 
for-ce and the reference system force for one large time step. This was shown 
t,o lead to a more stable integration scheme with much smaller long time drift 
t,llan when the long range force was not introduced into the reference set of 
c1quations. Unfortunately, in the r-RESPA factorization there is no way to 
ilit,roduce the long range force at the beginning of the interval into the refer- 
( m e  system propagator because that would remove reversibility. Strategies 

being developed to implement such effects in new reversible integrators 
[37] . 

2.6 Combining Force Subdivision and Dynamic Subdivision 

'Phe preceding breakup for light and heavy particles can be combined with 
1)rcaking the forces up into short and long range forces in r-RESPA[17] in a 
siiliilar manner to what was done in non-reversible RESPA. [l61 We can then 
fiirther factorize thr thme propagators appearing in Eq. (22) by using the 
f:~c~t,orii..ation usrd to g(:l lr~.;~to t,llr velocity Verlet integrator with the forces 
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divided into short and long range parts. This yields the propagator for one 
large time step: [l71 

where 
a + ~ ~ , ~ ( x , y ) &  e i ~ x s d t e % - ( ~ ~ ( ~ 7 ~ ) ~ ,  ($2 (At) = e 

and the middle propagator for X is integrated as: 

Likewise, the middle propagator for y is integrated 7x2 times with a time step 
of At, = n16t 

Thus At = n2Atl = nln26t. It is simple matter to write down the Fortran 
pseudocode for this breakup. 

2.7 The Applications of RESPA to Proteins and Chemical 
Systems 

In order to apply the techniques discussed above to the MD simulation oC 
biomolecules, one takes the Liouville operator for a macromolecule in uacuo 
containing N atoms to be 

where 

Fstret , Fbend,  Ftors, F ~ b o n d ,  Fvdw, and represent the forces for stretch, 
bending, torsion (including improper torsion), hydrogen- bonding, van der 
Waals, and electrostatic interactions, respectively. Their functional forms can 
be found elsewhere [38, 391. The databases of parameters for these functional 
forms are generally called force fields. There are several force fields avail- 
able for biomolecular simulations, such as AMBER 1391 , OPLS (401 and 
CHARMM [41], etc. 
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In an atomic level simulation, the bond stretch vibrations are usually the 
fastest motions in the molecular dynamics of biomolecules, so the evolution of 
t,he stretch vibration is taken as the "reference" propagator with the smallest 
tirne step. The nonbonded interactions, including van der Waals and electro- 
static forces, are the slowest varying interactions, and a much larger time-step 
rriay be used. The bending, torsion and hydrogen-bonding forces are treated 
:is intermediate time-scale interactions. 

In addition, the non-bonded forces can be divided into several regions 
according to  pair distances. The near region is normally more important than 
t;lie distant region because the non-bonded forces decay with distance. Since 
rriost of the CPU time in a MD simulation is spent in the calculation of these 
rion-bonded interactions, the separation in pair distance results in valuable 
speedups. Using a 3-fold distance split, the non-bonded forces are separated in 
:3 regions: near, medium, and far distance zones. Thus, the Liouville operator 
can be express as a sum of five terms 

where 

F1 (X) Fst ,et (X) (39) 
F2 (X) E Fbend(x) f Ftors(x) f F~bond(x) (40) 
F3 (X) = F,"g (X) + F,;:: (X) 

med med 
(41) 

F 4  (X) F v d ~  (X) + Felec (42) 
F5 (X) ZE (X) + . (43) 

To separate the non-bonded forces into near, medium, and far zones, pair 
distance separations are used for the van der Waals forces, and box separa- 
tions are used for the electrostatic forces in the Fast Multipole Method,[24] 
since the box separation is a more convenient breakup in the Fast Multipole 
Method (FMM). Using these subdivisions of the force, the propagator can be 
factorized according to  the different intrinsic time scales of the various com- 
ponents of the force. This approach can be used for other complex systems 
involving long range forces. 

2.8 Efficient Integrators for Systems with Coulomb Potentials 

One of the most expensive parts of a MD or MC simulations is the com- 
putation of long range interactions. Since the CPU time required for the 
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calculation of these forces scales as O(N2),  where N is the number of force 
centers in the system, direct calculation of these forces in large systems makes 
molecular dynamics (or Monte Carlo) infeasible for large protein-water sys- 
tems. The standard approach has been to truncate the long range forces 
so that their calculation scales as O(N)  for large enough systems. Unfor- 
tunately, truncation introduces significant non physical effects. To eliminate 
surface effects and to avoid the errors caused by truncation it is now be- 
coming common to use periodic boundary conditions and to  invoke Ewald 
summation. Optimal application of Ewald summation also scales as O(N3/2) 
and thus becomes prohibitively expensive for large systems. Procacci and 
Marchi have combined Ewald with RESPA for protein solutions by including 
the total Fourier sum in the intermediate time loop.[42] A better strategy for 
applying r-RESPA to Ewald boundary conditions involves subdividing the 
Fourier space sum in such a way that the short time contribution is placed 
in the inner short time loop of RESPA and the "true" long range and slow 
part of the sum is put in the outer loop.[l8] 

There are three different algorithms for the calculation of the electro- 
static forces in systems with periodic boundary conditions: (a) the (opti- 
mized) Ewald method, which scales like o ( N ~ / ~ ) ;  (b) the Particle Mesh 
Ewald (PME) method, which scales like O ( N  log N) ;  and (c) the periodic 
Fast Multipole Method (PFMM), which scales like O(N).  For very large sys- 
tems (N 2 105) it is expected that the PFMM will be the best choice, given 
its linear algorithmic complexity. It is of interest to determine the break- 
even point for these two methods. Because PME scales as O(N l n N )  and 
periodic-FMM scales as O(N),  PFMM will be faster than PME for N greater 
than some No. The break-even point for these two methods combined with 
r-RESPA will be different because the implementation of r-RESPA will be 
different in these two cases. This break-even point has not yet been deter- 
mined systematically. Figueirido et al. estimated that the break-even point 
for protein-water systems is No 20,000. Despite the significant progress in 
this field the optimal strategy has yet to be found. 

Fast Mult ipole  Methods To manage the calculation of all of the elec- 
trostatic interactions, several groups have experimented with approximate 
schemes, of which the most widely used is the Fast Multipole Method (FMM) 
of Greengard and Rokhlin[43, 441 and its variants.[&, 46, 47, 48, 491 This al- 
gorithm decreases the computational burden to O(N)  by cleverly exploiting 
a hierarchy of clusters and using multipolar expansions to approximate the 
potential produced by these clusters. The basic principle of FMM is rather 
elegant. It interpolates the potential and force on a particular charge due to 
distant charges not by direct calculation, but by using the local expansion 
of fields produced by the multipoles generated from those distant charges. 
It first organizes multipole representations of charge distributions in hierar- 
chically structured boxes, then transforms these multipoles into local field 
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~;xpansions. Each particle then interacts with the local field of distant mul- 
t,ipoles. Meanwhile, the near range interactions are calculated directly by 
pairwise evaluation. Thus, the potential (and force) consists of two parts: 

near @(X) = @direct (X) + @k:ltipole(x) (44) 

near where GdireCt contains the near range inter-particle interactions, and @!&ltipole 
contains the contribution from distant particles. A top-down FMM recursive 
method was proposed for multipole generation by Zhou and Berne[24]. Their 
niethod is based on White and Head-Gordon's simplified derivation [45]. Zhou 
and Berne have incorporated r-RESPA in this topdown FMM algorithm and 
applied it to isolated all-atom proteins.[24] They were able to achieve speed- 
ups on the order of fifteen-fold for the photo-synthetic reaction center over 
the direct UN-truncated calculation of the forces using the standard velocity 
verlet integrator. Fig 1 shows a comparison between the cpu times required 
by ordinary velocity verlet and r-RESPA for different size proteins. The figure 
also shows improvements that can be achieved by combining efficient algo- 
rithms such as the fast-multipole method (FMM) with r-RESPA. 

The fast multipole method was first extended to periodic systems by 
Schmidt and Lee.[50] Figueirido et al. also designed a periodic FMM with 
;L full derivation of the local field expansion which scales as O(N).[26] These 
;~,uthors combined PFMM with r-RESPA producing in a very powerful algo- 
rithm (r-RESPA/PFMM) that is expected to be the optimum strategy for 
dealing with very large systems (see below). 

Particle Mesh Ewald Methods Recently the particle mesh Ewald method 
(PME), and a smooth variant of it (SPME), developed by Darden et al.. , have 
been described in the literature [51, 52, 53,461. These algorithms are based on 
Hockney and Eastwood's [54] idea of assigning charges to a mesh according to 
their real space positions; the CPU time savings come from applying the Fast 
Fourier Transform (FFT) to the particle mesh to accelerate the reciprocal- 
space calculations of the Ewald sum and to use a small cutoff in real space. 
The algorithms are found to be of order O ( N  log N).  This method has been 
combined with r-RESPA by Procacci, Darden and Marchi.[55] 

3 New Sampling Methods for the Extrinsic Multiple 
Time Scale Problem 

Biomolecular systems often have rough energy landscapes. The sampling of 
rugged energy landscape poses special problems for molecular dynamics and 
Monte Carlo. As the system moves from one potential energy basin to an- 
other it must cross barriers that are large compared to IcT. The crossing of 
such barriers are rare events and thus very long runs are required to sample 
the configuration space. In such systems the barriers are due to at least two 
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Fig. 1. CPU times (in hours) for 1 ps MD runs for various proteins using three 
different methods, direct velocity Verlet with a time-step 0.5 fs, r-RESPA with 
direct evaluation of electrostatic forces and an overall time-step of 4.0 fs, and r- 
RESPA/TFMM with an overall time-step 4.0 fs (combination of (2,2,2,2) in force 
breakup) .The energy conservation parameter log AE for the three met hods are 
comparable. The CPU time (hours) is for RISC6000 /MODEL 590 computer. 

classes of interactions. First there are the local barriers that separate stable 
states of the torsion angles. Then there are barriers arising from close en- 
counters of atoms on side chains as well as on the primary chain which result 
from very repulsive (r-12) non-bonded interactions. There is a long history 
of using fictitious dynamics to sample the configuration space of complex sys- 
tems. These schemes fall into three classes: Brownian or Langevin dynamics; 
BGK (Bhatnanger, Gross, Krook) dynamics; and Monte Carlo methods. One 
can accelerate all of these methods by a clever break-up of the forces, as we 
have done for molecular dynamics with RESPA and r-RESPA, but this will 
not solve the problem of sampling the rare barrier crossing events frequently 
enough to determine long time averages needed for detenrkinirlg the thermo- 
dynamic averages or for gaining insights into reaction ~a t~k l s  l~etween initial 
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and final conformational states of large molecules. New methods are required 
to deal with rugged energy surfaces. 

New Monte Carlo methods have been devised to deal with the intrinsic 
~nllltiple time scale problem.[56, 101 The Hybrid Monte Carlo (HMC) method, 
combined with r-RESPA, as outlined in Sec. 2, can be used to speedup the 
iritrinsic multiple time scale problem in MC sampling. In addition, new meth- 
ods for speeding up barrier crossings in systems with rough energy landscapes 
like the Jump-Walking (J-Walking) method[57] and the Smart-Walking (S- 
Walking) method[58] can be combined with HMC and thereby r-RESPA. 
These methods are particularly useful for sampling the conformation space 
of many-body systems, such as proteins.[24, 26]Lastly, it is worth mentioning 
methods that allow the Lennard-Jones diameters a to fluctuate or that allow 
the barriers in the torsion angle potential to fluctuate. These methods very 
rapidly explore the configuration space. [59] 

Hybrid Monte Carlo In standard MC only single particle moves are tried 
;trid accepted or rejected. Attempts to make many particle moves of the sys- 
tcrn before applying the Metropolis acceptance criterion leads to such small 
acceptance probabilities that this method is not efficient. Moreover it requires 
the recalculation of the whole potential after each attempted move, a costly 
cornputation especially when the move is likely to be rejected. One efficient 
ruethod for generating collective moves is the Hybrid Monte Carlo method 
invented by Duane and Kennedy.[l2] In this method one starts with a config- 
uration of the system and samples momenta of the particles from a Maxwell 
distribution. Molecular dynamics is used to move the whole system for a time 
At and, because this time may be sufficiently large as to cause a reasonable 
energy change due the lack of strict energy conservation, one then accepts or 
rcjects the move using the Metropolis criterion based on exp(-pH) where 
H is the hamiltonian of the system. This step is repeated over and over. In 
I-IMC, bad MD is used to generate efficient MC. It is important that the 
integrator used for generating the solution to the equations of motion be 
reversible because only then will this method satisfy detailed balance and 
only then will the method generate the canonical distribution and the Boltz- 
rnann distribution. A number of authors have further elaborated the HMC 
~ncthod.[GO, 61, 62, 631 

Since many systems of interest in chemistry have intrinsic multiple time 
scales it is important to use integrators that deal efficiently with the multiple 
time scale problem. Since our multiple time step algorithm, the so-called 
rcvcrsible Reference System Propagator Algorithm (r-RESPA) (17, 24, 18, 261 
is time reversible and symplectic, they are very useful in combination with 
HMC for constant temperature simulations of large protein systems. 

In HMC the momenta are constantly being refreshed with the consequence 
that the accompanying dynamics will generate a spatial diffusion process su- 
perposed on the inertial dynamics, as in BGK or Smoluchowski dynamics. 
I t  is well known frorrl the tlheory of barrier crossing that this added spatial 
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diffusion can lead to smaller rates for barrier crossing. Thus the FIMC or 
BGK methods may suppress barrier crossing. Parenthetically, it is impor- 
tant to note that stochastic methods such as Langevin dynamics or BGK 
dynamics will behave similarly. We have found[64] that in some systems the 
Nose' thermostat[65] may have a more beneficial sampling of different basins. 
Reversible integration schemes for these methods have been developed. [66] 
One way to improve these methods is to couple them to new methods for ac- 
celerating the dynamics on rugged energy landscapes such as the J-Walking 
method[57, 67, 681 or the S-Walking method.[58] 

Jump Walking In the J-walking method, the MC or HMC sampling at 
the desired low temperature is infrequently punctuated by sampling from a 
higher temperature distribution for the same system. Since a higher temper- 
ature MC simulation can involve larger attempted moves and more frequent 
barrier crossings, this allows the system to access more conformational states 
according to the high temperature Boltzmann distribution. Then, the lower 
temperature walker attempts occasional jumps to the conformation states of 
the high temperature walker, thus enhancing the barrier crossing. The trial 
sampling distribution for these occasional jumps is the Boltzmann distribu- 
tion at the higher temperature. The method is so constructed that one gen- 
erates the correct low temperature Boltzmann distribution. Since t he energy 
landscape of biomolecules contains very high barriers, it is often necessary to 
use many high temperature walks spaced at intervals of approximately 50 K 
and the CPU time required by this method will scale as the number of high 
temperature walks. 

Smart Walking Jumping directly into a high temperature structure is not 
the only way to use the conformational space information from the J-Walker. 
Instead, the structure can be first relaxed before being jumped into.[58] Ap- 
proximate minimization with a steepest descent method (or conjugate gra- 
dient method) will generate structures close to the local minimum. These 
relaxed configurations will significantly decrease the potential energy, and 
thus increase the jump success ratio dramatically. Each minimized structure 
is then regarded as one of the possible trial moves at low temperature and 
are accepted or rejected with acceptance probability function, that gener- 
ates a Boltzmann distribution at the low temperature. Unlike the J-Walking 
acceptance probability, this scheme, which is called Smart Walking[58] (or 
S-Walking), will dramatically increase the jump success ratio from one basin 
to another. It also enables the system to explore more phase space and un- 
dergo more efficient barrier-crossings. This S-walking method avoids the ]in- 
ear increase of CPU time and memory usage required by the multiple-stage 
J-Walking method, because it is not necessary to use multiple stages for 
most systems, even though it would be very easy to implement a multi-stage 
S- Walking procedure. S- Walking preserves detailed balance approximately 
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provided the time between S-jumps is much longer than the time required 
by the low temperature walker to explore its local basin effectively (more 
discussion follows in the section on results). This new S-Walking algorithm 
only requires a simple modification of the J-Walking algorithm. 

4 Summary 

Integrators based on r-RESPA, when combined with enhanced methods 
for calculating long-range electrostatic forces, such as the FMM or SPME 
schemes have led to a considerable speed-up in the CPU time for large scale 
simulations of biomacromolecular solutions. Since r-RESPA is symplectic 
such integrators are very stable. Moreover since r-RESPA is time reversible 
it can be used in Hybrid Monte Carlo and satisfies the condition of detailed 
balance. This HMC method can be used in enhanced sampling methods such 
as J-Walking and S-Walking methods which lead to a more rapid exploration 
of rugged energy landscapes and thus to enhanced conformational searches. 
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