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1. Introduction

A Targe number of experimental methods are currently used to probe
the dynamics of molecular motions in solids, liquids, and gases. All of
these experimental methods share one characteristic in common. They
all use as a probe an external field that is weakly coupled to the system
and they all study the response of the physical system to the probe.
Line-shape studies of infrared and Raman spectra (Van Kranendonk,
1952), studies of the shape of the spectral density function obtained from
light- and neutron-scattering cxperiments (Blume, 1965; Egelstaff, .196.5’
1967; Pines and Nozieres, 1966; Sjolander, 1964) line-shape studies in
nuclear magnetic resonance (Abragam, 1961), and electron spin resonance
spectroscopy (Slichter, 1963), as well as studies of static and frequency-
dependent transport coefficients (De Groot _and Mazur, 1962), are some
of the probes that fall in this category. These experiments can be divided
into two groups according to whether the probe is mechanical or thermal.
For example, light scattering falls into the first category, whereas the
measurements of the thermal conductivity falls into the second. The

_reason for making this division is based on the fact that the response of a
system to mechanical probes is much easier to treat than its response to
thermal probes. The interaction between a mechanical probe and the

physical system can be described by an interaction Hamiltonian, whereas’

thermal-probe-system interactions must be handled differently. N
The basic theoretical problem is to describe the response of an equilib-
* rium system to a weak force field, mechanical or thermal in nature. The
_solution to this problem is by now well known and there exist many
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excellent reviews on the subject (Gordon, 1968; Helfand, 1960; Kadanoff
and Martin, 1963; Kubo, 1961; Martin, 1968, 1965; Mazur, 1966;
Zwanzig, 1965). In this section, we will review the theory.

The major conclusions of this theory, which is known as linear response
theory, can be simply stated as follows. Whenever two systems are
weakly coupled to one another, such as when radiation is weakly coupled
to matter, or when molecular vibrations are weakly coupled to molecular
motion, it is only necessary to know how both systems behave in the
absence of the coupling in order to describe the way in which one system
responds to the other. Furthermore, the response of one system to the
other is completely describable in terms of time correlation functions of
dynamical properties, :

Time-dependent correlation functions have been familiar for a long
time in the theory of noise and stochastic processes. In recent years,
they have become very useful in many areas of statistical physics and
spectroscopy. Correlation functions provide a concise method for expres-
sing the degree to which two dynamical properties are correlated over a
period of time. Because the response of a system to a specific weak probe
is directly related to a correlation function, many experiments have been
devised to determine specific correlation functions. Only a few such
experiments will be mentioned here. The interested reader should con-
sult the excellent reviews on the subject. B

The most important experiment fof the determination of the dynamics
of molecular motion is thermal neutron scattering. A complete determina-
tion of the differential scattering cross section for the scattering of neutrons

from liquids completely determines the Van Hove scattering function

(Van Hove, 1954). This function is related through a space—time Fourier
transform to the autocorrelation function of the number density at two
different space-time points in the liquid. In principle, this function
contains all rélevant information concerning the structure and dynamies of
liquids that is necessary to describe liquid equilibrium and transport
properties. There are still many experimental difficulties preventing the
complete realization of this experimental program.

With the advent of lasers, light scattering has become 2 convenient and
powerful tool for the determination of liquid properties (Fabilinsky, 1968;
Pecora, 1964). Brillouin-scattering .experiments involve the spectral re-
sohrtion of light scattered at various angles from a liquid or solid system.
The differential scattering cross section obtained from this inelastic light-
scattering experiment is directly related fo:the long-wavelength, low-
frequency behavior of the Van Hove scattering function. It supplements
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the information gained from neutron-scattering experiments but is not
capable of giving short-wavelength, high-frequency information. Neverthe-
less, it is useful for the determination of hydrodynamic and transport
properties (Dubin et ¢l.,, 1967; Mountain, 1966), and recently it has
been shown how it can be used to determine rate constants of very fast
chemical reactions {Berne and Frisch, 1967; Berne and Pecora, 1968;
Blum and Salzburg, 1968). )

The shape of the vibration-rotation bands in infrared-absorption and
Raman-scattering experiments on diatomic molecules yields a great
deal of information about molecular reorientation in solids, liquids, and
gases (Gordon, 1968; Van Kranendonk, 1952). Another experimental
method that has been used to determine orientational correlations in
macromolecular systems is based on measurements of the time dependence
of the depolarization of fluorescence, From these measurements, rotational
diffusion coefficients and the shape of the rotating macromolecule can
be determined (Perrin, 1926). . .

There are several compelling reasons to interpret experiments in terms
of correlation functions, The most important among these is that the
results of several different experiments can often be correlated and used
to clarify the basic underlying dynamical processes. For example, infrared
absorption and Raman spectroscopy, as well as dielectric relaxation and the
depolarization of fluorescence, provide information about the same me-
chanical property. These different measurements can be used to construct
a picture of the particular dynamical processes involved. Furthex:more,
correlation functions provide a useful link between theory and experiment.
Any theoretical model that stands up to an exhaustive comparison with the
full experimental time dependence of time correlation functions reflects
more strongly on the nature of the liquid state than does one thE}t only
gives the transport coefficients. Thus, 2 set of quite different experiments
can be used to test a given model of a liquid and to assess the validity of
certain ad hoc assumptions which are usually unavoidable, :
It can be stated that time correlation functions have done for the
theory of time-dependent process what partition functions have done for
equilibrium theory. The time-dependent problem has become well .de»
fined, but no easier to solve. One now knows which correlation funcf:lo.n
corresponds to a given time-dependent phenomenon. Nevertheless,‘lt is
still extremely difficult to compute the correlation function. This is
analogous to equilibrium theory when one knows that, to compute a
thermodynamic property of a system, one must evaluate a well-defined
partition function—a very difficult task.
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At present, the complete time dependence of only a few time correlation
functions have been determined experimentally. Furthermore, the theory
of time-dependent processes is such that we know in principle which
experiments can be used to determine specific correlation functions. In
addition, we know certain general properties of these correlation func-
tionis. However, one of the major difficulties encountered in developing a
theory of time correlation functions arises from the fact that there seems
to be, at least at present, no simple way of bypassing the complex many-
body dynamics in a realistic fashion; Consequently, both theoretically and
experimentally- there are difficult obstacles impeding progress toward a
satisfactory understanding of the dynamics of liquids, solids, and gases.

In the case of fluids, digital computers have recently been employed
to cope with the mathematical difficulties encountered above. Molec-
ular dynamics studies, as these studies are now called, provide a brute
force solution to the N-body problem. The canonical equations of motion
for a large assembly of atoms or molecules are solved subject to periodic
boundary conditions. These studies are carried out, as will be explained,
in such a way that averages can be evaluated. Among other things, time

- correlation functions are computed. According to Zwanzig (1965), such

studies provide what is probably the most detailed “experimental in-
formation currently available about dynamiical processes in liquids.”
These studies are to be regarded as experiments which probe time cor-
relation functions. They provide the raw data against which various dyn-
amical theories of the liquid state can be checked. Such studies provide
insight into the microscopic dynamical behavior of real diatomic liquids
for both experimentalists and theoreticians alike.

There have been a number of attempts to calculate time correlation -
functions on the basis of simple models. Notable among these is the non-
Markovian kinetic equation, the memory-function equation for time corre-
lation functions first derived by Zwanzig (1961). This approach is re-
viewed in this chapter, its relation to other methods is pointed out, and
its applicability extended to other areas. The results of this theory are
compared with the results of molecular dynamics.

Linear response theory is reviewed in Section II in order to establish
contact between experiment and theory. In Section ITI, the memory-
furiction equation is derived and the general properties satisfied by the
time correlation function and the memory function are discussed, In
Section 1V, computer experiments are reviewed. In Section V and VI,
time correlation functions are cal¢ulated on the basis of specific models.
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I. Linear Respense Theory

A, LiNrAr SysTEMS

When 2 system of molecules interacts with a weak field, the interaction
Hamiltonian can often be expressed as

Ft) = — fﬂ &% B(r)F(r, 1), (@21)
where B(r) is the dynamical operator
Be) = % B b —xa)l.  (22)
s0 that 1

F(t) = — [Byns F(rms £)]s3 (2.3)

2

3=

=

B, is a property of the mth particle located at the position r,,; and
#[a, 8] represents the symmetrized product

o 81+ = [aB + fa).

' The operators B, and £, represent properties of the system and. are
consequently Hermitian. The symmetrized product of two Hermitian
operators is a Hermitian operator. Thus, B(r) is Hermitian. In (21),
F(r, ) is the applied field that acts on the system at the space-time
point (r, £}. This form of the interaction potential between a system
and a weak probe is actually quite ubiquitous. Consider, for example,

how a system of molecules interacts with a weak radiation field in the

dipole approximation. Then,

(1) = — [ d% M(r) - E(r, 1), : (2.4)
where E(r, #) is the electric field at the space-time point (r, ¢) 'with
polarization € and M(r) is the electric polarization operator at the point r,

1 N
M(r) = "'2_ mz_:l‘[l"m’ 6(1- - rm)]+-

- Here, @, is the electric dipole operator and rm.is the center-of—r.nass
position of molecule M. The interaction Hamiltonian can also be written
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as

FW) = = 5l - Bl 1)+ Ble, 1) - ],

There is a completely analogous development for a system of nuclear -
spins interacting with a time-dependent magnetic field, _

It is convenient to assume from the outset that in the absence of the
probing field F the expectation value of the observable B is zero. In the
presence of the probe F, (B> is in general nonzero, because the system is
“driven” by the force F. This also applies to other properties of the
system that in the absence of the probe are expected to be zero. The
perturbation thus “induces” certain properties of the system to take on
nonzero expectation values, If the perturbation is sufficiently weak, it
produces a linear response in the system. In the linear regime, doubling
the magnitude of F simply doubles the magnitude of the induced res-
ponses. A simple example of linear response is Ohm's law,

ch'E:

according to which, the current induced in a medium is linear in the
electric field E (although not necessarily in the same direction as E,
because of possible anisotropies in the conductivity tensor o). :

The expectation value of property B at the space-time point (r, z)
depends in general on the perturbing force F at all earlier times # and at
all other points t' in the system. This dependence springs from the
fact that it takes the system a certain time to respond to the perturbation;
that is, there can be a time lag between the imposition of the perturbation
and the response of the system. The spatial dependence arises from the
fact that if a force is applied at one point of the system it will induce
certain properties at this point that will perturb other parts of the system.
For example, when a molecule is excited by a weak field, its dipole
moment may change, thereby changing the electrical polarization at other
points in the systerri, ‘ . . '

Another simple example of these nonlocal changes is that of a neutron
which when introduced into a system produces a density fluctuation,
This density fluctuation propagates to other points in the medium in the
form of sound waves.

It is consequently quite natural to write

T (B(r, 1)) = f ; dt' f dr' Dyp(r, t'; t, £ )F(r, ¥), (2.5)
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where it is assumed that the force has been turned on in the past. Note

~ that the induced response (B{r, t)) is linear in the applied force F, and

furthermore depends on the values F at all earlier times t", an.d at all
points in the system, Causality is built into the abolve equation since the
response follows and does not precede the application of. the force. Th.e
function @py(x, r'; ¢, t') is called the “aftereffect function” because.xt
relates the response (B(r, £)) at the space—time point (r, #) to the dis-
turbance at the space—time point (', ¢'). Note that the response to a delta-
function field, ‘

F(r, t) = §(r — 1) 6(2 — ),
is
<_B(1', t)) = ijB(r: Ty; £, tﬂ)n(t - to):

- where 5(t) is the Heaviside function, Thus, ®pz(r, 14,1, £,) is the re-

sponse, <B(r,t)>, to a unit delta-function pulse apPlied at the space-
time point (r,, #,). If in the absence of the pn.ﬂ:tut"batlon the system is a
large, uniform system in thermodynamic equilibrium, then the response
should be invariant to an arbitrary shift in the origin of the space-time
coordinate system by (a,, 7,). Consequently, for such systems the condi-
tion

Br + a,,t -+ 7,)> = (Br, t)_>, .

must hold. This condition can only be met if the aftereffect function has
the form

Dpp(r, 145 8, 1) = Ppp( | r — 1|, £ — 1) (2.6)

Thus, the response of a spatially uniform system in thz.arrnodynamic equi-
librium is always characterized by translationally inva'riant and te‘mporz.xlly
stationary aftereffect functions. This chapter is restricted to a d1scuss1o.n
of systems that prior to an application of an external perturbation are uni-
form and in equilibrium, The condition expressed by Eq. (2.6) must be
satisfied. Caution must be exercised in applying linear response theory to
problems in double-resonance spectroscopy where nonequilibrium initial
states are prepared. Having dispensed with this cazeat, we adopt Eq. (2.6)
in the remainder of this chapter.

The response can be written as

<B(r, t)y= | ’_m a | air"q)BB'(r_— v, t — tF(x', t'). 2.7)
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Once the aftereffect function has been determined, the response to
any form of F(r, t) can be predicted. The aftereffect function is an intrinsic

- dynamical property of the system, which is independent of the precise

magnitude and form of the applied force, and which succinctly summarizes
the way in which the constituent particles in a many-body system coop-
erate to give the observed response of the system to the external perturba-
tion. '

That the aftereffect function @gp(r, £) is a real function of the space~
time coordinates (r, £) can be deduced from the fact that, since B is an
observable, the response (B(r, t)> to a real force must be real.

The force F(r, ) is in general a very complicated real function of the
position and time, Any such force can be regarded as a superposition of
monochromatic components, '

Froexp —i[k « 1 — wt] ¢, e >0

The factor e has been introduced so that the field vanishes in the infinite
past. Since the response is linear in the force, it suffices to compute
the response of the system to each one of the monochromatic waves
separately and then to superpose the results to find the total response,
‘Therefore, without loss of generality we consider only the response to a

single monochromatic force. Introducing the above force into Eq. (2.7)
yields

(B(x, 1)> = 155k, @)Fy, exp —i[k - £ — wt], (2.8)
where ypp(k, w) is the frequency- and wave-vector-dependent complex
susceptibility governing the linear response of (B(r, 1)) to the monochro-
matic perturbation. The susceptibility is obviously the Fourier-Laplace -
transform of the aftereffect function,!

xon(k, @) = lim [~ dt [ dr Dppr, 1) exp ik - r — wt] et (2.9)
0+ ¥ 9 oot

Since the aftereffect function is a real function of (r, ), the susceptibility

can be written in terms of its real and imaginag? parts, xpp(k, @) and

z58(k, w), respectively,

x5k, ©) = yap(k, w) + ix¥s(k, w) (2.10)

t The limit ¢ —+ 0 -~ is imposed to ensure convergence of !_:}}e interal.
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Comparison of Eqgs. (10) and (11) yields .
1ps(k, @) = lim fm dtf dr @pp(r, 1) cosflk « r — wi]e™
me e 2.11)
75k, ») = lim j <t j dr @py(r, t) sin[k - £ — wtle,
ep v 0

The field applied to the system must in general be real, so that the
full monochromatic force should be the superposition

H{Fipexp —i[k - r — wt] + Ff,expilk - r — wit]} et (2.12)

and the total response is the superposition of responses from each com-
ponent, or ’

(B(r, t) = $[1z8(k, ©)Fy, exp —ilk - ¥ — wf]
+ z8p(—k, —w)Ff, exp ik - r 4 wt]]. (2.13)

The following properties follow directly from these definitions:
(i) xae(—Ek, —o0) = yhak, o)
()  xza(—k, —w) = —yza(k, o) (2.14)
() ghalk ) = zaa(—k, —o).
These properties result from the fact that the sine and cosine.: are re-
spectively odd and even functions of their arguments, C(Endmon (1)
can also be deduced directly from Eq. (2.13) by demanding that the

induced response be real (that is, (B} == {B>*). Condition (iii} allows
Eq. {2.13) to be expressed as '

(Blr, 1)y = Re y55(k, ©)F,, exp-i[k + r — ot]. (2.15)

The response of the system to the external monochromatic pertur-
bation of Eq. (2.12) is accompanied by the absorption and ernission of

energy. This follows because, under the influence of the external per-

turbation, the system changes state. The difference between thfe energy
absorbed and emitted is the energy dissipation. The energy d1551‘p:.1t.ed
per second per unit volume, Q(k, @), can be related to a susceptibility

" of the system. The time rate of change of the system’s energy is simply

8H'[3t, where H' is given by Eq. (2.1); Q(k, w) is obtained from the
expectation value of #H'/dt by averaging it over one period of the mono-

_mechanical formulae for the susceptibilities x5k

9. Time-Dependent Properties of Condensed Media 549

chromatic field, Thus, -
Ok, @) = (wj22¥) | :""” dt [ dr (B(x, )(0F [01)(x, 7). (2.16)

Substitution of Eq. (2.13) results in

Ok, ) = + 5= y4a(k, ) | F |3, (2.17)
™,
where V is the volume of the system.

The imaginary part of the susceptibility, y%z(k, ), is therefore related
to the net energy dissipated per unit time by the system. It is obvious
that all real processes are always accompanied by some energy dissipa-
tion, so that Q(k, w) = 0. It then follows from Eq. (2.17) that

‘ 0
e ={ 2 020 @19

The susceptibility can in principle be determined in the following way.
A force '

F(r, 1) = Fy, cos[k « r — ot]

- is switched on and the response (B(r, #)> is measured as a function of

time. From Eq. (2.15), it is seen that
{B(t, t)> = F, {1k, w) coslk + r — wt] + y4n(k, w) sin[k - r — wi] }.

If phase-sensitive detection is used, then y%z can be found from the part
of (B} that oscillates in phase with the applied field (dispersion) and
and y%p can be found from the part of {B(r, ¢)> that oscillates 90° out
of phase with the applied field (absorption). In practice, it is unnecessary
to measure both x’ and y"', and a determination of one member of the

pair uniquely determiges the other. This relationship will be discussed
later, 4

B. THE StaTisTicAL THEORY OF THE SuscePTIBILITY

There are a number of different ways to‘determim_e the quantum-

3). Perhaps the sim-
@961). We follow

plest and most elegant procedure is due to Ki
a different procedure here.
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The total Hamiltonian of our system H consists of two parts: H,,
the unperturbed, Hamiltonian of the system, and H'(t), the perturbation,

o) = — f dr B(r)F(r, 1). (2.19)
This perturbation, as we have seen, can also be written as

H() = — 5 5 Ba, Flrw, 0] (2.20)

Since the responses that we are trying to calculate are linear in the
force, it suffices to develop F(r,,, t) in a Fourier series and then to com-
pute the response to each term separately. The total response is found
by superposing each of these terms. Thus, without loss of generality
- we consider only the response to the simple Hamiltonian,

B(t)y= — 53 {[Bpy exp —ik - £, ™
+ [Bms exp ik - r, ] Fl et}
or
H'(t) = — [BLFye + ByFfe1]. (2.21)
_ The operator Bk is’ . ,
' ! Z [ ms€xpik «r ], (2.22)

From the deﬁnition of B,, it should be noted that B; and B_, arc Hermi-
tian conjugates. According to the golden rule of time-dependent per-
. turbation theory, the probability per unit time Wi,(k, w) that the field
- F(k, ) induces a transition in the system from the initial state |7) to
the final state | f) is given by

Wiadlk, ©) = @f498) | B 2] G| Boa| ) [ 80 — o), (2.23)

- where Zwy = E; — E; and the delta function conserves energy. In a
sense, the external field transfers momentum %k and energy %o to the
system in the transition. The probability that the system is initially in
the state | 7) is simply the Boltzmann factor g, = Q-1 exp(—pBE,). The
probability per unit time that the probe will transfer momentum %k and
energy #w to the system regardless of the initial and final states is -

Pk, w) = (2nj4#2) | F, |? Toil (] Bl £ B — o). (2.24)
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There is a corresponding inverse process in which the system makes a
transition from the state | f) to the state | 7) thereby giving momentum
%k and energy %o to the probe. In this process, the systern suffers a mo-
mentum change —#/k and an energy change —Z%w with 2 probability
per unit time

Weri(—k, —w) = (2mf47%) | Fra |2 | (f| B—k | i) [* w — wg). (2.25)

The probability per unit time that the system will transfer momentum

7k and energy #iw to the probe regardless of the initial state is consequently

Pk, ) = Q4| Fou ' T oc] (F] B2 1) [ 8(0 — wn). (2.26)

It should be noted that We, (—k, ~~w) == Wy, (k, ). This follows
directly from the fact that the operator By is the Hermitian adjoint of
B_,. The transition probabilities P(k, w) and P(—k, ~w) are in gen-
eral unequal, as can be seen by a companson of Egs. (2.24) and (2.26).
In fact, since g = ¢, exp(—pPhwy), it is clear from the properties of the
delta function that Eq. (2.26) is

P(—k, —0) = (@} | Fuo e ¥ o1 (f] Be | ) |2 80 — o)
: (2.27)
B_, and B, are Hermitian conjugates, so that
| (F1 Bl i) |e= | G] B £ I (2.28)

Substitution of this into Eq. (2.27) and subsequent comparison with
Eq. (2.24) yields - :

Pk, —w) = e#eP(k, o). (2.29)

This equation expresses the well-known condition of detailed balance,
accordmg to which every ‘gtransmon out of a microscopic gtate‘of a system
in equilibrium is balancedsgn the average by a transitioh dnto that state.
This condition is suﬁicxerc;t%or the maintenance of thermodynamic equi-
librium. Equation (2.29) de‘onstrates that the system . absorbs more
energy per unit time than emits. It can be concluded that there is a
net energy dissipation from the external field with a consequent produc-
tion of heat.
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The above transition probabilities can be written in terms of one-sided
time correlation functions. For this purpose, we define the dynamical
form factor Sp(k, w) as

Sa(k, @) = 22 3, 01 1G] Bux | /I 8(0 — o). (2.30)

It follows from Eqs. (24), (26), and (29) that
Pk, w) = (1/4#%) l Fr, PSB(kr ©) (2.31)
P(—k, —w) = (1/4#%) | Fy, |2Sp(—k, —w)

and
Sp(—k, —w) = ¢2Sz(k, w). (2.32)

Equation (2.32) expresses the condition of detailed balance.

From the physical interpretation of P(k, ) and P(—k, -~ o) as absorp-
tion and emission rates, it is clear that the power dissipated per unit time
and per umit volume Q(k, w) is

Ok, ») = APk, ©) — P(—k, —)], (2.33)
which can be written as ,
Ok, ) = (w4%)[Sa(k, @) — Sa(—k, —a)] | Fpo | (2.34)
Comparison with Eq. (2.17) shows that -
| Yok ©) = (1120)[Sa(l, ©) — Ss(—k, —@)).  (235)

There are a variety of ways of expressing this result. From the condition
of detailed balance, it should be noted that

[S(k, ©) % Sa(—k, —0)] = [1 = e#]Ss(k, ). (2.36)

From this equation, it follows that

[Sp(k, w) - Sp(—k, —w)] = tanh{pfia|2)[Ssk, w} + Sja(—‘lf, —(;0.)3]7)

[Sa(k, ) — Sp(—k, —w)] = [1 — eM])Sp(k, w). (2.38)

Let us study the dynamical form factors Sy(k, cu). and Sz(—k, —w)
before returning to yxzs(k, w).
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According to the definition of Sy(k, @) given in Eq. (2.30),

Sy(k, o) = Z“izf 1] Gl Be| £)|* 6(w — o).
The delta function can be expreséed in the integral representation

(@ — wn) = (1)22) [ dt expli(w — wp)e)
Thus
Sglk, ) == j:: df gint jzf: oi| (G1 Be|f) |? etoiet, (2.39)

The spectral density function is consequently the time Fourier transform
of the function

Pas(l, ) = 3 o] (7] By | f) |2 et (2.40)

This formula can be written in the following forms:
pap(k, 1) = Zf o1 exp(E /)i | By | f) exp(—iBt{h)( f| By | i)

=3 ou(i | exp(eBot/A) By exp(~ilt/B) | F)(f| Boel ).

In the first formula, we used the fact that B; and B_, are Hermitian con-
jugates [so that (i| B.|f)* = (f|B_;|7)] and the definition Fiowg
= E; — E;. The second formula follows from the fact that the states
|£) and |f) are energy eigenstates of the Hamiltonian H,. Now, it
should be recalled that in the Heisenberg picture of quantum mechanics
the basis states are time-independent, and the dynamical operators contain
all the time dependence. Operators depend on the time in such a way that
the arbitrary operator A(t) at time £ is generated from its form at time

_ ' by a unitary transformation with the propagator exp[iH,(t — t')#],
"s0 that

A’[‘(;t) = expliB,(t — #)[#] A(t') exp[—ifly(t — v')[A].

It is easy to show that this operator satisfies the Heisenberg equation of
motion '

d 1 '
7;4@) == [4(z), H,]-. p
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Thus, it is easily seen that

pzs(k, t)= Z; ei(t | Bu(®) | FY(F | Bw(0) | 9)

where B,(t) and B_,(0) are the operators By and B_; at times ¢ and 0

respectively in the Heisenberg picture. The right-hand side of this equa-
tion is simply the equilibtium average value, (B,(t)B_,(0)), since the
sum is just the trace, Tr[$B,(t)B_4(0)], where § is the equilibrium density
matrix. Thus, the function @gzp(k, ) is

pra(K, 1) = {Bi(£)B_;(0)>. (2.41)

This function is a quantum-mechanical, one-sided time correlation func-
- tion of the property B;. It follows from Eq. (2.39) that

Sp(lk, ) = [ dt B H)B(0)>. (2.42)
In a completely analogous manner, it can be shown that
Sz(—k, —w) = rm dt e®i(B _,(0)B(1)>. (2.43)

. These functions differ in the order in which B_,(0) and B,(¢) appear.
Since B_;(0) and B.(¢) do not generally commute, it follows that
{B_i(0)BL(£)> and (B (#)B_;(0)> are not equal.

From Egs. (2.32) and (2.43),

[Sn(k, @) = Sp(—kro)] = [ dt e ([By(t), Bu(O)]>,  (244)

where [., .], denotes the anticommutator and [., .]. the commutator.

Let us now return to Eq. (2.35). The imaginary part of the susceptibility

can be expressed in the alternate forms

ok, ) = 71 [ dt eiCH[B(2), B_y(0)]-D, (2.452)
or

Kiin(k, @) = A= tanh 3o [ dt e [By(t), B(O)]D,  (2.45b)
or

Kia(l, ©) = AL — e=om) [ dt ot B)B_(O); (245¢)

.

-l
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Also, the transition probabilities can be expressed as
Pk, ) = (145%) | Fy, |* [7 dt e1<B,(1)B_y(0)>
= (1/4%) | Fr, {2 25p(k, ©)[(1 — e-#1a)

| - (2.46)
P(—k, —w) = (L}4%)| Fy, | | T dtei(B_(0)By(2))
= (L4%) | Fro [* 155(k, w)/(e? — 1)
The functions that appear in the integrals,
Pra(k, ) = GA[By(t), B_(0)]-> 2.47)

Cou(k, 1) = HByz), B_i(0)]+>,
are respectively called the aftereffect functiont and the autocorrelation

function of the process B;.

*The aftereffect function can also be written as
Pzl ) = fa” di(exp AH)B 4O exp — AL)By2)). (2.472)

This can be demonstrated by expanding the average,

<e§p(lﬁo)§~k(ﬂ) exp(—AH)By(8)> = § @ exp[ME; ~ EDIG | B(0) [A(F| Bu2) | i)

Since B_y = (1/i%)[B.p, A1_, it follows that |
G| B ]f) = (UR)Er — EG | B 1)

Consequently, the integral 'on the right-hand side of Eq. (247a) is

%: oi{lexp B(E; — Epn) — 136G | BLy(0) | A(F| Bu(®) | 9).
'Novlv, ‘ -
@i{lexp BB =~ Bl — 1} = g¢— @15 -
so that the integral is {3[B,(t), B_1{0)]_>. This proves that

@aalk, 1) = [ dictexp IDBLLO)fexo — LEDBL(.
Note that -
(exp AH)B_ilexp — AH) = B_,(—ifik),
so that :

Dall, 1) = J’ 5 B (—iBR)By(1)).

The integral is called the Kubo transform (1961) of the time correlation function.
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’I:he Fourier transform Gpgp(k, w) of the autocorrelation function
CBB(k: t))

270G pp(k, ®) = E: dt e Cp(k, t), (2.48)

plays a very importang role in linear response theory. It should be noted '

that the imaginary part of the susceptibility is
1zp(k, @) = 2aRi™t tanh{f#w[2YF 5k, @) (249
and consequently,
Ok, ) = (wn/h) tanh(Bhwf2) | Fi, *Grall, @) (2:50)

The power dissipation is linearly related to Ga(k, w), which conse-
quently is called the power spectrum of the process B.. It is noteworthy
that the energy dissipated by a system when it is exposed to an external
field is related to a time correlation function, Cpg(k, #), that describes the
detailed way in which spontaneous fluctuations regfess in the equilibrium
state. The result embodied in Eq. (2.50) is called' the fluctuation dissipa-
tion theorem (Callen and Welton, 1951). Itis a direct consequence of this
theorem that weak force fields can be used to probe the dynamics of
molecular motion in physical systems. A list of experiments together with
the time correlation functions that they probe is presented in Table L.
An experiment that determines Q(k, w) determines Ggpp(k, @) and
consequently, through Fourier inversion, Cgp(k, 2):

Czr(k, 1) = (/=) J.m dw e=i=t Q(k, w) coth(ffim(2)]w | F, | (2.51)
Cpp(k, t) can also be determined from a measurement of either P(k, )
or P{—k, —w). .

The one-sided correlation function (B;(2)B_;{(0)y could have been
determined instead of Cyp(k, £}. From Egs. (2.17) and (2.45¢),

- (Bu(t)B_y(0Y> = (Bfm) j : dt et Q(k, w)fa[l — e] | Fy, |* (2.52)

This kind of investigation is becoming very common.
In the classical limit (% — 0}, Eq. (2.49) reduces to

155(k, w) = (no/KT)GEa(k, 0), @33

\_‘,——_‘

TABLE I |

Time correlation function

Some ExpeRIMENTAL ProBeES oF TIME CORRELATION FUNCTIONS

Dynamical quantity

Experimental measurement
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V(0) - VR

V, cm, velocity of tagged mélecu]e

Self-diffusion coefficient

A2, (0)24{2)>

Rotational diffusion coefficient

u, unit vector along molecular transition

€2, angular velocity about molecular e.m.

<u{0) - u(e)>

Infrared absorption

Y

dipole

{Pylu(0} - u(z))>

Raman scattering: depolarization of

fluorescence

<JO@) - I

J, angular momentum about molecular ¢.m.

Spin-rotation relaxation time

-NMR, line-shape

<MLO)M, ()

M,, ¥ component of the magnetization

of the system

(1/N) ¥} <exp[—ik - r(0)] exp[ik - r;(£)]>

7, position of /th nucleus

s

Mossbauer line shape

N

I=1
(1) ﬁ Cexp[—ik + £,(0)] explik - r; ()]

=1
N
(1/N) X expf—ik - £(0)] 3 exp[ik - 1 ()

71, position of Ith nucleus in fluid

< .
Neutron scattering

3

4 s

Y

J=1

=1

N

(UIN)C2) e (0t (2} explik - [ry(z) — (011>

af; trace of the polarizability tensor of

Brillouin seattering: polarized scattering

1,1

N
(1[N o7 (030F7(2) explik[r;(z) — r,(0)]]>

molecule

xyth element of polarizability tensor of

Brillouin scattering: depolarized scattering

557

Lf

molecule
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~ where
g VTR .

is the correspondence rule limit of the power spectrum of the quantum-
mechanical time correlation function. The classical time correlation func-
tion Cp(k, £) is defined as

Coll, ) = [ AT (T B (T By(Ty).  (2.55)

This formula is explained in the ensuing paragraphs.

Consider an isolated classical system of f degrees of freedom! The
instantaneous mechanical state of the system is completely specified by f
coordinates ¢,, ..., gr and f conjugate momenta p,, ..., p;. This state
is represented by a point, the phase point, in a 2f-dimensional Cartesian
hyperspace with f coordinate and f momentum axes. This space is called

. phase space or gamma space, As time progresses, the state changes
accordingly to the canonical equations of motion,

gy = 0H|dp,, pi=—08H[dq;, i=1,...,f,
* where H is the Hamiltonian of the system,
H=T( 1:--::?}')_'_]7(9'1!"':%):

with T the kinetic energy and I the potential energy. The 2f canonical
equations of motion are first order in the time. Consequently, these
equations can be solved if the state (g,(2), ..., ¢/ (2), pa(2), - .., pA2))
is known at some time 2. Let I, be the state or phase point of the system
at time £ and 17, be the state at time ¢ - 7. Then,

Pz-}-z = I'(n, T)-

This last equation merely states the fact that the state at time ¢ +
is uniquely determined by the state at time ¢ and by the time 7. Thus,
corresponding to the state or phase point I', there is a trajectory in I-space,
©ie, Iy = (I, 7). This is illustrated for a system of one degree of free-
dom in Fig. 1.

Consider an arbitrary mechanical property, say

f v
B:‘c(F) = mz-=1 Bm(?mspm) exp zkgm,

27Ga(k, o) = lim [ dt e*Cpp(k, 1) (2.54)
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Phase orbit

Siote at time t+ 7

T, State ai time

* q

Fic. 1. A typical phase-space. trajectory. The mechanical property By (I") varies
along this trajectory. ’

- where B, depends only on the coordinates and momenta of the mth

degree of freedom. If the state I'is specified, then B,(I") can be computed.
Given the state I';, the property B_,(I',) is determined and, moreover,
since the orbit is uniquely specified, By(I",)By(I",,.) depends only on the
state I, and 7. The property B, will have a complicated time dependence
unless it is a constant of the motion; such as the total energy. This time
dependence often looks like a noise pattern (imagine the intensity of
sound coming from a tin roof during a rainstorm); see Fig. 2.

A measure of the correlation between the property B, at one time and

at a time v later is given by the time correlation function,

BB =lim (T) [ &t ByTYBL).  (256)

This is a time average. Usually, there exist a characteristic time 7,,
called the correlation time, having the property that for v> 7, the
above time correlation function becomes in ependent of = (see Fig. 3).

There is an alternative way to compute corg@lirion functions. Following
Gibbs, we set up an ensemble at ¢ = 0 that satisfies the known constraints
on the system of interest. Suppose for simplicity that this is an equilibrium
ensemble, and, more specifically, a canonical ensemble. Then the fraction
of the ensemble in the neighborhood dI, of thggoint Tyis

FI(TY ATy = Qy(B, V) et WodTy,
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BTy »

A.f‘\_jg A

VVVUV“'

Fia. 2. The time dependence of a specified mechanical property By(l"), corre-
sponding to the trajectory in Fig. 1, locks like a noise pattern.

/{V V

where Q y is the classical canonical partition function. The average of the
product B_y(I))By(I")) over this distribution function is'
Cos(l 1) = [ dTof™(T)BUTBUT) = BAOB.  (257)
Instead of writing down equations of motion for the state I';, we can
derive equations of motion for an arbitrary property 4(I",) which depends

M
2
< ig, %>
Aglt} T
<Bg 2
»
Fic. 3. The time correlation function of the property B.(I), A,(1): A(r) =

1 T
litappes — fo dt Bo(T)Ba(Tyie)-

1 If the ergodic hypothesis is valid then the time average and the micro-canonical
ensemble average are identical,
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on the time implicitly, Note that

L o4 8 |, 8A ap,
’f’f)—z[agi e g, ar]

=1

a4
gl CIERES

Substitution from the canonical equations for ¢; and p; leads to the equa-
tion

dAjdt = {4, H}, (2.58)

where {(7, F'} is the Poisson bracket of G and F and is defined as

L 1aG aF  8G dF
G F)e= —
{ ) I—Zl dq; 0p; dp; Og;

We now define the Liouville operator L such that
iL={.,H}

(2.59)
tL acts on an arbitrary function such that
iLF = {F, H}.

The Liouville operator L turns out to be Hermitian, as we will see later.
From Eq. (2.58), it follows that

dA)dt = iL A, (2.60)
which has the easily verified formal solution
Ay = e A(Dy). (2.61)

The operator ¢4 is a propagator or time displacement operator. It is

unitary, as we shall see, and has the property that when it acts on A1)
it transforms it to A{f}). Thus, we see that the correlation function
Cpp(k, t) can be expressed as

Cos(k, ) = [ T, f V(T o)B_Lo)e™By(Ty). (2.62)

FThis is iden‘gical to Eq. (2.55).

C. SPECTROSCOPIC LiNE SHAPES

,a.‘ Ty

To illustrate how the preceding formahsm is generally used, we apply
it to the solution of a well-known pgéBlem. Let us derive an analytic
expression for the Doppler broade i he dipole approximation. The
Hamiltontan that describes the inte petweer radiation of polariza-

£

wil

e
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. tion € and matter in the dipole approximation was discussed in the first
section of this chapter: ]

H'(t) = — [ dr [e - M(1)]E(, 2), (2.63)

with .
M(}‘) =1 ; [, 0(r — ;)14 .

where y; is the dipole operator, and r; the center-of-mass position of mol-
ecule 7, From our preceding analysis, we see that the crucial quantum-
mechanical autocorrelation function is (e » M (2)M_(0) - €.

For convenience, we define an absorption cross section Fana(k, @)
such that this cross section, multiplied by the incident radiation energy
flux ¢| By, |*/8x, is the energy dissipated per unit time, Q(k, w)
= oyiu(k, o) | B, {%2. Consequently,

Fars(ky @) = (dnw)c) ik, o). A {2.64)
From Eqs. (2.63) and (2.'45c), we see that the time correlation function
is related to o,u,(k, @) through the equation

fic aby k: W 1 oo St ‘
4ﬂw£E1b£ e-ﬂgW] - )g 2 dtetercle - My(n)][e - M_y(0)];

since it is the absorption cross section that is measured or more precisely,

it is the absorption coefficient a(k, w) = V=1o(k, w), which is usually
measured (from Beer’s law, ®(x) = I (0)e~=t=)=) it is convenient to define
the spectrum (Gordon, 1968) as ‘

3ica(k, w)

1(k, w) = draw[l — e-rte)

3 400 ,
— dt e‘“"(e . Mk(t)E . M—k(0)>'

The one-sided correlation function that determines the spectrum is
Parn(k, 2) = € « MM _4(0)) - e, (2.66)

where ¥
M;= Y pjexpik - r;,

J=1

In the electronic absorption spectrescopy of atoms in gases, it is often a
very good approximation to ignore correlations hetween dipole moments
on different atoms; then ‘

Parnr(k, 2) = ;i € » {p;()exp ik - xy(2)](0)[exp —ik + r;(0)]) - €.

S

"The translational motion of the molecules is classical in usual gas-gphase
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studies. Furthermore, the translational motion of an atom is, to 4 very
good approximation, independent of the internal electronjc motions, so
that it is permissible to write

£ N
ean(k, ) = ;:21 €« Ci(ts(0)> - ecexp ik - [r,(2) — 1;(0)]>.

If all of the absorbing and emitting particles are identical and the gas is
isotropic,
Puu(k, £) = §NFy(k, 1)U(z), (2.67)

where
Fifk, t) = Cexp ik « [£(t) — £(0)]>q = Cexp —ik - £(0) exp ik - £(¢)>

describes the translational diffusive motion of a typical atom, and

() =3(e) - w(0)

describes the dipolar motion g of a typical atom. For ordinary tempera-
tures, the system is in the ground electronic state, | 0), so that

U@} = L1 0) P exp —yp| ] exp —iwyet, _
where | ) is any excited electronic state connected to the ground elec-
tronic state by the transition dipole moment, wro is the energy of the
transition, and y; is the spontaneous emission rate. ‘

For a freely moving gas molecule, r{t) — £(0) = vt, so that

Fy(k, 1) = (exp ik - vty = [ d% f(v) exp ik - vi,

where f(v) is the Maxwell velocity distribution. Carrying out the average
yields

Fy(k, t) = exp[— k¥ v2)12/6),
where (v%) is the mean-square velocity, Consequently,

Pan(k, ) = %NfZ [ (f 1 0)|* expl—yy| 2] — dagyt — k20?3t /6]

Now, for visible light, & = 274 ~ 105 A-* and for a room-temperature
gas {v®) ~ 107, so that' Fy(k, ) decays on a time scale of 10-1° gec,
The radiation damping term decays on the order of .10-% to 10-? sec.
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Consequently, exp —y;| #| can be ignored in this simple discussion.

The absorption spectrum is simply the time Fourier transform of this

function, i.e., the power spectrum. Then,

Mo oy = (F) S (FTe 0P8 0 — o), (269

where :
Sy(k, @ — wp) = (MB[2nk*)/2 exp {—[BM(w — wy,)?f2k%] }...

6
Here, k and @ are the wave vectors and frequencies of the exciting light
(visible), so that @ = ck. Thus, we predict that there will be a sequence
of absorption lines of Gaussian shape centered on each allowed transition.
Moreover, the widths of the absorption line to state | /) will be

<(CD —_ C{qu)2>1'r2 = wﬂ} (kBT/MCZ)Uz.

Thus, the width of the lines will be different and will increase linearly
with (temperature)¥/2. This is the ordinary Doppler effect. t ‘e
The same kind of argument can be used to show that the line shape
for a specific vibrational transition 0 — 1 is determined by the time cor-
~relation function ‘

CMM(k! t) = %NFa(k: t) U(t)

Ult) = 3 18/8Qs 2] Ot |* [exp —7, | ] — i0,2] C0(0) - ()
= (2.69)

where F,(k, t) was defined previously, ( is the vibrational displacement
in the »th normal mode, O, is the vibrational matrix element of O

between the states | 0) and | 1), p{Q4, ..., Q,) is the dipole moment

of the molecule averaged over the ground electronic state, (8u{9Q,)
is the derivative of x with respect to Q, evaluated at 0y, ..., @y = 0y,
is the vibrational quantum of the »th mode, y, is the radiation damping
rate plus the collisional vibrational relaxation rate in the »th mode, and
u, is a unit vector specifying the orientation of the transition dipole of the
»th mode expressed in the spacefixed coordinate system. For example, in a
heteronuclear diatomic molecule there is only one vibrational mode and
~ u points along the molecular axis. Then (u(0) - u(?)) reflects the reorien-
tation of the diatomic molecule, The spectrum of a diatomic molecule is

t The same result can be obtained from the Doppler shift @ = wpl + & - vlel.
Then, (w — wpldlw,y =k -v/|k | From the Maxwell distribution of velocities,
{w — @)y = Kohwh = (ksT/Mc)wh.
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then (Go;‘&on, 1968)
Ik, ) = (N[V)| (81/Q)0 |* | Qo |2
x | i:’ dt eto-ut gviticu(t) « u(0)>F, (K, t).

Generally, a normalized spectrum f(k, w) is defined such that
Ik, w) = I(k, 0)/ [pana do I(k, ©);
then

2k, w) = (1/27) | i: de it gvitica(t) - w(O)Fi(k, £);  (2.70)

F,(k, t) can often be sect equal to one because, for infrared, k(=2x/2)
is very small, leading to a very narrow Doppler width. Moreover,
102 sec—! << ¢ << 10® sec™?, whereas (u(t) - u(0)) relaxes on a time scale
?ff 10-*2 sec, Then

Ik, ) = (1/27) f: dt efto-etou(t) - u(0)y (2.71)
and <u(?) - u(0)) can be determined by Fourier inversion of spectral lines

(Gordon, 1968).
Spectral line shapes were first expressed in terms of autocorrelation

functions by Foley (1946) and Anderson (1949). Van Kranendonk gave

an extensive review of this work and attempted to compute the dipolar
correlation function for vibration rotation spectra in the serniclassical
approximation. The general formalism in its present form is due to
Kubo (1961). Van Hove related the cross section for thermal neutron
sgattering to a density aui?correlation function (Van Hove, 1954). Singwi
and Sjolander (1960)";{1{113 kind of formalism to the shape of Méssbauer
lines, and recently Gordon (1968) has rederived the formula for the IR
band shapes and has constructed a physical model for rotational diffusion.
There also exists an extensive literature in magnetic resonance, where time
correlation functions have been used for more than two decades (Abragam,
1961).

D. ReLaxaTioN TiMEs

Relaxation times can be expressed in termps of time correlation fupdctions
(Abragam, 1961; Slichter, 1963). Consider, for example, a system A4
which is weakly coupled to a bath B. Let 5% .27 be the
Hamiltonians of the system A and of the bath ad thesAnteraction
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Hamiltonian between the system and the bath. Let | i(a)) and | i(3)) be
eigenstates of 4 and B respectively such that '

| (@) = aie) | i(a)) = hen(a) | i(e))

g i) = «(b) | 1(8)) = hi(h) | (B));
where g;(a) and s,;(bj are energy eigenvalues. The transition rate for the
system A4 to make a transition | Z(a)) - | f(a)) while the bath B makes

the transition | (b)) — | f(b)) is, according to the golden rule of t1me-
dependent perturbatlon theory,

Wiaritrra.se = (Crff®) | (ia), i) | 5‘?‘43} a), f(8)) i2
X dwg(a) + wn(d)), (2.72)

where wg(g) = wila) - w;(a) and likewise for wg(d). The delta-func-
tion ensures that energy is conserved in the transition; that is, if 4
decreases in energy, the bath must correspondingly increase in energy by
absorption. The transition rate for the systemn making a transition from
|i{2)) — | f()) independent of the bath is determined by averaging over
an ensemble of baths. If this rate is called Ryg).p, then

Ry = Z ity Witaritrsra s »
Wby )
where gy = eXP[_ﬁEi(b)]/Q - Then

i, 20 | (), 1B) | Fan| f(a) S0) |*
X a(mﬂ(a.) + wi(®)).

Now, for a number of cases of chemical and physical interest the interac-
tion Hamiltonian can be written as 57,5 = — F,Fy, where F, and Fy
are independent properties of the systemn and the bath. Then (i(a),

i(b) | FaFy | @), f5)) = (i(a) | £y | (@) () | Fa | f(B)). Tt follows that

Ryarssm = (2n/3%) | (i(a) |F 7@ 5 e ()] Fs] ) *
% 8(on(a) + wu(B)). (2.73)

Rz(a)—*ﬂa} =

'

This last formula can be related to the time correlation function of the
bath property Fy as follows. The delta-function can be written as

(@) + on(8)) = o= [ dt exp ilan(a) + wn)]r

T

.Y
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Substituting this formula into Eq. (2.73),

Riwrspiar = (2nfti?) | (i(a) | Ba | f(@)) 128 5(— wp(a)), (2.74)
where'

Ss(—wa(@)) = (125) [ dt eon@1(FR(0)F (1),

Let us now drop the labels for the bath and the system Then the transi-

tion rate for a system to make a transition from | 7) — | f) when it is in
contact with a reservoir is

Ry = (2nf7*) | (] P | f) [FS(— ), (2.75)

where Sp(wy) is the spectral density of the bath at the frequency neces-
sary for the systems transition,

Sa(—w) = (1/2) [ dt eot(F(0)Fa(t)).

The spectral density measures, in a way, the density of pairs of states in -
the bath that are connected by Fg and match the energy change of the
system (fiwg;). If there are no such states available; then the system cannot
make the transition |7) —| f). The reverse transition is simply

Ress= (2afi®) | (] Fa ] ) Saloa),
where
Sp(wn) = (1/22) [ dt e-tont(By(0)F5(2))

= (12m) [ at etort<Fa(t)F5(0)).

It is easy to show by uéing techniques leading to Eq. (2.32) that
Sp(—w) = eoSp(w); 2.76)

consequently, .
C Ry = efrenRe . (2.77)

This last formula implies that at dny temperature the bath is more likely
to absorb energy from the system than to give energy to the system.
This is entirely in accord with what was said in Section II,B. Thus, if
the system is a radiation field and the bath a system that we are interested
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in observing, it is more likely for the radiation field to lose energy than
to gain energy; that is, it is more likely for the bath to ibsorb than emit,

An example is the vibrational relaxation (Berne et al., 1967b, 1968a)

of a molecule ffom a state | # 4+ 1) to a state | n). The system is then
the vibrational coordinate Q and the bath is all other degrees of freedom,
The Hamiltonian can be written as '

;%AE = —fQ:
where
f = — 6V/5Q — ZBROT/rO:
where F = — 8V/3Q) is the force acting on the vibrational displacement

. when the oscillator is at its, equilibrium separation 7,, and g is the

rotational kinetic energy of the rotor. The term 2egqq/#, arises from the -

centrifugal distortion of the molecule. The rate for the transition
|41} —|n) is '

Roiom = (2f1) | Quarn P (U2) [T dt et £(1)(0)5,

where 0., , is the vibrational matrix element, | O,., ., |2=(n+1)%4/2uw,,
so that :

Rypian = [(n + 1)[2uficw,) ft:\fit (exp iwqt)

X <_F (t) + 2epor(t)ro)[F(0) + 2epon(0)/r,]>- (2.78)

If there is no O dependence in the potential, the only source of vibrational
- relaxation is through the centrifugal distortion. Then,

Rﬂ+1->-n = [(71 + 1)/21?1:600] f:: dt 8im°t<€ROT(t)EROT(O)>.

Consequently, R, ., will then be given only in terms of the rotational-
kinetic-energy time correlation function.

" E. TaErRMAL TRANSPORT PROCESSES AND STOCHASTIC PROCESSES

The previous subsections have been devoted to an exposition -of linear
response theory. It was shown how line shapes and relaxation times can

be related to time correlation functions. These phenomena share one K

characteristic in common. They ‘all involve mechanical perturbations

£

S
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which can’consequently be accounted for in a Hamiltonian. In this sec-
tion, an example will be given of how thermal perturbations such as

temperature gradients or concentration gradients can be treated. There are

a variety of ways to treat this problem. Luttinger (1964) has invented
fictitious mechanical perturbations that give rise to thermal transport.
The advantage of this procedure is that the perturbations can be incor-
porated in a Hamiltonian and the preceding results of this chapter can be
used. The disadvantage is that the fictitious perturbations do not cor-
respond to experiments done in the laboratory. Luttinger’s method is
perhaps the most elegant that has been applied to the study of thermal
transport processes, Helfand (1960) has developed a more direct approach
to this problem, one that is clese in spirit to the theory of Brownian
motion, and stays close to actual laboratory experiments. In order to
understand the Helfand approach, it is useful to know the main ingredients
of the theory of random processes. Moreover, a study of random processes
will pave the way to a better understanding of the next few sections.
For this reason, we begin this section with a brief introductory review of
the important features of random processes (Chandrasekhar, 1945; Feller,
1966; Rice and Gray, 1965). )

Let y(2} be a variable that does not depend on the time in a predictable
way. We call y a stochastic or random process. Examples of stochastic
processes are’ the number of raindrops hitting a metal roof at any given
time, or the position of a colloidal (Brownian) particle as it wanders
through the solvent. A stochastic process can be classified according to
its representation and its order.-If the random variable can take on only
discrete values, then the representation of the process is said to be discrete.
whereas if the variable can take on a continuum of values, the process
said to be continuous. Only continuous processes are considered here.
_ All relevant information about the process ¥({t) is contained in the
hierarchy of probability distributions '

Bty s Ba) dyy - dyy |
= Prob{y, = (t) <y + dyy; 9. <3(t) <3,
Ty Y S V) S e+ @l
P.ody, ---dy,is tﬁe' joint probabilitﬁ%ﬁiat the random variable y(¢) has a
value between y, and y, - dy, at time"r%, a value between y, and y,+dy,
at time #,, and in like manner for time§af; on up to ¢,. We call P, the
nth-order distribution function. These probability densities have the
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following properties: '
Bty i t) =0, (2.79a)
f dy, Py, t)) =1, . (2.79b)
f fdyz+1 A Puyia b 3 Ye ) = Pyt s 3y ),

. (2.79¢)
Po(315 85 Vs B Yan ta5 + ++ 5 Vs )
= n-vl(yl’ _t;yﬂ’ B35 020 Vs 1a) 0(¥1 — ¥a)- (2‘79(:1)

From (2.79¢), it follows that all higher-order distribution functions imply
all lower-order distribution functions.
A process is called a pure random process if

. k2
Pn(y].:tl; ---;yn:tn)quf(yj’tj) (280)
Fea

because successive values of ¥ are uncorrelated. All relevant information
about y(#) is contained in the first-order distribution function.

A random process is called a Markov process if the process is completely
specified by the second-crder distribution function Py(y., ty; ¥a, £s). For

the purposes of this discussion, it is necessary to define the conditional’

probability K (y;, ;| ¥s; £2) dy, that y(f) is found between y, and
¥y + dy, at the time ¢, if v has the value y, at #,. Then,

Py(y1, 115 Yas ta) = Pr(y1, 1)KLy, 8y ] Yas £a)- (2.81)

To be consistent with the properties of P,, K, must have the properties

By t1| yas 1) = 0, ' (2.82a)
[y Ky, iy ) =1, (2.82b)
fdyl Pi(yy, K (315 8| Yo 85} = Palye, ta)- {2.82¢)

If periodicities are excluded,

lim  Ky(31, 8| ¥ay ta) = Polvas tah (2.82d)

Wy =ty >co

Higher-order transition probabilities can be defined. For example,

Koalyis tys -
(2) will be between y, and 3, + dy, at time ¢, given that y(¢) had the

3 ¥ar1s ba_z| Vu, t4) dy, represents the probability that

. Pn(ylstl; e
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'

values ¥y, ..., ¥,y at the times t,, ..., f,_y(<< 2,)). Then,

H ) t‘n) = Pn—l(yls tl; 3 Va1 tn—l)
X Kn—-l(yla by o 3 Yn-11 L1 I Yns t’ﬂ)' (2"83)

A random process is a Markov process if

Kn—l(yls tl; LR T Y tﬂ—l | Yns tﬂ.)
= K15 ot | Yus Ba)s Bt < e (2.84)

A Markov random variable is such that, if its value is known at time
f,_,, the value of the variable at time £, is completely independent of
its values at times prior to #,_;. Then, from Eq. (2.83),

Pﬂ(yls £i5 000 Y Vns tn)

= P (¥1: 83 0 3 Yoo tn—l)Kl(yﬂ—ls - E Vs tn)'

‘Iteration yields

Pn(yl; tl; R T tn)
= Pi(y, K (s | s t2) o0 Ki(ness Baia | s ) (2.85)

For a Markov process, it follows from property (2.79¢) and Eq. (2.85)

that :

Py(y1: 613 Y3, b)) = '[ dya Ps(v15 113 Y2 £23 Vs Bs)

or

Py(y1, t1)Ky(¥1, B | Yo 2a) .
== f dys Py(y1 1K1, 8 | ey ) K1 (Y25 22} Vs Bs)-

_ Cancellation of Py(y,, ;) vields Markov’s integral -equation,

Ky, t, I Ys5 ts) = J. dys Ki(v1, | Yz» tz)K1(yz, Iy i Yss fa)- (2.86)

A random process is Markovian if and only if it satisfies Markov's
integral equation. A Markov process is a second-order stochastic process.
A random process is stationary if

PI(J’ut;) = Py(y1) .
le(yl: ;Yo £a) = Py(y1, ¥a3 fs — b, (2.87)
Pn(yls tﬁyz: tz; et 3 Vs t'n) = Pn(yl:yas 12_ ;1; e ;yns tn'"" tl)'
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If the statistical process is invariant to a shift in the time origin, then the
process is stationary. Fluctuations in a system in thermodynamic equi-
librium are examples of stationary stochastic processes. For a stationary
process, the transition probability satisfies the condition

Ky 2] 93: ) = K31 | yas s — 1), (2.88)

For a continuotfs, sta
becomes

K l i t) = f ‘éJ-’olkl(J’l | 303 £0)K (¥, lyst— to); (2.89)

The integrand is simply the condifional probability distribution for the
transition from the initial state y, to'the intermediate state Yo in the time
to, and then from this intermediate state to the final state ¥ in the remain-

Markov process, Markov’s integral equation

ing time, ¢ — #,. The integral over all intermediate states then gives the.

conditional probability for the transition from ¥ to ¥ in the time &
Any distribution can be fully characterized if all of its moments are
known. The (n 4+ m)th moments of Py(y,, 15 ¥s, ;) are

HT = f dy, f dyy (3, — V(Y. — <yz>)_mpz(3’1s tiYes ). (2.90)

Consider the second moments. There are three, uff, 4, and u®. The
moments uf and uf are mean-square deviations and are equal if the

process is stationary; u{¥ is an autocorrelation function of A
s 1) = [ dyy [ dyy (0 — ) 0s — IDIPO1, 13 3, 1), (291)
The normalized autocorrelation function of yis

Cltr, 1) = s, 1) 2T 2.92)

If the process is stationary, then Cy(z,, t,) = Cty — 1),

If the distribution functions Py, ..., P, have a Gaussian form, then
it can be proved that the stationary process ¥(2) is Markovian if and only
if the time correlation function C(#) is an exponential function of the time,
Le., C(t) = e, This is known as Doob’s theorem.
~In many cases, the random process can be multidimensional. For
example, the position of a Brownian particle is specified by three coordi-
nates. All of the concepts presented here can be generalized to multi-
dimensional processes. The interested reader should consult the many

. excellent references on this subject,
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In this chapter, our primary goal is to compute autocorrelation fune-
tions. For this purpose, it is necessary to determine the second-order
distribution function Py(y,, ,; ¥,, £,). Moreover, our interest is restricted
to systems that are in statistical equilibrium so that the fAuctuations are
stationary stochastic processes. The process is often assumed to be Mar-
kovian; however, there is no compelling argument to support this as-
sumption in many cases. The first- and second-order stationary distribu-
tion functions of fluctuations can be determined from the equilibrium

- ensemble distribution for a classical system.

Let y be 2 dynamical property of a classical system. Then y depends on
the microscopic state (or phase point) I' of the system, y = y(I"). The
ensemble average of the property y is

<y = [ drfanT, epr),

where f*)(T", #) is the phase-space distribution function at time #. Since

“this chapter is concerned with equilibrium ensembles, we may take
(T, t) in any equilibrium ensemble. For convenience, choose (3 = 0,

so that y represents a fluctuation.
‘The probability P,(y,) dy, of finding ¥(T') between y, and y, + dy,,

P(y,) dyy = Prob{y, < y(I'}) < y, + dy, },

is found by integrating f&(I',) only over those regions of I'-space for
which 3, < y(I') <y, 4 dy,, or

Pl dyy = [alf@(T), (5 <) Sy + dyi).

*Now consider the integral

Fy(y') = [ dl n(y' — (D)D),
The last integral contains the step function ‘

i, x = 0,
’7(")={0, % < 0.

This integral is the probability of finding a value of the property ¥(I")
smaller than or equal to 3,
It follows that ;-

Ply,) dyy = Fu(y, + dyy) — Fyfgr), (2.93)
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s0 that
P(y,) = dF(y,)dy, = [ dT 8(y, — y(D)fE D).

This last formula follows from the fact that the derivative of the step
function is the delta-function. Consequently, the first-order distribution
function of the fluctuation v is

Plyn) =< —x(Np. (2.94)

The probability Py(yy, y,; t) dy; dy, of finding y{I',) between ¥, and
Y1+ dy, and (1) = eliy(l,) between y, and ¥, + dy, is found by

integrating fi&(I')) only over those regions of I" space for which the

following inequalities are valid
Y1 = y(o) Z yo A dya, Yo = p(I') Sy + dy,.
This integral is determined in a completely analogous manner,

Py(y1, ya3 1) = f dl'y 6(yy — y(14)} 6(y2 — (NI ) (2.95)

The second-order distribution function is consequently the ersemble
average '

Po(yrs yas ) = 8y, — y{(I0)) €5 8y, — (o). (2.96)

The first- and second-order distribution functions obviously have the
properties that ‘

JdnPoy =1, [dn [ Piyyst)=1;  (297)

[ @1 P31 950 = Py, [ dna Py, 50 1) = Pi(3), (2.97b)
Py(y15 325 0) = Po(31) 8(31 — 39); (2.97¢)

Po(y1, 325 T) = Py(¥as Y15 ~7). (2.97d)

Properties (a)-(c) are direct consequences of Eqs. (2.93) and (2.95).
Property (d) follows from the Hermitian property of the Liouville
operator (see the next section).’

A number of other properties of these probability distribution func-
tions follow directly from Eqs. (2.94) and (2.96) and the character of

Piy)Ki(y1 | yas 8) = Pi(ya)Ki(ya | 313 t)
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H

' ¥(I'). Suppose, for example, that y(I") has even signature under time

reversal; that is,
Y, —pNy — (I, py,

Then, transforming the integrals in Eq. (2.95) such that p¥ — —pi®
and recognizing that L — —iL under this transformation, one sees that

Py(y1, 303 t) = fdpo Oy — () e~ §(p, — YT )MENT ),

which becomes, after an integration by parts,

Po(y1, 323 1) = Py(va, ¥1; z). (2.98)

This equality expresses the well-known property of detailed balance for

time-even properties in an equilibrium system.
The transition probability K;(y, | y.; 1) = Py(y,, ¥a;3 1)/ Py(y,) satisfies
the properties ‘

[ v Kan )35 1) = Py, ' (2.992)
[ @K1l 9s) =1 (normalization) (2.99b)
(detailed balance) (2.99¢)
Kl | 963 0) = 303 — 3. (2.99d)

The characteristic function of the. joint probability distribution
Py(y1, ysi t) is

GolKs Ky 2) = [ dy, [ dyy exp[—i(K 31 ~ Kaya)1Po(y1, 33 £). (2.100)

Substitution of Eq. (2.96) for the stationary ensemble leads to the in-
teresting result '

Go(K1, Kpi t) = (e EWTogiltgBayToyy — (g-iEwl ke (2.101)

According to Eq. (2.101), the characteristic function of the second-order
stationary distribution function P, is a stationary time correlation func-

. tion, It is quite possible to> derive memory-function equations for the

characteristic function of the second-order distribution function
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Py(v,,ys; ) (see next section). This development will not be pursued
here, despite its utility in deriving kinetic equations corresponding to
different physical models,

It is a very difficult matter to compute. the second-order distribution
" function. Nevertheless, it is often possible to compute or experimentally
determine the moments u{™ of this distribution function. There exists
an approximate method for finding P,(yy, ¥,; £) based on the tenets. of
information theory (Rice and Gray, 1965). For this purpose, we define
the entropy (the basic measure of a distribution function) as

S[P) = — [ dy [ dya Py, 301 ) In Py, s ). (2.102)

According to information theory, if a certain set of moments of P, is
known, then that P, is optimum that maximizes S[P,] subject to the
known moments. Suppose we only known the moments uf®, 4§, and
u3(t). The moment u{P(t) is a stationary time correlation function and
can consaquently be determmed experimentally as indicated in the pre-
ceding sections, The moménts uf¥ and ) can often be computed from

statistical mechanics, The only thing that is assumed known about P, is

g = J. dy, f dyebﬁ — Ly TPPy(y1, P25 th
= [ dyy [ dya [yn — <IDTPoly1, 323 1),
i = [ dy, [ dya [yx — D1y — IDIPs1, 323 1),

(0) —jdyifdyz 2(}’1!3’2: t) = 1.

(2.103)

Now we must find the function P, that maximizes S[P,] subject to the -

four previous constraints. This problem can be solved by the method of
Lagrange’s undetermined multipliers. When y, varies between — oo and
400, Py(yy,¥s; ) turns out to be

Py, 23 1) = {2n(Sy,[1 — p2(6)]*2 )}
X exp {_ (53/1"‘ - 6y22 — Zayl 6_'})21'0(1}))/2(5},12) [1 _ wg(t)]}
(2.104)

Integration of this distribution function over y, yields

P(y,) = [27<8y: %] 7% exp (== 8y,*/2{ 077 (2.105)

9. Time-Dependent Properties of Condensed Media 577
The transition probability K, (y,, v,; ) is then

K131, 305 1) = {2n8y,H[1 — 9(8)] } 7
X exp {—[dys — &1 p()]42{dy,D[1 — w(1)]*}. (2.106)

In all of these formulas, 8y, = ¥; — <¥>, 8y, = ¥s — (¥, and u(2)
= {dy; Sy,»[{dy,* is the normalized autocorrelation function of the
property dy. Consequently, if all that is known are the moments in

-Eq. (2.103), the optimal distribution function P, is the Gaussian distribu-

tion of Eq. (2.106). So far, we have not specified that the process is
Markovian. According to Doob’s theorem (Feller, 1966), it would only

. be meaningful to assume that y is a Markov process in this approximation

if (¢} is exponential, It should be noted that this transition probability
satisfies all of the conditions of Eq. (2.99).

Equations can be derived for the time evolution of the transition prob-
ability, Before describing these equations, it is instructive to.consider
the case of self-diffusion. For this purpose, consider a monatomic fluid,
like liquid argon, in thermodynamic equilibrium. Let us suppose that

. all of the particles in the neighborhood of the point r, at the time ¢ = 0

are tagged. These tagged particles diffuse away from the point »; in the
course of time.

The fraction of these tagged particles that are found in the neigh-
borhood d% of the point r at time ¢ is simply the transition probability
Ki(ty| r; t) d%. The random process is the position of a tagged mole-

“cule and this process is stationary because the system is in thermo-
" dynamic equilibriom. It is customary to call this transition probability

Gy{r — 1y, £). Note ‘that

Gr —ry; 1) = K (v, | v; 1);

3( a3 ) ,—1( ﬂl ) (2'107)

Gy(r — 155 0) = K(rg | 15 0) = 8(r — 1y);

G, re fits the probability that a particle startiﬁg at r, at the initial
instant will move to a point in the neighborhood of r by the time #.
This function is called the Van Hove seclf space—time correlation func-
tion.

If |R|=1!r—r,|is 2 macroscopic distance and t is 2 macroscopic
time, then Gy(R,t) will satisfy the diffusion equation, i.e.,

aG,(R, 1)

5 = DV 2GR, t),

by A\
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where D is the self-diffusion coefficient (see Section V,A). Moreover, it
is obvious that the diffusion equation is applicable, since G, represents
the manner in which the concentration of tagged molecules changes in

" time at each-point in space. This equation must be solved subject to the

initial condition G,(R, 0} = &R). The solution is
Gy(R, t) = [47nDt]~¥2 exp(—R?4Dz)

for ¢ long compared to collision times, The mean-square displacement
of a particle is ' '

(R2)> = ({r(t) — r o] = f 4R R°G,(R, t).

From Eq. {2.108), it follows that

{fr(t) — ry]%> = 6Dt (2.109)
Consequently, the self-diffusion coefficient D is '
D =lim {{[r(t) - r,]%/6t}. {2.110)

i->ro0

This relationship was originally derived by Einstein. The Einstein formula .

can be expressed in terms of a time correlation function. It should be noted
that

r(t) — x, = | dty V(1)
and
) —xft=[ at, || d V(t:) - VL),

where V (2,) is the velocity of the tagged molecule at time #, . It follows
that

et = w012 = [ dty [ty V(1) - Vit

The limits of integration can be separated into two regions, ¢, << ¢, and
t, = £,, so that

4 2, .
r(t) — ro]? =2 f dty f : dt, V(OF V(t, — ),
where the fact that V is a stationary variable in an equilibrium ensemble

has been used. Transforming to the new variables ¢,, ©* = ¢, — ¢,, We
see after an integration by parts that

fr(t) ~ xo)5 =2 | ; dr(t — 1) <V(0) - V(x)>. (2.111)

(2.108)
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Substitution of this result into the Einstein equation yields a formula
for the diffusion coefficient,

D= lim [ dt [1 — (/) |KV(0) - V().
I-roa
If the integrals exist for all times ¢, it follows that

D=3 :" dt (V(0) - V(7). (2.112)

Consequently, the self-diffusion coefficient is the time integral of the

- velocity autocorrelation functions. This is one example of the by now

well-known result that linear thermal transport coefficients are. pro-
portional to the time integrals of the autocorrelation function of their
corresponding fluxes. Such relations are called Kubo relations (1961),
This derivation is a specific example of Helfand’s derivation (1960) of the
Kubo relations. This method consists in: (1) determining the macroscopic
transport equations (hydrodynamics), (2) deriving the Einstein relation
for-the transport coefficients, (3) deducing the Kubo relation from the
Einstein relation. For the details, the interested reader should consult
Helfand's paper (1960).

~ Let us now return to the general theory of stochastic processes. Equa-

- tions can be derived for the time evolution of the transition probability

Ki(y1] ¥53 t) for two limiting cases: (a) the process y is subject to small,
frequent changes, (b} the process y is subject to large, impulsive changes.
It is instructive to review these two cases. For more details, the reader
should consult the extensive literature on this subject (Rice and Gray,
1965).

In the former case, case (a), it is assumed that the changes in the
random variable y are small compared to typical values of y, and that
these changes occur on a time scale of order 7,. Moreover, it is assumed
that the distribution function varies on a time scale of order 7, which is
very long compared to z,. Consequently, changes in K,(y, | vy; t) are
the result of many very small changes in the process y. It is then reasonable
to assume that there exists a time T such that

T, Erv €T,

An example of such a process is the random walk, or diffusion process.
In this process, the random variable is the net displacement of a particle
after a time ¢. The net displacement is the superposition of a large number
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of insignificant small changes in the instantaneous position of the particle.
The small changé take place on a time scale of order 7, and K changes
on a much longer time scale .

Markov's integral equation for a stationary Markov process is

Kiniyit+ 1) = J.d}’z Ki(y1| 23 K (32| 35 %) (2.113)

This equation is valid for all 7. The right-hand side of this equation is
determined from the transition probabilities for going from v, to the
intermediate point y; in the time ¢ and then from y, to the final point y
in the time 7. If 7 is very small, then by hypothesis there will be very small

changes in the random variable, so that y must be close to v,. Let Ay°

represent the small difference between y and y,, ie, dy =3 — y,.
Then Eq. {2.113) becomes
Kiy:|yit 4 1) = [ d(dy) Kily: |y =~ Ay; yo(y | dys =), (2.114)

where
p(33 | dy; 7) d(dy) = Ky(y — Ay | y; 7} d(dy) (2.115)

is the probability of a change Ay during the time interval 7 starting from

¥ — 4. The left-hand side of this equation can be expanded around 7=0

and the integrand can be expanded around 4y = 0, so that

Kyly: |35 1) + v(8[00)K\(n [ 33 1) + - -
= [d(dy) (Ku(y:) 55 typ(y | 4y; )
— Ay(8/3)K\(y1 | 35 tho(y | dys =)
+ 2y (0% ay )Ki(y, | y; ey | dys o) + --- ). (2.116)
If the time 7 is chosen such that 7, <€ v <€ 7,, the left-hand side of

this equation can be truncated at the second term. The right-hand side
can be simplified by introducing the moments of the distribution func-

tion p(y | dy; 7),
[ d(dy) (dyywiy| dy; 7) = <Ay™(),. (2.117)

It should be noted that these moments are conditional on the initial
value of the random variable y. For example, <Ay*(z)), is the mean-
square displacement of the random variable in the time v given that it
" had the value y at the initial instant. Moreover, the distribution function

R TR
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y(y | dy; 7) is normalized, i.e., {4y%(7)°), = 1. Combining these results
Eq. (2.116) becomes

Ki(y: | yity+ v (0K (v, | ¥i t)/at)
Z [ 1) n1] (019" WK Ay ()0, Ko (31 | 35 £) + Kl | 3 8).

If we divide through by 7 and take the limit v — 0 such that 75 7,,
0K (3, | 3 1)/t

=lim 3 (— L)@ ay) Ay (K | 33 0. (2118)

TETy

Before' investigating the time dependence of the conditional moments,
it should be noted that in order for Eq. (2.118) to be useful the time 7
cannot appear explicitly. The time + will disappear from the equation if
the first z moments are proportional to 7, whereas the higher moments
depend on higher powers of v. Then, writing,

i a™y), mn=1...,m
7 —_ 2 3
im careme= {37 L2 ey
T _
the equation then becomes
6K oo
Z (=) {nl)(8™dymya*™ (y)K,. (2.120)

'This equation is called the generalized Fokker-Planck equation. It can
be generalized to the case where y has more than one component.

Equation (2.120) describes the time evolution of the transition proba-
bility for a Markov process y. To get some idea about the time dependence
of the moments (4y"(z),, let us use the Gaussian transition probability
of Eq. (2.106). Since the process is Markovian, Doob’s theorem requires
that y(r) = e, where p = 0(+71). Since v < 7,, it is legitimate
to substitute (v) = 1 — ypz, where y = %(0) is the initial slope of the
normalized correlation function, so that

Ki(y | Va3 T) o [4-7;(63;12)?,3-]—1 2
X exp {_anz — éyl.)(l — 71{)]2/4<6y12>[j}1’] } (2121)

For simplicity, take <y» = 0. Then Ky(y |y + Ay; 7) is

Ky |y + dy; 1) = [2adyyr]V2 exp {—[dy + ppe)24<yDyr ).

P -1
-?-'ga-(,.,_‘ &
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It follows that

["rn<.;va>w]"”2 [ d(4y) (dyy exp{—[4y -+ yyr]l4yDy7}

<Ayn(r)>y ==
{2.122)
and it is easy to see that
{Ay(zhy = —y77,
(A (), = 2{yHyr + (py7), (2.123)

and all higher moments depend on higher powers of 7. This approximate
result gives us reason to truncate the generalized Fokker-Planck equa-
tion after the second term so that

OK,[0t = —(8]0y)a P (y)Ky + 3(8/9y*)a®()K,.

This result is exact for the case of a Gaussian Markov process in which
{vy = 0. Substitution of the moments from Eq. (2.123) leads to the
result

(2.124)

OK.j0r = y{y?y(8]0y)[8]0y + (1/<yD Ky,

which is the common form of the Fokker-Planck equation (Chandrase-
khar, 1945; Feller, 1966; Rice and Gray, 1965). The general solution of
this equation is the Gaussian transition probability of Eq. (2.106) with
an exponential autocorrelation function, as expected. Suppose, for ex-
ample, that we are interested in the momentum along the x direction.
P, = MV_, of a heavy particle immersed in a bath of light particles, i.e.,
a Brownian particle (Chandrasekhar, 1945). It is quite natural to fegard
this velocity as a Gaussian randem process because for 2 system in thermal
equilibrium P, is distributed according to a Gaussian distribution,’ so
that, no matter what the initial momentum is, P,(P,) should tend toward
a Gaussian distribution, If furthermore it is assumed that the momentum
is Markovian, it follows that (y = P,)

3K, [0t = L(3]0P,)[3]0P, + AV,IKy,

(2.125)

where f = 1/kT, { = yMRT = p(0)MET, and (¢} is the normalized

momentum autocorrelation function.
The opposite limiting case, case (b), in which there are large, impulsive

.changes in the random varigble y, can be handled in a slightly different

fashion, Again it is assumed that there exists a time 7,, called the collision

t This is a plausible assumption.

(2.126)
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time, which is the time between the impulsive changes in the variable y.
It is assumed that during t,, K; changes very little, so that we can imme-
diately write in place of Eq. (2.116)

Ki(y1| 35 8)+2(0]06)K(y, | y; ¢

Since

.=f dyy Ki(y11 v23 K (32 | 33 7).

[& Ky yss7) =1,
it follows that

(000K, (3. | 3 1) = [ dye (K| 31| 303 K32 | 33 7)

— K|y Ky |y 7))} + O(=).  (2.127)
Let us now define the transition rates
Riy:l9)= lim (1/)Ky(y:|y;7)
"’"A">’° (2.128)
R(y|y:) = jlﬂ; DKy |y o)

R(ys| ¥) is the rate of transition from y, to ¥, and R(y | y,) is the rate of
transition from y back to y,. They nge the probability per unit time for
specified transitions. When a system is in equilibrium, these two quanti-
ties are related by detailed balance if y is time even [see Eq. (2.99)].
If y is time odd, an analogous relation can be proven. If Eq. (2.128)
is divided through by 7 and the limit v — 0 (z > 7,) is taken, it follows
that

(3100 | 9 1) = [ dyy (Kl | 923 R4 9)
— Ki(3: | i OR(y [ 32) }-

This equation has many applications in physics and chemistry. An
equation of this kind is the basis of the kinetic theory of gases (Chap-

(2.129)

‘man and Cowling, 1939) where it is used to describe how momentum

changes occur in gases due to collisions. In the kinetic theory, ¥ represents
the position and momentum of a molecule and it can be shown that the
transition rate R is proportional to K. In this eventuality, the equatlon is
called the Boltzmann equation,

In the previous analysis, Eq. (2.125) followed from the assumption
that y(y | dy; ) is large for Ay ~0 and small for Ay ~ {y*¥?, and
Eq. (2.129) followed from the assumption that R(y,|y) is uniform for
a range of Ay from 0 to {y*)¥3, It is possible to derive an equation for
intermediate~-type behavior. An example of such intermediate behavior
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is that of a molecule moving in a liquid. The intermolecular potential
consists of 2 strong repulsive region and a weak attractive region. A
-molecule will consequently move in a soft fluctuating force field between
stronig repulsive collisions. Its momentumn will then change by frequent
small amounts due to the soft force field and by large amounts due to the
strong repulsive collisions. Consequently, it may be conjectured that the
momentum of a molecule is a2 random process intermediate between the
Fokker—Planck and Boltzmann limiting forms. Such a random process
might well satisfy the equation

(0/0)Ky(y1| ya3 ) = J.dyz [Kl(yl | 25 )R (72 | ¥)
— Ky | 9 )R(y | 92)]— (8/8y)a(9)K (31| 33 2)
+ 3(8%/3y*)a®(y)Kr (315 5 1)

For this equation to be valid, it is necessary that the soft and hard changes
in ¥ occur on the same time scale. This approach was suggested by Rice
and Allnatt, who applied a similar equation to the transport properties
of liquids (see Rice and Gray, 1965). The equation is called the Rice-
Allnatt equation,

Only the Fokker—Planck equation will be applied in later sections.
This section is meant only as a survey of some of the key developments
in the kinetic theory of liquids. The development of kinetic theory is
based on a mixture of mechanical and statistical arguments. Some of these
equations can be derived from first principles, :

IIL. Time Correlation Functions and Memory Functions

A. THE HrieerT Space oF DyNaMical OPERATORS

Time correlation functions are of central importance in understanding
how systems respond to weak probes in the linear approximation. Ac-
cording to the fluctuation dissipation theorem of the preceding chapter,
spectroscopic line-shape studies reflect the detailed way in which dynam-
ical variables relax in the equilibrium state. This fact has been exploited
first in radiofrequency and microwave spectroscopy and more recently
in Méssbauer, neutron, and infrared spectroscopy. It is the aim of sta-

tistical physics to predict the stationary and dynamical properties of many-

body systems in equilibrium. For this purpose, it is often necessary to
adopt simple models. Solids and gases are well understood because there
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exist many very successful simple idealized models for these states of
matter. On the other hand, liguids still remain something of a mystery.
There is no simple model of the liquid state that accounts for the observed
properties. Furthermore, no new phenomena have yet been predicted by
models of the liquid state, as in the solid state. Liquids have been a
challenge and embarassment to generations of outstanding physicists and
chemists. In the last decade, a great deal of new information on liquids has
been acquired, partly because of new techniques and partly because linear
response theory provided a theoretical framework in which different
measurements and ideas could be unified. This information is usually in
the form of time correlation functions. Thus, it is not difficult to see why
theoretists have attempted to construct models of condensed media that
account for the dynamical bahavier of time correlation functions.

In this section, we will discuss the role of memory functions in the
theory of time correlation functions (Berne et al., 1966; Kubo, 1966;
Mori, 1965a; Zwanzig, 1961).

Consider the arbitrary operators & and 5. Let us define the scalar prod-
ucts of « and §, <{a| 83, as

| <o | By = Trfd[da+, flibed= <3a*, 1> (3.1a)
<@| 8y = [ dI f@T)a* (W) = <a6), (3.1b)

where &+ is the Hermitian conjugate of the operator . Equation (3.1a)
is the quantum-mechanical ensemble average of [a*, £],. Equation (3.1b)
is the classical equilibrium ensemble average of a*8. In Egs. (3.1), fe,
and f¢ correspond to any equilibrium ensemble. The scalar products
(3.1a) and (3.1b) each satisfy the conditions

(1) {a]p*=<B|e.

(2) Ifo= ¢y + ey, where @ and o, are two arbitrary observables,

and ¢, and ¢, are two arbitrary constants, then (8 | &) = ¢;<f | >
Tt elB l @y
(3) <a|a> = 0; the equality sign appears only if ¢ = 0.

From (1), we sce that the norm, (& | &»'/2, of the property &is real. Thus,
<er| @>V/% can be regarded as the “Jength” of the property &. A property
whose norm is unity is said to be normalized. Two observables ¢ and f
are said to be orthogonal if {a| #» = 0. It should be noted from (1)
that (@ | £> need not be equal to ¢(f|«). Consider all bounded linear
operators, together with the scalar product defined above. A Hilbert
space of dynamical operators can be constructed. In this space, the
¢ is represented by the ket | a).
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* Consider now the dynamical operators U, ..., Uy. Suppose that
these operators are chosen such that they have a norm of unity and are
orthogonal, ‘
Ul Uy = 8, (3.2)

These properties are so chosen that their ensemble averages are zero,
Uy =0. (3.3)

Let us further suppose that the operators {U,} have the following form
and properties:

0, =% H{Un, expik - 1,.]. = U,(k), (3-4)

where U,,, is the »th property of particle m and r,, is the center-of-mass
position of particle m. The property U,, is a single-particle property
and consequently must be Hermitian. It should be noted that U,(k)
resembles B, in Chapter 2. Because the single-particle properties {U,,,}
are Hermitian, it follows that U,(—k) is the Hermitian conjugate of U, (k).

Observableccan quite generally be classified as time-even or time-odd
depending on whether they do or do not change sign on time reversal.
All even time derivaties of the coordinates are even under time reversal,
while all odd derivatives are odd under time reversal, Thus, the Hamil-
tonian is time-even, the angular momentum is time-odd, and the linear
momentum is time-odd. Time-even properties are represented by real
Hermitian operators, while time-odd properties are represented by
imaginary Hermitian operators,

The operator U,,, has the property that

Ufm - yvam! (3'5)
where y, is the signature of the property U,,, under time reversal, Thus,
if U, is time-even, y, = + 1, whereas if U,,, is time-odd, », = — 1.
From the definition of U,,, and U,, it follows that

Uy*'z Uv*(k) = ')}vﬁv(—-—k) = yvUv+) (3'6)

where U,* denotes the Hermitian conjugate of U,.
If will be useful to know. how the properties U, ..
above behave under coordinate inversion P, where

Bfxy, ..., 1y, ey =f—ry, o —ry, L),

.» Oy defined
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We will only consider the single-particle properties that have definite
parity under inversion, such as the molecular dipole moment or mo-
mentum. Then,

PO, P = ,0,,, (3.7)

where ¢, is the signature of the single-particle property U, ,, under coordi-
nate inversion; that is, the parity of the operator. The signature ¢, = - 1

if U,,, is symmetric and ¢, = — 1 if U,,, is antisymmetric in the coordi-
nates, Consequently,
PU P = PO (k)P = ¢, U(—k) = ¢,0,* (3.8)

In the absence of external magnetic fields, or, for that matter, any
external pseudovector field, the exact energy eigenstates of a system can
only be degenerate with respect to the total angular momentum of the
system. This source of degeneracy can be removed if we assume that the
body is enclosed in a container with rigid walls. It is always possible in
this case to choose the energy eigenstates to be real. Consider the matrix
elements of U, in this real energy representation. From Eq. (3.6), it is
seen that

(n] 0% | m) = y,(n| 0,*| m). (3.9)
Since the states are real,
(?ll U,,*[m)*: (nl le m)= 7’9(”’[ Uv+{m)*= Vv(ml le n)'

The last equality follows explicity from the definition of the Hermitian
conjugate, so that

(n| O,| m) = y,(m| U,| n). (3.10)

The matrix U, is seen to be symmetric or antisymmetric depending on
its signature in time.
The classical counterpart properties to these,

U =Ulk1,p) = ¥ Upn(tm» Pm) exp ik » 1,, (3.11)

‘have analogous characteristics. The coordinates r and p in U, stand for

all of the coordinates and momenta in the system. The single-particle
property U depends only on the degrees of freedom (r,,, p,,) of particle m.
We shall only consider properties U, in which U,,, has definite time-

i
¥
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reversal symmetry and definite parity,

Uvm(k) rm: _'Pm) = yvUvm(k! rm, pm)

| ‘ (3.12)
. Uﬂm(k! — Iy, pm) = SvUvm(_kD Tos Pm)'

Furthermore, it should be noted that U, has the property that

Ul —r,p) = U=k s p) = UM mp)
Uy(k) r, HP) = 'JJ,U,,(k, r, P)

The properties U, obey the equations of motion
aU,jot = iLU,, (3.14)

where L is the Liouville operator:

iLe = {o, H} (classical}

iLa = (1/i%)[e, H]- (quantum). (3.15)

The properties Uy, ..., Uy can be represented by vectors | O, +«-,
|U v in the Hilbert space of dynamical operators defined in the beginning
~ of this section. According to (3.1a),

(@| L] By = 7t Tr dou {4*[A, Bl + [H, fl-a*}.

The trace can be expanded in the complete set of real energy eigenvectors
of the Hamiltonian. Then, ,% .

| @| LI = F bt 1£)/| (2 B 1)
+ @ | (1, A1 £ )] ér| )}

It should be noted that (i | 4 | ) is the if matrix element of an operator 4
in the energy representation. It is not a scalar product in the Hilbert space
of operators. Since (i|[H, §]-|f)=(E,— E;)(i|{f) and since
Glat | F) = (Fla] i)y aod (£ B1i)* = G| 6|/ ), it follows that

Ca| L] g% =773 dai{(] B A, )] D)
+ @A, A )| D

or

a|L|gy*=<B|L]e. (3.16)

£
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Thus, the Liouville operator L is Hermitian in the space of linear opera-
tors.

An analogous proof can be carried through for the classical scalar
product (3.1b}). Note that

| L| % = [ dr f DI,
The operator iL is the linear differential operator of Eq. (2.93),

: y 9 9
iL={,H)= z[vj- o T E | (3.17)

=1 3

Substitution of L into {a | L | 8> and a subsequent integration by parts
yields

a| L|By* = [ ar g Dp*(La(l) = I Lad,  (3.18)
where it was assumed that the surface term is zero due to the presence of
the distribution f{¥?, which vanishes very quickly on the boundary of the
accessible region of phase space. Since (3.1b) is the classical limit of

{(3.1a), Eq. (3.16) implies this result.
The time correlation function C,,(¢) is defined as

C.ut) = <U,| 2] U,y = <UL(0)] Upt)>- (3.19)

Corresponding to the two definitions of the scalar product, Eq. (3.1),
there are the correlation functions

Cv,u.(t) = <%[Uv+(0)! Uﬂ(t)]+>
Cot) = [ Lo S TYUM T B U ().

(3.202)
(3.20b)

Equations (3.20a) and (3.20b) are the quantum and classical cross cor-
relation functions of the properties U, and U,. They describe the cor-
relation between U,(0) and U,(t) as a function of the time.

Consider the property B, that we described in the last section: B,
has the property that

<Bk> = Tr é‘quh =0.

- Accordingly, the autocorrelation function of B, was=-d%’-f_‘iq&%€crl‘ in the last

section. as

Can(k, £) = ([B_(0), Bua(®)] >
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1t can be concluded from the fact that B,+ = B_, that this autocorrelation
function can be expressed as the scalar product

Cpp(k, t) = (By| e By,

where the definitions (3.20a) or (3.20b) apply in the quantum or classical
limits. A ket| U;> of norm 1 can be defined such that

| Up = <{B:| Biy12| Bp.

The time correlation function of this property isthen related to Cyp(k, ¢)
by
Ci(t) == (U; | et | Up = (B | By 'Crp(k, 1)

At t = 0, Cpp(k, 0) = (B;| B;>. Consequently,
Ca(0) =13 (3.21)

Ci(t) is called a normalized autocorrelation function.

B. GeNErRalL PROPERTIES OF AUTOCORRELATION FUNCTIONS

Theorem 1. Autocorrelation functions are stationary functions; ie.,
(U,(t)| Ut 4 t)> is independent of the time 2.
Proof.
EUv(t + 'C)) = gttt} | U,,),
U8 = e[ U,
WD) = T, | (0 = U, | 2,
This last result follows from the fact that the Liouville operator is Her-
mitian. Consequently,
UL | Ut + 7)p = (U, | et [ U,
= <U;=| gilt | Uv>
| = CUL0)] Ux)>. (3.22)
Q.E.D.

Stationarity follows from the fact that the time correlation functions
are defined as averages over equilibrium (stationary) ensembles. In such
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ensembles, it skould not, and, by our theorem, does not matter what time
is chosen as the initial time,

Theorem 2. The autocorrelation function
Cat) = <U, | 67| U,
is a real, even function of the time, or
Cu(t) = Cf(t) = C(—1) (3.23)

if U, has the properties described in Section II1,A and there is no external
magnetic field.

Proof. That C#(t) = C,(—t) follows directly from the Hermitian
property of the Liouville operator,

Ci(t) = U, | el | Up* = (U, | (™| U»
= (U,| e | U = C,(—1).

As we have seen before, in the absence of an external magnetic field,
the energy eigenstates can be chosen real. In this real representation, it
follows that

Cul) = 4 T enlln| Uyt | m)m| U, | mefomnt
+ (2| U, i m)(m | U, meteonnt }.
Frér_n Eq. (3.9), it is seen that
(| U,[m) = p,(m] O,|n), (]| U}|m)=y(m| Ur*|n).
Consequently - | ' .
Calt) = 1 3 en{pr(n| Uy [ m)m | Uy¥ | mpemtom!
+ vpln| Ut | m)(m| U, | n)e—iomnt}.
Since p,% = 1, the right-hand side is seen. :({)"Wbe C,.(—1), so that

Cw(_' t) = (?w(t)'

~ Combining these results,

Ci(t) = Colt) = Co(—1
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The cIassu:al argument is very similar. Instead of going through thcse
arguments here, a Smelar classical proof which is given later (see Theorern
2, Section III,C) should make the argument transparent.

Theorem 3. 'The normalized autocorrelation function
C(t) = U, | 62| Uy

satisfles the inequality

1< <1 (3.24)
Proof. Consider the vectors | a) and | §). According to the Schwartz
inequality,
0<|<a|f>]| = Kalad B[ AT
Now, let %'
l>=1Up [B% 61“1 Uy

Then, according to the Schwartz lnequahty
0|, || Up|=[Calt) | =T, | Up =1,

.thus proving our thecrem.

A complex function of the time F(z) is called posmve -definite if and
.only if
Y ZF(t — 4)Z* =0 (3.25)
Py
holds for every choice of finitely many real numbers ¢, ..., #, and com-
plex numbers Z,, ..., Z,.
'According to Bochner’s theorem (Feller, 1966), a continuvous function
F(#) is the characteristic function of a probability distribution if and
only if F(f) is positive-definite and F(0) = 1.

Theorem 4. If the normalized autocorrelation function
C,.(t) = U, | et | U

is continuous, then it is the characteristic function of a probability
distribution G,,(w),. or

C.) = : e =G, (@), (3.26)
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Proof. By hypothesis, C,,(f) is continuous. By definition, C,,(0) = 1.
Define a vector | «,» such that

[ = ,,Z U, (t)> 2,

for every choice of the real numbers (¢, ...,#,) and the complex
numbers (Z,, ..., Z,). It follows from the positivity of the norm of
a vector that :

|y = ¥ ZHUn) | Ut)Z, = 0.

Frik=1

From the Theorem 1, we see that
<U,,(tk) } U,,(t_,)) = <Uv(0) I Uv(ti - tfc)> = éw(t.’f - tk)'

Thus, C,,(2) is positive-definite and consequently satisfies all of the
conditions for Bochner’s theorem. It follows that C,,(f} is the charac-
teristic function of the probability distribution G, ,{@). and the theorem
is proved.

Any probability distribution G,,(w) by definition satisfies the condition
0 < G,(@). (3.27)

The interesting thing to note is that G, {w) is none other than the power
spectrum of the time correlation function C,,(¢). This has very important

‘ramifications, as we shall see later. To summarize: Power spectra are

everywhere positive and bounded, and furthermore, autocorrelation func-
tions are bounded and have power spectra that can be regarded as prob-
ability distribution functions.

To make this kind of treatment plausible, consider the Fourier develop-
ment of the vector | U(2)),

U =7 do | Uyeie

where | U, is the amplitude of | U{£)> at the frequency w. (In all
rigor, this should be done with the Fourier-Stieltjes integral). Dotting
the above into the Fourier development of | Uz -} ¥)) yields

UG | U+ 1) = f:dwj: dw' <U, | U

X exp[—i[w — w']t] exp[—iwT]
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According to Theorem 1, (U(#)| U(t + 7)) is independent of £. Con-
. sequently,

(Ut | Uy = (U, | UL 8o — )
and .
¢y =" dw Glw)eiet (3.28)
with the power spectrum

Glo)y=<U,| U

G(w) is positive because the norm (U, | U,> is positive. From Eq.
(3.28), we see that

CO)=1= " do G(w).
Therefore,
0 < Gl). (3.29)

" - The Wiener—Khinchin theorem is a special case of Bochner’s theorem
applicable to time averages of stationary stochastic variables. Bochner’s
theorem enables the Wiener—-Khinchin theorem to be applied to ensemble-

“averaged time correlation functions in quantum mechanics where it is
difficult to think of properties as stochastic processes.

The power spectrum G(w) of the normalized time correlation function
C(2), like any distribution function, can be decomposed into a continuous
and a discrete part, G (w) and Gg(w), respectively:

Glw) = Ga{w) + Go(w). (3.30)
The discrete part is of the form

Ga(w) = T Py o(w — w)y k=1, .... (3.31)

Here, {w;} is a denumerable set of frequencies and (P} is the set of
corresponding probabilities (0 < P, =<1 and 0 << 3, P, < 1}. It is as-
sumed here that the continuous part of the spectrum, G,{w), is a contin-
“uous, well-behaved function of the frequency, although it is quite possible
to find physical G,(w) that have singular points. From previous sections,
it follows that G{w) is even in w.

The normalized time correlation functions can thus be decomposed
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in a corresponding way,
+oo .
C(t) = f dw Ga(w)e™t 4+ T P, cos ayd. (3.32)
e “

In this case, C(¢) does not have-any long-time limit, If the spectrum is

i entirely continuous, then it follows from the lemma of Riemann-Lebesgue

that C(2) vanishes as £ — co. A system is irreversible if and only if all
time correlation functions of properties U (with zero mean) vanish as
t — co. Consequently, irreversible systems must have continuous spectra.
In finite isolated systems, the spectrum is discrete and

C(t) = ¥ P, cos ant (3.33)

is almost periodic. This is a consequence of Poincaré’s theorem. In
specialized cases, it can be shown that, in the thermodynamic limit,
N — oo, V —» oo such that N/V = const, the discrete spectrum becomes
continuous. Irreversibility enters in an asymptotic manner. This is a
very important point.

Computer experiments on condensed media simulate finite systems
and, foreover, use pericdic boundary conditions. The effect of these
boundary conditions on the spectrum of different correlation functions
is difficult to assess. Before the long-time behavior of covariance functions
can be studied on a computer, there are a number of fundamental ques-
tions of this kind that must be answered.

C. ProjecTioN OPERATORS, MEMORY FUNCTIONS, AND AUTOCORRELATION
Funetions

In the preceding subsection, it was shown that an arbitrary operator
can be represented by a vector or ket in a space of linear operators.
Consider the orthonormal operators U, ..., Uy whose properties were
defined previously. The projector onto the normalized vector | U,» {rep-
resenting the property U/, whose mean <U,) is zero) is defined as

P,,=I Uv> <le
The necessary and sufficient conditions for P, to be a projector is that it

be Hermitian and idempotent. That £, is idempotent follows from the
fact that | U,> is normalized,

Bp=|U)<U,| Up<U,| = | Up<U,| =P




- 596 ' Bruce ]. Berne

That P, is Hermitian follows from the definition.of the scalar product,
If | &) and | B are two arbitrary vectors in operator space, then

(| B| 8% = Co| Up* <U, | % = <B| U (U, | a> = <B| P, | a3
‘ (3.34)

P, is Hermitian and consequently is a projection operator.

It is possible to derive an equation that describes the time evolution of

the time correlation function C,.(t), where C,, stands for either the
classical or quantum-mechanical autocorrelation function depending on
the definition of the scalar product (3.1a) or (3.1b} adopted.
The equation of motion for the vector | U,{(¢)) is, according to Eq.
(3.15),
8| U,(t)yfot = iL| Ut (3.35)

Since (1 — £,) + P, is simply the identity operator, it can be substitued
between iL and | U,(t)> so that

81 U(t)pf0t == iLB,| U, (8> + iL(1 — BY| U, (). (3.36)

Since

Co(t) = <U,| B,| U5, (337)

it should be noted that an equation for C,,(t) can be derived by first
operating on Eq. (3.36) with B,, and then dotting ¢U, | into the resulting
equation. Following this procedure, we find

90,(0)f3t = CU,| BiLB,1 Ut} + <U,| PAL(L — B)| U,(#). (3.38)
Now note that \
<Uv l Pv"Lpﬂ | Uv(t)> = <le il | Uv> éw(t) =0 (339)

vanishes since <U, | iL| U,> vanishes. Then

9C. (00t = (U, iL(L — B)| U0} (140)

To complete the derivation, we must find how (1 —- B)| U,(t)> varies
with time. For this purpose, operate on Eq. (3.36) with (1 — P},
(1= PYL(L— BY| Uty (341)
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PR

Now note that

(1— P,j | U0p=(1— Y| Uy =0. (3.42)

The solution of Eq. (3.41) subject to Eq. (3.42) is
£ — P U ) = drexplill — PILSYL | UPC, (¢ — 7). (3:43)
Substitution of this into Eq. (3.40) yields

%éw(z) = : dr K, (2)C,.(t — ), (3.44)

where

K. (7) = GLU,| exp[i(1 — BYL7] |iLU,Y; (3.45)

K,(7) is called the “memory function” and the equation for the time
correlation function that we derived is called the memory-function equa-
tion. Note that the propagator in this equation contains the projection
operator P,. This follows from Eq. (3.45). It should also be noted that
the definition of the memory function depends strongly on which scalar
product (3.1a) or (3.1b) is used.® Corresponding to definitions (3.1a)
and (3.1b), ‘

GLELU,%, exp[i(1 — PYLAELU,)], (3.46a)
f dTs fOTYELULTG)* expli(l — PYLAGLULLY)),  (346b)
where the projection operator is so defined in each case that it;éonsistent

with the definition of the scalar product adopted.
If the memory function K,,(£) is known, the memory-function equation

“can be solved for the autocorrelation function.

The memory function involves the operator exp[i(1 -~ P,)L#]. Since
the Liouville operator L and the projector P, are Hermitian, P,L and
LP, are Hermitian conjugates in operator space. If | o) and | f> are
arbitrary kets in operator space, it follows immediately that

a|expi(l — P)Lt| fo* = (B | exp —iL(1 — P)t|a>. (3.47)

t If the dynamical operator [J, is a vector property, then the scalar product can be
defined as (2) <o | B = 4t « B + B » a*]; (b) <a | B> = [dlu*(T) - BT (T),
This is not necessary since the components can be handled independently.
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The operator. 1 — P, is a projector onto the subspace of operator space
which is orthogonal to the vector | U,». Thus, if | G) and | F) are
two arbxtfary vectors in operator space, it follows that

o> =(1—P){ 6, If>=(1—B)|F (3.48)

lie in the orthogonal subspace to | U,>. It will now be shown that the
roperator (1 — P,)L is Hermitian in the orthogonal subspace of 1 U,
The vectors | f> and | g> are arbitrary vectors in this subspace. Now,
note that

gl (L= BIL|f*=<G| (1 — P L{1—P)| F)*

Since (1 — B,)isa projector,‘it is idempotent, or (1 — B,)2 = (1 — P,).
Consequently, -
<8H1—P)L|f>*"”<G| (1 — P)L(1 — Py F>*
= (F| (1 — By (1 — P)L]*| G>.

Since both (1 — P,) and L are Hermitian,

Gl (1= BYL|f*=(F|(1—P)L(1—P)| G
= (fl (L —B)L] g

The last equality follows from the idempotency of (1 — B,). Thus,
(1 — P)L is Hermitian in the orthogonal subspace to | U,>. It follows
that

(gl expi(l — PYLe| fy* == (f| exp —i(1 — P,)Lt]g). (3-49)

It should be noted that the vector | LU, ={L|U,> is orthogonal
to | U,> since

ULl Uy =0.
Thus, | {LU,) is a vector in the orthogonal subspace to | I,> and

GLU,  exp —i(1 — P,)Lt|iLU,».

GLU, | exp i(1 — P)Lt | iLU,Y* =
- (3.50)

Consequently,
K3(t) = K.(—1). (3.51)

e p———
o X
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" D. GeNERAL PrOPERTIES oF MEMORY FUNCTIONS

. Theorem 1. The memory function is a stationary function of the time.

Proor. Let the vector | iLU(t 4+ =)pp stand for

| {LU(t 4 v)pp = [exp i(l — P)L(t + ©)1]|iLU,y;

then,

| iLU(£)>p = [exp (1 — P,)Lt] [{LU,>
and

pGLU ()| = LU, | [expi(l — Pv)Lt]*',
so that

- pGLUL() | iLUt + 1)>p = GLU, | fexp i(l — B,)Lt}*
X [exp i(1 — P)L(t - ©)] | iLU,>.

Td prove the theorem, it must be shown that this is independent of 2,
Since (1 — P,)L is Hermitian in the orthogonal subspace to | U,», it
follows that [exp {(1 — P,)Lt]* — exp —i(1 — P,)Ltin the last equatlon,
so that

pGLU(8) | iLU(t + 7)pp = GLU, | expi(l ~ B,)Lz | iLU)
= K, (7). (3.52)

It follows that both the autocorrelation function C,,(#) and its associated
memory function K,,(t) are stationary functions of the time.

Theorem 2. The memory function
K, (t) = (LU, | exp i(1 — B)Lt|iLU,»
is a real, even function of the time, or
K3(@) = K,.(—t) = K,,(¢), (3.53)

if | U,> has the properties described in Section IILA and there is no
external magnetic field.

Proof. That K#(t)= K,,(—t) was established by the arguments lead-

ing to Eq. (3. 51) A class1cal proof is presented here. By deﬁmtmn,

K,(t) = [ dT f@(I)(LU,)* [exp i(l — PYLAGLU,).

(L3
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From Eg. (3.13), we see that
U,k —t:p) = 7,6,U*(k, 2, p).
It follows thit

(?L Uv)k,_r,—p = yvgv(iL Ul’)%:l'-lp ¢

Transforming variables. (r,,, Pr) = (—2p, —Pa) = (—1, —p) in the
above integral leads to

Ko(®) = (,8)° [ dLofiP(T)GLU,)exp i1 — PILAGLU,)

Since (I — P,)L is Hermitian in the orthogonal subspace to | U,) and
(y,e,)? = 1, it follows that

K, (t) == f daI’ défl"’(]“;,)(iLU,)*[exp —i(l — P)L{(GLU,) = K, (—1).
We have thus proved that
Ko(t) = K () = K (—t).

Another proof can be given. It has already been shown that C,,(2)
is a real, even function of 7. It has also been established that C,(t)
satisfies the memory-function equation '

% Colty=— | : dt K, (1)C,o(t — ).

It follows immediately that, if (f.,,,(t) is real, then K, (¢) must be real, and
if C,,(t) is an even function of ¢, K,,(¢) must be even in ¢.

Theorem 3. The memory function
K, (t) = GLU,| exp i(l — P)Lt|iLU,»
satisfies the inequality

~GLU, | iLUY < K. (t) < GLU,| iLU,. (3.54)

Proof. Defifie the vectors

lay = |iLUY, | p> = [expi(l — BLA|iLU).

9. Time-Dependent Properties of Condensed Media 601

~ Then, by Schwart’z inequality,

0<|<a| B> < [Ka| oy <B] BT,

it follows that _
0<| K (6) | < GLU,|iLU.

"Q.E.D.

Theorem 4. If the normalized memory function

R, (t) = (LU, | exp i(1 — B)Lt | iLUY{LU,

LU

is a continuous function of the time, then it is the characteristic function
of a probability distribution function L,(w), or

R, (£) == j " dteiol (), (3.55)
where 0 < L, (w).

Proof. By hypothesis, K,,(t) is a continuous function of the time.
By definition, &,,(0) = 1. Now define the vector
| ot >p= kz1 [iLU, (4> p 2y,
for every choice of the real number (t,, ..., £,) and the complex numbers
(Z1s .., 2Z,). The ket | >, was defined in Theorem 1 as

LU,()5p = [exp i(1 — P)Lt) | iLU,>.

It follows from the positivity of the norm of | @, that
o | oty = kZ Zy* pCLUG) | ILU(2)>pZ; 2 0.
Fak=1

From Theorem 1 on the stationarity of the memory function, it follows
that

E Zk*Kw(tk - tj)Zj = 0’

N Pk=1

and the normalized memory function K,,(?) is poéitive-deﬁnite. Thus,
K,(t) satisfies all the conditions of Bochner’s theorem, K,,(f) is the

. characteristic function of the probability distribution L, (®). By defini-

tion, 0 < L, (w).



)

602 Bruce J. Berne

One interesting thing to note is that L,(w) is none other than the
“power spectrum’’ of the memory function,

L(@) = (1/27) j T drerieR (1), © (3.56)

To summarize: The memory function is a real, even, bounded function of
the time. Furthermore, the power spectrum of a memory function is
everywhere positive and bounded, and can be regarded as a probability
distribution function.

The power spectrum E,,(w) of the normalized memory function K,.(2),

like any distribution function, can be decomposed into a continuous

and a discrete part, L (w) and Ly(w), respectively: ‘
L (@) = Ly(@) + Lo(). (3.57)
The discrete part is of the form
Ly(w) = ;Pﬂ._ Bw — ), k=1,.... (3.58)

Here, {w,} is a denumerable set of frequencies and {P,} is the set of
corresponding probabilities (0 << P, << 1 and 0 < 3P, < 1). It is as-
sumed here that the continuous part of the spectrum, L {w), is a con-
tinuous, well-behaved function of the frequency, although it is quite

possible to find physical L (w) that have singular points. From previous .

sections, it follows that L, (w} is even in w.
The normalized memory function can thus be decomposed in a cor-
responding way,

R, )= | :" dw Ly{w)etet + 3. Py cos . (3.59)

In this case, K,,() does not have any long-time limit. If the spectrum is
entirely continuous, then it follows from the lemma of Riemann-Lebesgue

that K, (f) vanishes as #— co. A system is irreversible if and only if

all memory functions of properties U/ (with zero mean) vanish as ¢ —» co.
Consequently, irreversible systems must have continuous spectra. In
finite, isolated systems, the spectrum is discrete and

R.(t) =T P, cos wyt (3.60)
&

is almost periodic. This is a consequence of Poincaré’s theorem. In
specialized cases, it can be shown that, in the thermodynamic limit,
N — oo, ¥V - co such that N/V = const, the discrete spectrum becomes
continuous. Irreversibility enters in an asymptotic manner. Thisis a
very important point.
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E. Sum Rures anp DispersioN RELATIONS

The normalized autocorrelation function 0,,(1&) satisfies the memory-
function equation

2 em= —j K () Cutt — ). (3.61)

2

According to this equation, C,,(2) depends only on the values of the
memory function K,,(z) for 2ll time 7 prior to ¢

The power spectrum G,,(w) of C,,(#) is, according to to Eq. (2.48),
2G,() = [ dterinil, (1),

The time correlation function C,,(2) is a real, even function of the time.
Consequently,

bl

2nG,p(w) = 2 Re | :" dt e=iotC, (1).

The integral in this expression is the Laplace transform C,(iw) of the
normalized autocorrelation function C,,(t), so that

7G,(w) = Re C, (iw). (3.62)

Let K,,(in) represent the Laplace transform of the memory function,
R, (iw) = f :° dt e=iot, (1), (3.63)
These Laplace transforms can be expressed as

Coliw) = C)(w) + iC(w),

R, (iw) = Kl () + iK}i(), (3.64)

where the single prime denotes the real and the double prime denotes the
imaginary parts of C,,(iw) and K,,(fw) respectively. Since C,(t) and
K..(t) are real, even functions of the time, it follows that

Clifw) = f :° dt cos ot €, (8); Kifw) = f :° dt cos wt K, (£),
- (3.65)

Cil{w) = — f :” dtsin ot C,(8);  Ki(w) = — f :“ dr sin ot K,(t);

Cl(w) and K, (w) are real, even functions of w, whereas Chi(w) and
K {w) are real, odd functions of the frequency.
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The Laplace transform of the memory-function equation is
i, (i) — 1 = — R (io)Calie) (3.66)
Solving for C,,(fw), ~
O (iw) = 1) fio -+ B (im)} = 1 {ile + Ki(o)) + Ki(@)}. (3.67)
From this, it follows that the power spectrum is

G, (0) = Cl(w) = Ki (@) {lo + K@) + [K.(«)]*}). (3.68)

The imaginary and real parts of R, (fw) determine the shift and breadth
of the power spectrum and consequently the line shape of spectral lines.
Also,

Co) = —[w -+ K@) {lo + Kn()}* + [Ko(@)]*} (3.69)
In the preceding sections, it was shown that

G (o) = (12x) [ dteriC, (1),

L) = (12m) [~ dterioR, ()

are probability distribution functions. These distribution functions are

related to the real parts of C,,(iw) and K.w(icu),
G.@) = 57 Ciw), e
L (@) = [7K,,(0)] K, (@) = [n(LU, | LUK (o).

The moments of the probability distributions are defined as

= [ do 0G0 = [T dw@rLy (@) (370R)

—oo —oo

Since G,,(») and L,,(«w) are even functions of w, the odd moments vanish.
The even moments are

! [ do [*7 e wmmerior ()

Yoo =50 |
= (U [T g o)
or ) .
yau = (=1 [ del( ) SO1Cntt) = [(— 1@ Co (Ol

(3.71)
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Since C,,(t) = <U, | e&*| U,>, it follows that
Yo = (—1YU, | EL1 ] U == ([iL]”Uv[ [iL1U,». (3.72)

This latter result follows from the fact that L is a Hermitian operator.
In a completely analogous manner, it can be shown that

pan = [(1 — PYLLU, | [(1 — PYLIMLU[GLU, LU, (3.73)

These moment relations are called sum rules. They play a very important
role in the theory of time-dependent processes. '

The first few moments of G, (w)

yo =1 {normalization),
ve = (UP| UM,
ya = (UM | UM,
yo= CUP UM, —

(3.74)

where | U{®) represents the sth derivative of the property U, ie,
[Uy = ((Ly* ] U,».

" The first few moments of L,,(w) are

=1 (normalization},
pe = CUW | TAN-1KUR | URY — (UD | UL, ' (3.75)
pa = CUP | USH[CUD | Uy - 2UD | UBHUP | UP)

T (U | P,

To determine the explicit form of the moments u,,, it is necessary to
use the properties of the projector P,. For example,

[l — POL]|iLU,y = (GLY | U,y — | Uy<U, | GLY | Up>.
Since I is Hermitian, it follows that

<Uv1 (lL)zl Uy=— <3Lle LUy = — LU | Uiy,

50 that

i1 — P)L| LU,y = | UP> + | UXU® | UM,
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Consequently,
G(1 — P)LiLU,| (1 — PYLILUY -
= (U@ | U@y - CUP | UXUP | U -
+ (UL USUS | US + TP TP
= (UP | Uy — TP | U™ (3.76)

This last result follows from the fact that '
(U, | Uy = CUP | Uy = — UM | UMD

Comparison of Egs. (3.74) and (3.75) allows the moments {ptan} of
the memory function and the moments {y,,} of the autocorrelation
function to be related,

Ho = Vo>
Vaths = Yo — Vi (3.77)
Yoty = Vo — 2yaya + ¥ob

Note that g,, depends on y4,., and y's of lower index.” o
The functions C,,(¢) and K,,(t) have the following even-power-series

expansions:

Colt) = 3 [(—=10/(2n)! Tyaut™,
#=0 (3.78)

Rolt) = ¥ (DM@} ™,

as is readily verified.
The complex Laplace transforms of C,,(2) and K, (t) are deﬁned as

éw(f:z) = f:o dit e_iZthv(t)P (3 79)

R, (iz) = j :° dt e=K,, (1),

with the complex variable 2 = x - iy, It can be shown that C,.(z) and
R, (%) are analytic in the entire lower half of the complex z plane.
Let
G i) = ulz, 3) + io(® 7); (3.80)
C,,(iz) is analytic in a given region of the z plane if and only if
Bufdx = Ov[dy and dv[dx = — duldy

t These moments are related as are the moments in cumulant expansions.
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are satisfied in that region. These are the familiar Cauchy-Riemann con-
ditions.
From Egs. (3.79) and (3.80),

u(x, y) = J.:o dtC,(t) cos xt et
- {3.81)
o, y) = — J.O dt C,,(t) sin xt ev!

It follows that

Budx = — f :° dt tC.(t) sin xt evt = Gu|dy

] 80 |0 = — j :" dt tC, () cos xt e¥* = — Ou/dy.

Consequently, €, (iz) is analytic only in those regions of the complex
plane where these operations are valid—that is, in regions where
the integrals are convergent. These integrals will converge when y < 0.
Thus, C,,(¢2) is analytic in the lower half-plane. Moreover, note that
| C,.(t2) | — 0 if either y ~» — oo or x ~> 4 co. The latter result follows
from the fact that the rapidly oscillating sin % and cos x wash out the
integrals # and v. It follows that | €,,(iz) | =0 as]z} — oo for y < 0,

Consider the function &, (iz')/(2' — @); this function has a simple
pole at the point w on the real axis and is analytic everywhere else in the
lower half-plane. By Cauchy’s integral theorem,

[ [Culimfe — @) =0 (3.82)

where C' is the contour of Fig. 4.

The integral can be expressed as the sum of integrals over the four
regions C,, C,, C;, C, of the contour,

0— . L .
|77 do [Ctianfe’ — @)l + [ do’ [C, ") (e — @)]

B vie (3.83)
[, de Gz — )] + [, da [Coin)(z — w)] = 0.

The first two integrals comne from regions C; and Cj, the third integral
comes from region C,, and the fourth integral comes from region C,.
In the limit R — oo, g - 0, the integral over C, vanishes because

lim | C,(G2)|=0; y=<0;

lz]-+oo
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i- Complex Z plone

€

Fig. 4. The contour for the derivation of the Kramers—Kronig relations.

the mtegral over C, is, by the residue theorem, -—ma,(zw) and the in-
tegrals over C; and C; together are the Cauchy principle part,

P j d'[C (i) (o' — ®)]
= fim Um dof + [ ]C‘,,(m')/(w —w).  (3.84)

[a]

It thus follows that

C,uli) = (1/i)P | ’_’: do' [C,(ie") /(e — o)} (3.85)

The last integral can be written as
Coew) + iCl @)
= (1P [ dof {[Ci(w") + iCl(w (e’ — w)}.
The real and imaginary parts of this equation are

= @mP [ do'[Cl")i(e — @)], |
Chw) = (Um)P [ Jw)(o — @) 556

Ciw) = — (UmP [ do'[Co(e) (o — @)
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* The real and imaginary parts of C,,(iz) are therefore Hilbert transforms

. of each other. Since C, (w) and CJ}(w) are even and odd, respectively,

Ci(w) = (1mP [*7 dor [Ciifar Yoo’} ({0 — (@)},

oo {3.87)
Cii(@) = — (@fm)P [ do'[Cl () {(@')? — (@)} |
In an identical fashion, it can be shown that
K@) = (ImP [ do'[Ki(e)e' [ {(@') — o*}],
(3.88)

Ki(o) = — @/ [ o' (K30} (@) — )]

From these relations, we see that the width and shift of the power
spectrum and consequently spectroscopic lines are related through
Kramers-Kronig dispersion relations.

F. Tue Mopiriep LANGEVIN EQUATION

The Langevin equation’
MV(t) = —MBV () + F(2) (3.89)

is of central importance in the theory of Brownian motion. In this equa-
tion, V is velocity of the Brownian particle, M the mass, M3 the friction
cocfficient (often called £), and F(¢) the random force. The random force
F(#) is usually ‘assumed to have the following properties:

(2) The stochastic process F(t) is a stationary, Gaussian process.

(b) It has an infinitely short correlation time, so that its autocorrelation
function is (F(0)F(2)> = 2y6(t), where y is a constant of propoz-
tionality,

{c¢) The motion of the Brownian particle is due to equilibrium thermal
fluctuations of the bath in which it is moving,

Assumption (a) implies that F(¢) is a stationary, Gaussian pfocess.
The Langevin equation, when solved subject to assumption (b), yields
the velocity autocorrelation function

V(OY ()Y = (Voe-titim, (3.90)

Doob’s theorem states that a Gaussian process is Markovian if and only
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5if its time correlation function is exponential. It thus follows that V' is a
Gaussian Markov process. From this and from Egs (2.121) and (2.122),
it follows that the probability distribution P(V, ¢} in velocity space
satisfies the Fokker-Planck equation,

(8/d0P(V, ) = D,(8]8V)[MBY + 8j8VIP(V, 1), (3.91)

which is a diffusion equation in velocity space, where D, is the diffusion
constant in this space. D, is related to the friction coefficient according
to the equation

D, = (1/MB)(¢/M)

Condition (¢} requires that the stationary solution of the Fokker-Planck
“equation should be the Maxwellian distribution function which it is,

It is possible to show from the Langevin equation, Eq. (3.89), that the
friction coefficient is itself related to the force autocorrelation function

=§ j :’ dt <F0)F(2)>. (3.92)

Furthermore, we sce from condition (b) that the coefficient y is simply
related to £, £ = fSy.

The friction constant is consequently related to the time dependence
of the random force in the equilibrium system. ~

The question immediately arises: How can we generalize the Langevin
model to, say, the motion of an atom or a molecule in ¢ liquid?

In addition, it is legitimate to ask whether there exists a generalized
Langevin equation which describes the time evolution of properties
UyT") which were discussed previously. The answer is affirmative. It
will be shown by arguments similar to those presented in the preceding
sections that the correct generalization of the Langeyin equation is

(8j01) | Uty = — [, dv Ku(2) | Uit — =) + | Flt)y, (3.93)

where Fy(#) is the "‘random force.” Moreover, it will be shown that this
random force has the following properties:

CFt)y =0 (3.94a).
U0)| Fi(2)> =0 (3.94b)
Ky(t) = <F(0) | Fi(#)>- . (3.94¢)

The last property has been called the “‘second fluctuation dissipation
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theorem™ by Kubo (1966) (see also Mori, 1965b). According to this the-
orem, the kernel Ky(7) is entirely prescribed by the statistical properties
of the “random force.”

Taking the scalar product of the modified Langevin equation with
(U0)| together with property (3.94b) yields the memory-function
equation for Cy(t) = <U,(0)] Ui(t)>,

(8jo)Cuft) = — [ dv Ky(x)Cuft — 7). (3.95)

Consequently, the kernel in the modified Langevin equation is simply
the memory function of the memory-function equation [Eq. (3.44)].
Thus, the memory function Kp(z) is the autocorrelation function of the
random force | Fy(t)).

If the random force has a deita-function correlation function, then
Kp(t) is a delta-function, and the generalized Langevin equation reduces
to the classical Langevin equation. The next obvious approximation to
make is that Fi(¢) is a Gaussian Markov process. Then, (F{0)| Fi{t)>
is exponential by Doob’s theorem and Kp(t) is exponential. Then,
Cu(?) can be found. This approximation will be discussed at length in a
later section. The main thing to note here is that the second fluctuation
dissipation theorem provides an intuitive understanding of the memory
function.

In order to derive the generalized Langevin equation, it is necessary
to use some equations that were previously derived. From the Laplace
transform of Eq. (3.43), we see that

(= P)| Oispy = {Uls — i1 — PY)LIHL| UpCyfs),  (3.96)

where » = I Here, Cy(s) is the Laplace transform of the time correlation

function Cy(2) and | Ty(5)) is the Laplace transform of | Uyt)). Let us
now define the property | Fi(t)> such that its Laplace transform is

| F(s)> = {1)(s — i1 — PYLY}L | Up, (3.972)

ie.,

| Fy(t)> = [exp i(1 — PYLLYUL | Up. (3.97b)

_ From Eq. (3.44), we see that the Laplace transform of the time correla-

tion function Cy(t) is

1

Culs) = 1/Is + Ky(s)], . (3.98)

) s,
: K s
Lo %’ A
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where &(s) is the Laplace transform of the memory function. Substitu-
tion of Egs. (3.97) (3.98) into Eq. (3.96) yields

(1 — Py)| Os)> = {Uls -+ Ra(@} | Fuls)>- (3.99)

The left-hanid side of this equation is | Uys)> — | Up<Ui| Tifs)> or
| Us)> — | UipCufs). Substitution of Bq. (3.98) into this yields
[0y — | UD (1G5 + Ralo))} = {1l + Ru)] | Fi(s)>. (3.100)
Multiplication by s + &y(s) followed by obvious rearrangements yields
s| Ofs)y — | UD = — Rufs) | Tus)> -+ | Fu(s)>-
Laplace inversion leads to the generalized Langevin equation (3.93),

@jaey | UGy = — [} dv Ku(x) | Ut — =) + | Fe),

where Ky(v) is the memory function [Eq. (3.45)] and | Fy(t)> is the
random force [Eq. (3.97)]. Note that | Fi(0)) = i Up, so that

(FA0)| Fy(t)> = —<Uy | iLlexp i(1 — PYLLKL| Up

= Ky(2). (3.101)
Furthermore, ’
Uy | By = <Uy | [exp i(t — PYLLEL | Up
= (U |iL+ (1 — Byl + -+ [ Up
=0. (3.102)

Furthermore, ¢Fi(¢)> = 0. Thus, we have derived thesgeneralized Lan-
gevin equation and have shown, moreover, that the random force satisfies
the conditions of Eq. (3.94).

G. CoNTINUED-FRACTION REPRESENTATION OF Trve CORRELATION
FuNcTIONS

"The memory-function equation for the time correlation function of a
dynamical operator U; can be cast into the form of a continued fraction,
as was first pointed out by Mori (1965b). We prove this in a different
way than Mori. In order to proceed, it is necessary to define the set of
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memory functions, K,(£), ..., K,(t), ..., such that
K (t) = <h| et | fods (3.103)

where the quantities f, and L, are defined in terms of the Liouville
operator il = iL, and the dynamical quantity &, = U, =, as

ily, =(1— P )il

| for = (1 — Pn—l)iL 1] 1)

lonp = {fp | fud ™2 | fuos

B, =|ane|.

From these definitions, note that

(7% S 'y S are orthonormal; (3.104a)
iL, = (1 — Pa)(1 — Poy) .. (1 — Pp)iLy = [1 . Pz]iL‘,;
i=b (3.104b)
n—1
1> = (1 — Pyy)ilyy | tpp> = (1 -3 Pz)iL0| o> (3.104c)
=0

Therefore, | f,> and | e, are orthogonal to all vectors of lower index.
Furthermore, (1 — 37 P,)L, is Hermitian in the subspace orthogonal
to | oty o0y | op_yy. With these definitions, we can prove the following
theorem by mathematical induction:

Theorem. 'The set of memory functions Ky}, ... , K,(f) obey the-
set of coupled Volterra equations such that ‘

K, ()0t = — | : dr K Kot — 1), n=1,...,N.  (3.105)

Proof. That the theorem holds for n =1 is easy to see. Note that
Ky{t) is simply the time correlation function

Kyt) = U, | et | Uy = C,(8),

and consequently satisfies Eq. (3.44). Thus, if the kernel K,(¢)is identical
to the kernel (LU, |expi(l — P,)Lt|iLU,> of Eq. (3.44), then the
theorem holds for # = 1. Note that :

Ki(t) = <fi] expilyt| fy = GLU, | exp (1 — P)Lt [iLU,).

The theorem is consequently valid for n=1.

3

I AR
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To proceed, we assume that the theorem is valid for # and deduce it for

n+4 1,

0K ()]0t = — | ‘0 dt Koy (1)Kt — 7). (3.106)
Here ‘
Ko(t) = {ful €0t | £ = {ful fudlom | €50 | o)
= {fy Ifn)Kn(t). (3.107)
The equation of motion for et | e, = | ey (t)) is
810t | a(®)y = iLy | (2. (3.108)

This ‘equation is analogous to Eq. (3.35). Note that
R () = o | €50t | o) = (o | By | elE)).

Thus, to find the equation of evolution for K,(f), operate on Eq. (3.108)
with B,,

(81008, | 0u(t)> = PoiLoPo| n(t)> + BiL(l — Pr) | e(t)>. (3.109)
Following exactly the same reasoning that led to Eq. (3.44), we find that
(@1a0RA(0) = | ; dv (o | iL,etnstr | iL R (8 — 7). (3.110)

Multiplication by <f, | > shows that K,(?) satisfies this equation. To
complete our proof, we must show that the kernel above is.identical to
— K, 1(t), where

Kops(7) = {fran | €507 | foond (3.111)

This is readily proved by noting that L, is Hermitian in the space ortho-
gonal to | &y, - .., | @1, | &n) so that
(ot | 1Ly €877 | L,y = — (iLggty | gilmesw | iL005.

Because of parity, (1 — P,) can be inserted in such a way that
(o | il Ener | iLyoy = — {iLyon | (1 — B,y eitwrr(1 — P,) | il

Since 1 — B, is Hermitian, it follows from the fact that | fy>=(1 — F»)
X iL | | @, that

{aty | LLpgttnste | iL,o> = — ooy | @il | faa1> = — pa(T)e (3.112)
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Thus,
¢
(KA [01)(t) = = | dr Kpa(r)Ko(t — 7).
This proves the theorem.,

. Let K (0) = {f,| f> = 4,2 Taking the Laplace transform of K, (1)
yields . ' ‘

Kn(s) = A[s + &+1(‘7)]

where K,(s) is the Laplace transform of K,(¢). Iteration leads to

~ C,(0
C.(8) = T:|-(Z|)1_2
s 4 At
s+ 42
$4 . 2
—T 3.113

with 4,2 =<f,|f.>. In particular, 4.2=<{U;| U and 4,2
=[Oy | UplKU;| U] — <U;| Up. Continuation of this procedure
leads to an infinite continued fraction. It is obvious that the precise de-
finition of the quantities that appear in these formulae depends on the
precise definition of the scalar product used. Moreover, this approach is
easily extended to the multivariate processes.

H, A REeLATIONSHIP BETWEEN MEemoORrY FuUNCTIONS AND TIME
CoRrReLATION FUuNCTIONS

The memory function K,,(¢) corresponding to the time correlation

. function Coo(t) = (U, | €| U,» is a complicated function whose time

dependence is determined by a propagator with a projection operator

P,=|UxU,] in it, ‘
Kooty = (LU,  expi(l — P)Lt | iLU,>.

- It is possible to develop a relationship between this memory function

and the time correlation function
Byt) = GLU, | et | iLU,).

It is useful for this purpose to deal with the Laplace transforms of
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Ky(2) and P,(2)

Ryo(s) = GLU, | [s — (1 — P,)L} | iLU,»,

,(s) = GLU, | [s — iL1 | iLU,.
Then, it is easy to see that

Ro(s) — Buls) = GLU, | [s — i1 — PYL] — [s — iL | LU,
From the operator identity
1/4 — 1/B = (A)(E — A)(1/B),

it follows that
fe—i(l — BYL}t — [ — L] = — [s —iL]PAL]s — i(1 — L]
Substitution of this identity into the previous equation yields

K, (5) — Dy(s) H
= — (LU, | [s — iL17 | U<U, | iL[s — i(1 — B)L]' | iLU,>.

Now, the two terms on the right-hand side of this equation can be ex-
pressed in terms of &,,(s) and K,,(s). Note that

U VIL[s — i(1 — If’,,)L]—1 [ LU,
=~ GLU, | [s —i(l — P,,)L]"ll LU
= — Kw(s) '
and
GLU, | [s — L] | U
= (LU | [s —iL]'[s — iL + iL](1/s) | Up
= (1sYGLU, | Uy + (fs)ELU, | [s — (L1 | LU,
=0+ (1 ,’s)'iim,(s).
Substitution of these results leads to the result
K, (s) — D (s) = (1/5)D, (5)Ko(5)
ot
K,,,,(s) =[l— (1/3)!13.,,,(5')]—1(13.,,,,(5) (3.113a)

or

B,u(s) = [1 4 (15)R()]Bonls).  (3.113b)
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Thus, the memory function K,,(t) and the time correlation function
®,,(t) are related. This relationship will prove very useful in our discus-
sion of long-time limits and the derivation of hydrodynamics.

I. INFORMATION THEORY AND THE MEMORY FUNCTION

The normalized memory function K,,(2) is the characteristic function
of the probability distribution function L,,(w) (see Section III,D). Ac-
cording to Section IILE, the moments of this distribution are

(™) == 0, (% =1, o =p,,  Lo® =y,

where u, and p, are given in Eqs. (3.73) and (3.75).

It is often a very complicated problem to compute L,,(w) for a given
many-body system. Nevertheless, it is often possible to compute or
experimentally determine the moments p,, gy, etc. There then exists
an approximate method for finding L,,(w). For simplicity, we approach
this problem through information theory (Berne and Harp, 1970). For
this purpose, we define the information measure of the distribution as

S[L, ()] = — J.m dw L, (w)In L, (@) (3.114)
The measure S[L,(w)] is called the entropy corresponding to the
distribution L,,(@). According to information theory, if a certain set of .

moments of L,(w) is known, that L, (w) is optimum that maximizes
S[L, (w)] subject to the known moments. Suppose we know only

{a% = 1= Em dw L, (o) {normalization},
(> = py = fim do wiL,(w).
Then we must find that L, (w) for Which

8S[L,(w)] = — 6 j de L,,(w)mL (w) =0,
aj dw L, (w) = 0, o (3.115)

sf " do 0L, (w) = 0,
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are satisfied. This problem can be solved using Lagrange multipliers.
The optimal L, (w) turns eut to be

L (@) = [2mug] 4 exp —(w*[2u,). (3.116)

Since K,,(t) is the characteristic function of this distribution, it follows
that

R, (1) = f: dw exp[—iwt]K,, (o) = exp[—ut2/2].  (3.117)

Information theory consequently leads to the normalized memory func-
tion, which is a Gaussian function of the time. Since the memory func-
tion K,,(2) is related to the normalized function K,,(t), it follows that the
memory function is

K. (t)=<U, U, exp[—~ 3[<U,| Up[KU,| Uy —<U,| U1 (3.118)

This approximation will be very useful in the following sections. It
should be noted that higher-order moments could have been used to
generate higher-order approximations,

This approach is not entirely satisfactory. From Egs. (3.64) and (3.67),
it'is seen that, rigorously,

oa o0 " ey -1
K 0) = [T dr Koty = [T dt Cott)]
Yet, from information theory,
K(0) = a(U, | USL,f0) = 5, | U,>[2rag] 12,

In general, this interpolarive result is not identical with the rigorous
result. Nevertheless, as we shall see in later sections, the information-
theory result often is in good agreement with experiment. Needless to
say, it would be better to use an optimization procedure that would
simultaneously satisfy the moment theorems and give the correct K.,(0).
We have not been able to devise such a procedure.

Given an approximate K,,(¢), such as Eq. (3.118), the memory-func-
tion equation [see Eq. (3.44)] can be solved for the autocorrelation func-
tion C,,(¢). The approximation used here only satisfies the first two sum
rules. Nevertheless, if the information measure is maximized subject to
higher-order moments, higher-order sum rules will be satisfied.
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IV. Computer Experiments (Molecular Dynamics)

A. INTRODUCTION

Section II was devoted to an exposition of linear response theory.
It was shown how weak probing fields can be used to determine time
correlation functions. The fluctuation dissipation theorem enables us to
determine which time correlation function corresponds to a specific probe,
Unfortunately, only a few time correlation functions have been experi-
mentally determined. There is, consequently, very little quantitative
experimental information on the dynamics of molecular motions in liquids
and gases.

The present status of the theory of time-dependent processes in liquids

is the following. Experiments can be categorized in terms of the time
correlation functions that are measured. Moreover, experiments can be
designed to measure specific correlation functions. With regard to the
time correlation functions themselves, certain general properties of these
functions are known. However, because of the complexities of the N-body
problem, the direct calculation of the full time dependence of these func-
tions is, in general, an extremely difficult task. Only simple time correla-
tion functions in the simplest systems (free rotor, particle in box, etc.)
have yielded to analytical treatment.
* The theory of time-dependent processes is analogous to the theory of
equilibrium statistical mechanics, where equilibrium properties can be
determined if certain multidimensional integrals involving the equilibrium
ensemble distribution function of the system can be evaluated. In both
cases, the physical and mathematical formulation is complete but the
computation of physical properties is exceedingly difficult.

The dynamics of molecular motion in condensed media can be studied
with high-speed digital computers. In the past decade, techniques have
been developed which greatly expedite the computer simulation of many-

_body systems. There are several compelling reasons to make these

studies:

1. To obtain a realistic and detailed picture of how individual molecules
rotate and translate in classical fluids.

2. To examine in detail the structure of the most frequently encountered
time correlation functions, such as those that determine transport coeffi-
cients and the absorption and scattering spectra of photons and neutrons,
to name a few.
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3. To éxamine the sensitivity of equilibrium properties and time corre-
lation funct1"ns to the form of the intermolecular potential.

4. To test various stochastic assumptions that are often made about mo-
lecular mot1ons.

Computer simulations are far superior to laboratory experiment for
purpose since (1) the intermolecular potential is known and (2) it provides
much more detailed 1nf0rmat10n than can be obtained by any known ex-
periment.

These computer expenments have provided insight into the micro-
scopic dynamical behavior of real diatomic liquids for both the experi-
mentalist and theoretician alike. Furthermore, it is hoped that these
studies will motivate more realistic approximate theories of the liguid
state and provide “experimental” data to test these theories. In addition,
the methods employed illustrate the concepts of statistical mechanics in
a very clear way. In the next subsection, a brief description of the method
is presented.

B. MoLEcULAR DYNAMICS

Electronic computers have advanced to such a degree that Newton's
equations of motion can now be integrated for a fairly large assembly
of interacting particles. This method, which is now commeonly called
molecular dynamics, is particularly useful for the study of the condensed
phases of matter,! The features common to all molecular dynamics
experiments that have been done to date are the following:

(a) The systems are finite NV <7 1000.
(b) The interaction potential is pairwise additive

V.., M= 5 $()

ixje=1

where the pair potential ¢(r) has a finite range 7, such that for > 7,

$(r) = 0.
{c) Newton's equations of motion
dv; dr;
"TE T ,;1 61- Sl =

“t This work has been renewed recently by Berne and Foster and will appear in the
Ann, Rev. Phy;s. Chem. in 1971,
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are solved by finite difference techniques with time steps ¢ between
10-* sec and 10-5 sec,

(d) The positions, velocities, and accelerations are stored on magnetic
tape.

Computer experiments on equilibrium liquids all have, in addition,
the following features in common:

(2) The N particles are contained in a cubic box of edge L > r,

(b) The initial state (initial positions and momenta) are sampled such
that the momenta are distributed according to the Maxwell distribution
at a given temperature and the pesitions are sampled such that the
initial configuration is one corresponding to a quite large value of the
Boltzmann factor exp [—[8F(1, ..., N)]]; i.e. the system is in a probable
state for a member of an equilibrium ensemble.

(c) The equations of motion are solved subject to periodic boundary
conditions,

A number of comments are in order, N and ¥ (= L?) are chosen to give
the number density N/ of the physical system under study. The sam-

pling of the configuration is quite complicated and we refer the reader

to the literature for a more detailed discussion of this subject.

The equations of motion are solved subject to the initial state together
with periodic boundary conditions: The latter means that if (x;, ¥, 2;)
is the position of particle 7 in the box, there are 26 periodic images at
(x; £ L,0; y; £ L,0; 2 -+ L, 0). The particles in the box interact with
the periodic images within their range. These boundary conditions have
the consequence that when a particle leaves the box through one side, its
image enters through the opposite side, thus preserving the number of
particles in the box. These conditions eliminate strong surface effects
and essentially simulate an infinite system. Nevertheless, periodic bound-
ary conditions have the following limitations:

(a) Because the number of particles in the box is constant it is im-
possible to study thermodynamic states in which thermal fluctuations
have correlation lengths of the order of the box size as they do in the crit-
ical region.

(b) The time scale is limited to times shorter than L/c where ¢ is the
velocity of sound. For times longer than this a disturbance which arises
in one region of the box can traverse the box and enter through the op-
posite side thus leading to spurious recurrences.
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(c) The collective properties that can be studied are limited to discrete
wave vectors

27
a=7n
with minimum wave number
Ve
_ 2=

This limits the kinds of questions that can be investigated by mo-
lecular dynamics. '
The computer output is then the sequence of states

R SRR 9

/through which the system passes in the course of time. Here T, is the

state of the system [all positions and momenta] after the jth time step;
- Le. at time ¢ = j Az, The output is consequently a set of discrete points
in phase space and M is the total number of iterations done in the com-
putations.

'The computer output may be regarded as a dynamical movie of the
many body system and may be converted into an actual movie via com-
puter animation techniques. This has been done by several investigators
(Harp, Berne, Paskin, Rahman, and Fehder). Such sources present a
particularly convenient way to present the enormous data in such a way
that the viewer can get some insight into the dynamical behavior of mol-
ecules in condensed media. For example, as the strength of the noncen-
tral potential is increased in polyatomic liquids, the movie shows how the
rotational motions of molecules becomes more hindered. Such movies give
the viewer an opportunity for discoveries by serendipity that exist in
connection with laboratory experiments,

These solutions are checked for consistency in the following way:

. (a) At intermediate times, say j, the velocities of the particles are re-
versed and the calculation proceeds j steps. The final state should rig-
orously coincide with the initial state (microscopic reversibility) and any
deviation reflects roundoff error, _

{(b) The total energy and momentum are computed. Since these are
constants of the motion any variation in the total energy and momentum
reflects inaccuracies in the solution.
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{c} The mean kinetic energy per particle is computed and its variation
in time is monitored, 'This should fluctuate about the average desired
“temperature.” Any systematic drift in this quantity reflects the fact that
the system is not at equilibrium.

(d) An order parameter

Lty =1/N f‘, cos Kxy; ,

LETD

where X is 2 vector in the reciprocal lattice of the corresponding
solid, is monitored. If this system is ordered £y(f) should fluctuate
around N — 1 whereas if it is a liquid &(2) should fluctuate around
zero,

It should be noted that if (a) checks out it does not, by itself, imply
that the solution is accurate. The numerical algorithm may itself be re-
versible in time. All (a) does is check roundoff error. We regard {a) as
an important check on the accuracy of the solution. Many of the studies
reported here do not report the degree to which the constants of the mo-
tion are conserved so that we cannot always assess their trustworthiness.
In every case, the temperature fluctuates around its equilibrium values,
Likewise for the order parameter. All these systems are in equilib-
rium.

The computer generates the state (Ty,..., T;,..., Ty) through which
the system passes in the course of time so that any property A(T,) can
be determined at eich of these states (Aoy ..., 45, ... Ay) where
A; = A(T).

In classical statistical mechanics bulk properties of an isolated system
are given by infinite time averages '

> =lim (T) [* de AT,
T—+co 0

where T'; is the state of the mechanical system at time . In addition, the
linear response of a system to “weak probes” is given in terms of time
correlation functions

<AO)A()> = lim' (1T [ dt ATYAT,..).
' Troo o

'The computer, unfortunately generates a part of the phase orbit, and
only discrete points at that. Thus the infinite time averages must be
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replaced by the finite sums
: u
Ay = (1M) }, 4,

7=0

CADARY = (1 /M)ME"”A,-AHR t=ndt.

Averaging over finite rather than infinite times gives rise to errors in
the computed averages. Zwanzig and Ailawadi (1969) estimated these
errors on the basis of a Gaussian stochastic model of the fluctuations,
They found that the errors grow with the time v and with a decrease in
M. They also found that the single particle (incoherent) properties can
be determined with greater accuracy than the collective (coherent) pro-
perties,

Throughout this chapter, we will refer to the computer experiments
on diatomic liquids done in our iaboratory. This is only done for con-

venience,

V. Hydro&ynamics and Generalized Hydrodynamics
!

A. SELF-D1rFusioN 1IN Crassicar Liquips

Many important properties of liquids, solids, and gases can be probed
by absorption (Gordon, 1968; Harp and Berne, 1970), light-scattering
(Mountain, 1970), and neutron-scattering spectroscopy (Egelstaff, 1965:
Boutin and Yip, 1968). The cross sections for these processes are all
related in part to the “self” intermediate scattering function F,(k, ¢)
(see Section VI)

Fi(k 1) = (1) (X, expl—k - £0)] explik - £()]). (5.1

This is a one-sided quantum-mechanical time correlation function. We
shall only be interested in its classical behavior.

Let Gy(r, #) denote the Fourier transform with respect to the vector k
of Fyk, ). Then,

Gty = UM (T 86 — [ —rOD)s (52)

Gy(r, £) is called the Van Hove sclf space—time correlation function
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(Van Hove, 1954). From the properties of the delta-function, it clearly
follows that Gy(r, t) is a probability distribution describing the event
(that a molecule is at the origin at time ¢ = 0 and at the point r at the time ¢,
Thus, G(r, £) is the probability distribution function characterizing a
net displacement (or self-diffusion) of a particle in the time £ [see Section
ILE, where Gy(z, t) is discussed]. From Eq. (5.2), it should be noted
that

Gy(r, 0) = 4(r), {(5.3a)
[@r Gie, ) =1, (5.3b)
[ @ G (x, 1) = <ar@ey, (5.3¢)

where {dr*(t) is the mean-square displacement of a particle. According
to Eq. (2.111),

Ar(@)y =2 [ dr (2~ )v(0) - v(e), (54)

where {v(0) - v(z)} is the velocity autocorrelation function. Thus, it is
quite obvious that G(r, ¢) contains complete information about the
velocity correlation function.

An approximate G(r, ) can be determined by information theory
(Jaynes, 1963) (see Section II,G). If only a small number of moments
{Ar™(t)> of Gy(r, t) are known, the “optimal” G,(r, #) consistent with
this incomplete knowledge is that Gy(r, #) that maximizes the “informa-
tion entropy” and simoultaneously satisfies the known moments. Let us
apply information theory to the simple case where all that is known is
(5.3b) and (5.3c). For this purpose, define the information entropy

S[G] = — [ & G,(r, ) In Gifx, 1). (5.5)

This entropy is to be maximized subject to the constraints (5.3a)—(5.3c).
The optimal function turns out to be

G,(r, 1) = RuAr(E)3]>  exp [P KAP@EY]  (5.6)

with
Fy(k, t) = exp —[k2Ar2(2)/)6].

(Higher moments could generate non-Gaussian corrections.)
This is the well-known Gaussian approximation for G,(r, ) first pro-
posed in connection with the random-walk problem. It was Vineyard
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{1958) who first pointed out that G(r, t) is a Gaussian for (1) a freely-
moving gas particle, (2) a particle diffusing according to the diffusion
equation, (3) a particle vibrating in a harmonic’ lattice, and (4} the
Brownian motion of a heavy particle in a bath of much lighter particles.

One of the great advantages of the Gaussian approximation is that it
permits G{r, {) to be computed from a model of the velocity correlation
function [see Eq. (5.4)]. Let us, therefore, explore some simple models
for the velocity correlation function.

In the phenomenological theory of Brownian motion {Chandrasekhar,
1945), it is assumed that the random force in the Langevin theory,
Eq. (3.93), is a Gaussian random process with a white spectrum. It
follows that the velocity is 2 Gaussian Markov process which, by Doob’s
theorem, has an exponential correlation function, <{v(0) « v(£)> = {2¥0)>
¥ e~ Here, » is called the friction coefficient. From the Kubo rela-
tion, Eq. (2.112), the friction coefficient y and the self-diffusion coeffi-
cient are related (D = {(o%/3y = kTjM~y). The corresponding mean-
square displacement is

Arr(t)y = S [(ty) — (1 — e4)]
= 6Dt — (2¢wt]y2)(1 — e—r1). (5.7)

Thes, (o <1
- LEDT AR t< 1y
dree) = {6Dt, 1 1)y,

The particle moves like a free particle ((Ar2(£)) == (o2>#*) for a time small
compared to 1/y, whereas for long times, it moves like a “‘random walker”
‘or diffusing particle ({4r*(z)>V/2 ~4/t). The Brownian motion theory, so
far as is known, accounts correctly for the dynamical behavior of a large,
heavy particle in a solvent of light particles. However, it fails to account
for the motion of atoms and small molecules. Computer experiments
show that ¢v(0) « v(¢)> is much more complicated than an exponential,
and moreover, that Eq. (5.7) is a good approximation only at short
and long times. Before discussing how <v(0) « v(¢))> and F(k, ) can be
calculated for liquids, it is appropriate to discuss the long-time behavior
from a formal point of view. ,

The long-time behavior of Gy(r, t) can be inferred from a macroscopic
argument. Consider a small neighborhood around the origin of the coor-
dinate system which is sufficiently large to contain many molecules but
which is also infinitesimal on 2 macroscopic scale. At time ¢ = 0, paint
a small subset of the particles in this neighborhood. At time £, count the
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fraction of these particles that have diffused into the volume element
d®r centered on the point r. To a good approximation, this fraction is
G(x, t) d°r (the probability that a particle at r = 0 at time ¢ = 0 will
diffuse into the neighborhood d%r of r at #). For times # that are long on
a microscopic time scale, it is expected that this experiment can be de-
scribed by diffusion theory so that Gi(r, ¢} should satisfy the diffusion
equation

(9]9)G (x, ) = DV*G(x, t}, (5.8)

‘where D is the self-diffusion coefficient and ¥ is the gradient operator with
respect to r. This equation should be solved subject to the boundary con-
dition

G, (r, 0) = 8(r).

It is much easier to deal with the Fourier transform, F,(k, £), of G(r, t)

that satisfies the Fourier transform of the diffusion equation

(0/0t)F,(k, t) = — R*DF,(k, t) (5.9)
together with the boundary condition F,(k, 0) = 1. The solution is
F(k, t) = exp —k2Dt, (5.10)

which is the same as the long-time limit of Brownian theory. We shall
now turn to a formal derivation of Eq. (5.9). '

The function F(k, t) is a normalized time correlation function of the
property U, = exp[ik - 1],

| F(k, t) = Cexp[—ik - £(0)] exp[ik - £(1)]>
= (U, | eit| Up; : (5.11)

consequently, F,(k, 1) obeys the memory-function equation,
OF(k, t)j0t = — j: dr Ky(k, ©)F,(k, t — 7), (5.12)

where :
Kk, 1) = GLU, | expli(l — P)Le] | iLU
and

P, = UXU, | = | exp[ik - r]><exp[ik « 1] |.

From the properties of Uy, it is possible to show (see Section II) that
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F(k, t) and K,(k, t) are even functions of k and ¢ Since iLU, =ik - v
% exp[ik - r], it follows that

Kk, 1) =k - (vexplik - r] | exp[i(l — P)Lt]} v explik - r]; k
=k D) - k, (5.13)

where Dy{z) is a tensor
D,.(7) = <vexp[ik - r]} exp[i(1 — P,)Lt] | v exp[ik - £]).

The memory-function equation becomes

. (@jor)Fk )= — | :’ dr [k - Dy(v) - KIF(k, t — ). (5.14)

This equation can be solved in terms of the Laplace transforms Fuk,s)
and D,(s) of F,(k, £) and Dy(7). Since Fy(k, t=0) = 1, [see Eq. (5.10}],
it follows that

Bk, 5) = [s + k « Dy(s) - k]% (5.15)

This should be compared with the Laplace transform of the solution to
the diffusion equation, Eq. (5.10),

F(k, s) = [s + R*D]

" Clearly, the exact function involves a complicated &- and s-dependent
diffusion coefficient B(s). Our goal is to show under what circumstances
the memory-function equation for F,(k, ¢) reduces to the diffusion equa-
tion. Let us be guided by the properties of the solution to the diffusion
equation,

' F(k, t) = exp —k?Dt. (5.16)

The time dependence is always associated with the vector k in the com-
bination k. Let us therefore redefine the time scale to be (Zwanzig,
1964)

T = kL.

Then F,(k, t) goes as e~2%. Consider the double limit

lim lim F,(k, ) = lim lim =27 = ¢~"* {(5.17)
o0 k=0 t=roa k-0
r=gonst r=gonst
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Consequently, the decay of exp —k2D¢ does not change in this double
limit. This limit selects out from the exact F,(k, ¢) the small-k and long-
time behavior, i.e., the hydrodynamic behavior where the distances are
very large compared with molecular distances (% small) and the times are
long compared with molecular times. To determine the small-% and long-
behavior of the exact Fy(k, ), we take the double limit of the inverse
Laplace transform of Eq. (5.15), that is, of the exact Fy(k, t),

Fl 1) = (1/2xi)55dse”/[s k- By - K. (5.18)

Now we introduce the new time variable v = k% and a corresponding
new Laplace variable s = k%,

Bk, £) = (1/2ni) SE dxew|[x + k - Dy(kx) - kfB2].  (5.19)

We then take the double limit of this equation keeping 7 fixed. Provided
that D,(s) is a continuous function of k,s (which we cannot prove),
the limit gives '
lim lim Fi(k, t) = (1/2nf) SE dx e |[x + lim k + Dy(k%) - k/k?]
i o

= exp —[lim lim k « Dy(s) - k/k*]=. (5.20)

=0 k>0

Cdmparison with Eq. (5.17) shows that the self-diffusion coefficient is
D =limlmk « B(s) « kfk2 (5.21)

540 k0
This expression for the self-diffusion coefficient is still not in a useful
form because it depends on the projection operator. To shorten the
notation, we define

Difs) = k « Dy(s) - Kjke. - (5.22)

In Section II14, a relation was described between memory functions

K,(t) and corresponding time correlation functions. In our case, Eq.
(3.113b) becomes

Dk s)=k- (vexpi’k vr|(s—il) | vexpik . 1> - k

= Ry, $)i[1 4 (1/s)Ru(k, 5)] = E*Dy(s)f{1 + (R)Ds(s)),
(5.23)
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S0 thgt
| (1{R3y (K, 5) = (1 + (k%) D($)1)Dis)- (5.24)

It was assumed that D;(s) and, consequently, D, (s) are continuous func-
. tions of k and s. This assumption is based on the fact that D,(s) is as-
sociated with a physical process, self-diffusion, and should therefore be
mathematically well behaved. On the other hand, (1/£2)®,,(k, ) is not
“directly related to a physical process and consequently need not be well
behaved. In fact, (1/k%)®(k, s) is not well behaved at (& = 0, s = 0).
This can be seen from the fact that the double limit s — 0, & — 0 depends
on the order in which the limits are taken; note that

lim lim (1/&2) &,,(k, s) = O,

k>0 50

~ whereas
lim lim (1/4%) By, 5) = im lim Dy(s) 52 . (5.25)

50 k-0

From Eq. (5.21), it should be noted that the right-hand side of this
equation is the self-diffusion coefficient. Thus,

D=Ilimlimk - {vexp[tk - r]| (s — L) | vexp[ik . r]> - kjk2. (5.26)

s 0 B0

In this limit, Vthe_ exponentials exp(fk - r) can be replaced by unity.
The scalar product then becomes

v(s — LY '),

which is the Laplace transform of the tensor velocity correlation function
v (Qyw(t)>. The dith element of this tensor is {vi**v,>, where (7,7 =1,
2, 3). Under the transformation x; — — &, p; —> — p;, 1L —iL,

{wettlyy = — {oettiyy = 0 (i #5).
Thus, {v(0)v(z)} is diagonal. Moreover, if the system is isotropic,
{@{0)0,(2)> = (0y(0)0,(1)> = <{uy(0)wa()> = £{v(0) - v(2)),

s0 that
VOV = K(0) - VDU, (5:27)

where U is the unit tensor. Thus,

v[s — L") = (v« [s — L] U
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Since k + U + k/&* = 1, substitution of Eq. (5.27) into Eq. (5.26) yields

1

.1
D-lxm——(v-mw.

=0 3

(5.28)

The function {v « [s — {L]-*v) is the Laplace transform of (v . eilty)
= (v(0) « v(t)}>, so that,

D=lim$| :° dt e=1v(0) - v{(1)). (5.29)

This is just the formula that we derived in Section [I,E, Here, we have
shown that the memory-function equation reduces to the diffusion equa-~
tion in the long-time, small-% limit and, moreover, the self-diffusion coefli-
cient is given by the Kubo relation. This same approach can be applied
to other properties to derive long-time equations like the Bloch equations
or the hydrodynamic equations, We shall discuss the derivation of other
such eguations later. It should be noted, nevertheless, that if short-
time behavior or large-k dependence is required, the memory-function
equation and not its long-time limit should be used. In the ensuing
paragraphs, we discuss approximations in the “nonhydredynamic Jimit.”
The short-time behavior of the memory function K,,(k, #) is

Kk, t) = $R2(0% — 12[3RACoDE 4+ KaDk 4+ + -+ (5.30)
To second order in k, it can be shown that (Harp-and Berne, 1970)
Kk, t) = $oHkp(t) 4 Ok, (5.31)

where (f) is the normalized velocity autocorrelation function. Thus,
for sufficiently small values of %, K,,(k, t) == $<v®>k%p(t) may be a good
approximation to the memory function. To get some idea of the values
of k for which this approximation may be useful, let us look at the coeffi-
cient of #2 in Eq. (5.31). Note that the term of order &* can be neglected
with respect to the term of order %2 if & is such that

DR (CHILCDN

For liquid CO or N,, this amounts to £ <€ 3 x 10® cm~*. The interesting
feature of this memory function is that it leads to a non-Gaussian behavior
of the F,(k, #) and thus provides an approximate method for exploring
the non-Gaussian behavior. It should be noted that this memory func-

tion (1) gives the correct long-time limit, (2) gives the correct initial time

e
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dependence of {4r"(¢)> ony for # = 1, whereas the Gaussian approxima-
tion gives the correct long-time limit but also gives the correct short-
time behavior of {Ar**(¢}> for all #. Thus, both the diffusion approxima-
tion, F,(k, #) == exp —k2Dt, and Eq. (5.31) fail at short times.

Figure 5:gives F,(k, £) for two different values of k. These functions
were evaluated from computer experiments (Harp and Berne, 1970)

1.0

0.8

0.6

(k,1}

* 04
_ L ]
[ ]
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0z .
'.
b ‘.._
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0 L1 i t ] 1 1 | L *e
0 5 o}
tinlo_ﬁsec

F16. 5. Intermediate scattering function F,(k, #) for the COM motion of CO
molecules from computer experiments {modified Stockmayer simulation). (@) k=2
A%, (solid line) & = 4 A2,

on liquid CO. The corresponding normalized memory functions for
F(k, t) are presented in Fig. 6. These functions were evaluated from the
same computer experiments. Note that, although the two scattering
functions are quite different, their normalized memory functions are quite
similar, as would be predicted by Eg. (5.31). Note further/that these

. normalized memories resemble the velocity autocorrelation function for

the same computer experiment. In addition, the approximate memory
function, Eq. (5.31), is used to compute approximate intermediate scat-
tering functions Fi(k, #). The results of this approximate theory are
presented along with the corresponding experimental functions in Fig. 7.
Note that this approximation is better than the Gaussian for intermediate
values of &.
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F1g. 6, The normalized memory function @,(2)/P(0} corresponding to the inter-
mediate scattering functions of Fig. 5.

1.0 gy

Fic. 7. Intermediate scattering functions Fy(k, 1) for the COM motion of Co
molecules from computer experiments on liquid CO (modified Stockmayer simulation)
(dots) compared with the Gaussian approximation, Eq. (5.6) (circles), and the approx-
imation specified by Eq. (5.31) (crosses). '
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B. Tue Dexsity CORRELATION FUNCTION

Many important properties of liquids, solids, and gases can be probed
by scattering photons or neutrons off the system in qu estion, T'he differen-
tial scattering cross section in monatomic systems is related to the time
Fourier transforms of the intermediate scattering functions Fy(k, t) [see
Eq. (5.1)] and F(k, £),

N N
Fik, 1) = N—l< > exp —ik - £(0) 3 oxpik - r,,,,(r)); (5.32)

F(k, t) and F(k, t) are one-sided quantum-mechanical time correlation
functions. We shall be interested in the classical behavior of these func-
tions. The differential scattering cross sections for photons and neutrons
are linear combinations of the two spectral density functions
&
Sk, w) = (1/27) [T dt et F(k, 1),
- (5.33)
Sy(k, @) = (1/22) [ dt et (k, 2).

The first function contributes to the coherent scattering and the second
function contributes to the incoherent scattering of the neutrons. Neutron
scattering and light scattering consequently probe the spontan€ous flue-
tuations of the property

o) = 3 e ik xlt) (5.34)

which is the spatial Fourier transform of the number density at the

position r in the fluid at time ¢, i.e., of (r, £} = T, 8(r — n(?)). Thus,

neutrons and photons probe the dynamics of “dens1ty fluctuations.”
From the definition of F(k, t} it follows that

F(k, 1) = F,(k, t) + Fa(k, 1) = N~"e_y(0)ex(t)> (5.35)

where Fy{k,t) is called the distinct intermediate scattering function
(Van Hove, 1954) because it involves correlations between different
{distinct) nuclei,

Fak, t) = N"l(hi:l exp[—ik - (0)] explik - rm(t)]). (5.36)

Let Gy(r, ) denote the Fourier transform with respect to the vector

s

b3
£3
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k of Fy(k, £). Then,
N
Galry 1) = N 3 0 — [rult) — 2O (5.37)

Gy(r, t) is called the Van Hove distinct space-time correlation func-
tion (Van Hove, 1954)., It clearly follows from Eq. {5.37) that oGy(r, £)
is the number density at the space-time point (r, ¢) given that a particle
was at the origin at time ¢ = 0 (the number density at point r is to be
computed in such a way that the particle that was at the origin is excluded
from the counting). Morcover, ¢Gy(x, £) d%/(N -~ 1) is the probability
of finding a particle in the neighborhood &%t of the point r at time ¢
given that there was a different particle at the origin at time ¢ =0,
Here, pGy(r, t) describes the correlated motion of two particles. It follows
that pGy{r, 0) is the number density at the point r given that a particle
is at the origin at the time ¢ = 0. It also follows that ¢Gy(r, 0) /(N — 1)
is the probability of finding a particle in the neighborhood @3t of the
point r givén that a particle is at the origin in an equilibrium ensemble.
‘Thus,

0Gy(r, 0) = og®(r), (5.38)

where g'®(r) is the pair correlation function and p is the number density.
In Fig. 8, the pair correlation function of CO determined from computer
experiments is presented. The peaks correspond to the neighbor distri-
butions (as is well known).

Vineyard made a valiant attempt to relate Gy(r, ?) to G,(r, t) Ac-
cording to Vineyard,

Gy, t) = j &' g )Gy(x — t', £). (5.39)
This is called the convolution approximation. Then
Fi(k, t) = G(k)F,(k, ?),

where G(k) is the Fourier transform of the pair correlation function.
From the convolution approximation,

T Fk )= F,+ F;= {1 + Gk)}F(k, t) = Sk)F, (k t), (5.40)
where S(k) == 1 + G(k). The spectral density S(k, ) is then
S(k, @) = SE)S.(k, w); (5.41)

S(k) is the ordinary structure factor that appears in X-ray and neutron
scattering.
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g82(r). Here, Ar = 0.02 4,

" present time, ‘ "
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In order to see why Vineyard proposed this approximation, let us
write Eq. (5.39) as

oGalr, (N — 1) = [ &t og(x')Gifx — ', O)(N — 1)

The product g2 (z")G,(r — ', £)}(N — 1) can be interpreted as the con-
ditional probability distribution that if a particle is at the origin at time
t = 0 another particle will be at the pointr’ at ¢t = 0 and will subsequently
move to the point r — r’ at time . Integrating over all points ¢’ yields the
conditional probability distribution that if a particle is at the origin at time
t = 0 a different particle will be found at the point r at time z ‘This is
simply Gy(r, £)/(NV -~ 1), the left-hand side of the equation. Implicit
in this approximation is the assumption that the motion of a molecule
starting at the point r' is not affected by the presence of a molecule at the
origin at time ¢ = 0. This assumed statistical independence leads to the
factorization [og®(r'){(N — 1)]G,(r — r', t). For paths in which ¢’ is
large, it is probably a good approximation, but for ¢’ small, there must be
large correlations which are neglected. Rahman tested this convolution
approximation by computer experiments on liquid argon (Rahman,
1964). He concluded that the approximation is not valid as it stands, but
can be improved if ¢ is replaced by a specified function of the time, It

'remains to be shown why Rahman’s medification of the Vineyard con-

volution approximation works. There is no explanation for this at the

Light-scattering and neutron-scattering experiments probe different
spectral regions of S(k, ®). Thermal neutrons have wavelengths ~1 A,
so that £ ~10® cm~1. On the other hand, visible photons have wave-
lengths ~5000 A, so that & ~ 105 cm-1. Consequently, light scattering
probes the small-2 dependence (or hydrodynamic behavior) of S(k, ),
whereas neutrons probe the large-k dependence (kinetic theory behavior)
of S(k, w). Before discusing the high-k dependence of S(k, ) appropriate
to neutron-scattering experiments, we shall discuss the behavior of S(k, w)
for low &’s. For this purpose, it is necessary to study the hydrodynamic
equations,

C. HypropyNamIC CALCULATION oF S(k, o)

In this subsection, we present Mountain’s caléhlation of S(k, ») in
the hydrodynamic limit of a one-component fluid (Mountain, 1966, 1970),
The equations of linear hydrodynamics are (Martin, 1968): the equation
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of | continuity “(mass conservation)
doldt + g, V¥ - v=10; (5.42a)
the Navier-Stokes equation (conservation of linear momentum), _
may 39)0t = — grad p+ 1, 73 -+ (b, + V(¥ + V)i (542b)

and the heat flow equation (conservation of energy),

0T, D50t = A P*T. ' (5.42¢),

In these equations, ¢ is the number density, m is the mass of a molecule,
v is the velocity field, p is the pressure, 7, is the shear viscosity, 7, is
the bulk viscosity, s is the entropy density, A is the thermal conductivity,
and 7 is the temperature. Here, o, v, and T are fluctuations from the
equilibrium density (g,), equilibrium velocity (v = 0), and equilibrium
temperature (7') at the space time point (r, ). These equations are
closed by making the assumption of local’ thermodynamic equilibrium,
according to which local thermodynamic variables are related to each
other by the same equations as are the thermodynamic properties in
an equilibrium system. Then,

6p = (9p|92)z ¢ + (3p{6T), 8T, N
8s = (ds/80)p dg + (85]8T), 6T, (5.43)
g = dp, T == 4T, ”

Equations of motion for g, Ty, and v; are obtained by Fourier transform-
ing the hydrodynamic equations with respect to r, and substitut-
“ing the relations of Eq. (5.43). The correlation function {o-p(0)arlt)>
is then determined by solving these equations for g;(£) in terms of g:(0),
multiplying by o_,(0), and averaging over an equilibrium ensemble of
initial conditions. It follows that

Ce—(@ex(t)> = <] ex(0) ¥ (k, 2), (5.44)
where, according to Eqgs. (5.35) and (5.42),

(| ex(0) [ = NS(k)
Pk, £) = [1 — 3T exp[—k*a/eoCs]
+ [1fy] exp[—E2It] {cos{cokt) + b(k) sin(cokt)}. - (5.45)
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Here, S(k) is the structure factor [# — 0, S(k) — isothermal compres-
sibility], y = C,{C,, with C, and C, the isobaric and isochoric heat
capacities, ¢,, is the adiabatic speed of sound, I" is the acoustic attenua-

" tion coefficient

= H4n, + n.)imen + (osCo)y — 1),
and

b(k) = [I" + (MeeCody — 1)]k/cq. (5.43a)

~ Then the spectrum S(k, o) is

Sk, w) o k2 [0.Cy
Ns® T o e G
1 wr Jar
T [ (@ F ek - (RIY  To— k) F (k”l‘)z]
b(k) ok + Gk — w
+= (@ ek T FITE T (@ — ek + (RT)? J

(5.46)

The last term is hard to observe. Now, S(k, w) consists of three bands:
a central (Rayleigh) component and two shifted (Brillouin) components
(see Fig. 9). The width of the Rayleigh component is 222/g,C, (the thermal
diffusivity) and the width of the Brillouin components is %2, whereas

S{gk,w)/S(x)

Co 3 w

Fig. 9. Sketch (not to scale) of the sp‘é‘&trum of light scattered by a simple fluid.
Since the spectrum is even in the frequency w, only the positive w axis is shown.
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there positions are at 4-¢jk. The ratio of the intensity of the Rayleigh
components is ¥ — 1, the famous Landau-Placzek ratio.!

Thus, it can be concluded that the light-scattering spectrum from a
one-component fluid can be used to measure the thermal diffusivity
(from the width of the central component), adiabatic sound velocity
(from the position of the Brillouin doublets), 47, + 7, (from the width
of the Brillovin lines), and C,/C, (from the integrated intensities).

Recently, Fleury and Boon have studied the isotropic light-scattering
spectrum from liquid argon (Fleury and Boon, 1969; McTague et al.,
1969). They find that their spectrum fits the hydrodynamic theory
[Eq. (5.46)] quite well, The interested reader is referred to the extensive
literature on light scattering.

"This theory must be modified in order to account for the relaxation of
molecular internal degrees of freedom (Mountain, 1970) and chemical
reactions (Berne and Frisch, 1967, 1968; Berne and Pecora, 1969).
Moreover, for mixtures, the hydrodynamic equations are more complex,
but solvable (Mountain and Deutch, 1970).

D. A DerivarioNn oF Linear HYDRODYNAMICS

In this subsection, an attempt will be made to show how the linear
hydrodynamic equations of Section V,C can be derived from the formal-
ism developed in the first few sections of this chapter. This derivation
follows the same lines as the derivation of the equation of self-diffusion
described in Section V,A. Space and time do not permit an extensive
treatment of this problem. It suffices for our purposes to present the
argument for one of the hydrodynamic equations. Qur purpose is twofold:
(1) to demonstrate that “hydrodynamic fluctuation™ theory follows from
statistical mechanics, and (2) to indicate how the hydrodynamic equations
can be generalized to account for the high-k and w dependence of S(k, w)
in neutron scattering. ‘

_ Consider the linearized Navier—Stokes equation, Eq. (5.42). Let
J(k, ) be the spatial Fourier transform of the velocity field v(r, ¢). ‘Then,
" taking the Fourier transform of Eq. (5.42b),

meo(0/08)](k, £) = — ikp(k, 8) — nRJ(k, ¢) + (§7,+ n.)ik(k - J), (5.47)
where p(k, t) is the Fourier transform of the pressure at (r, ¢). The

t The ration of the intensities of the central line to the total intensity of the Bril-
louin lines is ¥ — 1.
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J(k, £} can be separated into three orthogonal components, Juk, ),
Jiak, t), and J| ,(k, 1), which are the components of the flux density
paraliel and perpendicular to the vector k. From Eq. (5.47), it follows that

mo(0]00](k, 1) = — ikp(k, 1) — (§n, + nKy(K, 1) (5.48a)
me(0/00] ol ) = — KnJuk 1),  w=1,2.  (5.48b)

The Fourier transform of the equation of continuity is

(931)ar(t) = — o4k (K, 1), (5.48¢)

since the Fourier transform of I7 v(r,2) is —ik - J(k, t) [= —ik],(k, Bl
It can be concluded from the linearized hydrodynamic equations that the
transverse. current is coupled neither to the density ¢, nor the entropy
s- Equation (5.48b) can consequently be solved independently of. the
other hydrodynamic equations,

J1(k, t) == ) «(k, 0} exp —k2t. (5.49)

Here, J,,(k, 0) is the initial value of J1.. and » is the kinematic viscosity
coeflicient,

¥ = n,fmp,. {(5.50)

The time correlation function of Jie is found by multiplying by
J J.,.a(_.—k& 0) and averaging over the equilibrium ensemble, Because the
fluid is isotropic, J, ,(k, ) and J1,2(k, t) have identical time correlation
functions., We can thus drop the subscript e Let C (K, £) stand for this
normalized time correlation function; then

Culk, 2) = (. *(k, 0)], (k, £)>/< ], *(k)], (k)>. (5.51)
Consequently, in the hydrodynamic limit (small %),
Cy(k, £) = exp —k2t. (5.52)

' It sho‘uid be noted that the microscopic current density at the space-
time point (r, £) is ' ‘
N

Vi, t) = ¥ v;o(r — ri(t)), ' (5.53a)

j=1

v;rlhere V; is the velocity and 1; is the position of the Jth particle. It follows
that

Jik, 2) = f vietkry (5.53b)

F=1
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If the coordinaté system is so defined that k points in the # direction,
then

‘ - ' & ikzy(8)

Juk, t) = Z B(t)err@,

=1

Joalle 1) = 3 &), (5.54)

F=1
YR
J ok, £) = Elyj(t)el e,
=
Ci(k, z) is a normalized time correlation function of the property

Uy = Ju®)/<J (k) | Jo (). ~ (5.55a)

It follows from Section III that C,(k, #) obeys the memory-function
equation

(8fot)C, (k, £) = — J': dr K (k, 7)C (k, t — 1), (S.SSb)
where the memory function is
| K, (k, t) = GLU, | exp[i(1 — P,)L#] | iLU,, (5.55¢)

sz| U2><U2!°

It follows from the properties of U, that C, (k, t) and K_(k, £) are even

functions of k and 2. ‘
The memory-function equation can be solved in terms of the Laplace

transforms C(k, s} and K, (k, s) of C,(k, ¢) and K, (k, 2). Since C,(k,
t = 0) = 1, it follows from Eq. (S..SS‘b) that

Cik, s} =[s + K (k, 5)]V (5.56)

This should be compared with the Laplace transformation of the hydro-
dynamic equation Eq. (5.52),

Ci(k, s) = [s + k*v]-L (3.57)

Clearly, the exact solution [Eq. (5.55b)] involves a complicated k- and

s-dependent kinematic viscosity. Qur goal is to show how the exact

C.,(k, t) reduces to the hydrodynamic limit exp —k?st. Let us be guided
by the hydrodynamic correlation function

C (k, t) = exp —k2t.
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As in the case of self-diffusion, the time dependence is always associated
with the vector k in the combination A%. Let us again redefine the time
scale to be (Zwanzig, 1964)

7 = A, (5.58)

"Then, in the hydrodynamic limit, C,(k, £} = e~ Consider the double
limit
lim lim C, (k, t) = o, (5.59)

{+co k0
T=Const

Consequently, the decay of exp —k%t does not change in this double
limit. Thus, we expect this Hmit to select out the proper small-%2 and
large-2 behavior (the hydrodynamic limit) of the exact correlation func-
tion.

The inverse transform of Eq. (5.56) is
Cu(k, #) = (z/zm')@ ds enf[s - B (K, s)]). (5.60)

Now we introduce the new time variable T=~Fk¥% and a cotresponding
new Laplace variable s = k2,

Culk, ) = (1/2:;:‘)(9@ dx e[z 4+ (1/R)R (K, s)]). (5.61)

We now take the double limit of Eq. (5.59), keeping v fixed. Provided
that (1/*)K. (k, 5} is a continuous function of & and s at (0, 0), the limit
yields

lim lim C,(k, £) = (1 /2m')(§3 dx =[x + lim R, (k, kz'x)])
ot ko

= expl—lim (1/)R, (k, #)z). (5.62)

Comparison with Eq, (5.59) shows that the kinematic viscosity is

v == lim (1/A%)R (K, kx).
k>0

Since continuity at (0, 0) is assumed (it cannot be proved),

v = lim lim (1/&*)K(k, 5). (5.63)

¥ R-»

This expression can be put in 2 much more useful form. Consider the
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functions

B}, (k,5) = (LU, |[s — iL]™ | iLUp,
R (k,s) = GLU,| [s — i(1 — B,)L]-* | LUy (5.64)

where, from Egs. (5.552) and (3.54)

LU, = f: [%; + thag)e® [ Jo | JooV2 (5.652)
j=1 :

where & is the » component of the acceleration of particle j. For small &, -

the exponential exp zkz; can be expanded and

LU= { 3 [+ ih(asd; + 5] + O} [ <l Jov (565)

J=1

1t should be noted that, in the absence of external forces acting on the
fluid, 32, & = 0, so that

iLU, = {z’k S (458 + &) + O(kﬁ)} [l T (5:650)

Thus,
Bu(k, ) = 1m (k0w | [s — L1 | 0> + ORI | Jo¥*  (5.66a)

-and

R (k, 5) = 1fm* {0 | [« — i( — Po)L]* | 0> + ORI Y Ta| J1*
(5.66b)

where

¥ ¥ . '
0. 22 ), m{E% + &%) = Z‘i (pips7Im + Fita)] (5.66¢)
F=1 J=

is the zxth component of the “stress tensor.”
The functions @, and K| are related to each other [see Eq. (3.13a)],

(1R E.(k, s) = [1 + ()R, (&, )] H(1R)K (&, 5).  (5.67)

The same considerations apply here as in self-diffusion {see the p_aragraph
below Eq. (5.24)]. Then, since lim, o limy, (1/)K (K, 5) = 0, it follgws
from Eq. {5.67) that
lim im (1/&2) &, (k, s) = lim }Gim (1/k5)K | (k, 5) . (5.68)
Q ) k0

s+ F
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and from Eq. (5.63) that
v == lim lim (1/A*)®, (k, s)

>0 k0
or
v = lim (1/m?) [ dt eK0,0(0)0®)/< T2 | Jo>- (5.692)
0
The shear viscosity is thus _
n, = lim (1/VRT) :" dt €5 5,,(0),,(£)) (5.69b)
80 -

This is the Kubo relation for the shear viscosity. Thus, we have shown
that, in the long-time, small-% limit, the transverse current correlation
function correctly reduces to the hydrodynamic limit with the shear
viscosity given by the Kubo relation. The same conclusion would be
reached for the remaining hydrodynamic variables. S(k, @) would reduce
to Eq. (5.46) and the remaining transport coefficients would be given
by their corresponding Kubo relations.

In the remaining part of this subsection, we investigate the opposite
limit, where % and w are quite large. For illustrative purposes, we consider
only C,(k, t). The memory function has the property that

K, (k, 0) = GLU, | iLU> = w2(k). (5.70a)

According to Eq. (5.65a), this is

N N o
w2(k) = (| jzl (#; + hayz;) explikz;] |2 / {| j; %; explikz;] (2. (5.70b)

This moment can be written in terms of the pair potential U(r), and the
radial distribution function,

w (k) = kfmf + ((1 — cos kz) 82U|0x%>|m. (5.70¢c)
A normalized memory function v, (k, ) can be defined as
Kyl 1) = Ky(k, O)pu(k, 1) = o 2(R)yu(k, 1), (5.70d)
where ) (k, 0) = 1. The memory-function equation is then

8C.(k, 1)[3t = — w(k) [ : dry,(k, )Cok, t — 7). (5.71)
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Ailawadi (1969; Ailawadi et al., 1971) has analyzed the time dependence
of C {k, t) in much the same way that the velocity correlation function
was investigated by previous investigators, They tried different functional
forms for ¢, (k, ¢). We only present one form here. We adopt the form
suggested by information theory, according to which the optimal memory

function corresponding to knowledge of the second moment of y, (k, £)
is [see Eq. (3.118)]

pilk, 1) = exp —32[KU, | Updj<U, 1 Uy — U, Upl,  (5.72)

where U, = iLU, and U, = (iL)2U,. The coeflicient of #* in the ex-
ponent involves equilibriumn moments. They can be determined if the
equilibrium three-particle distribution function is known (which is the
case in only the rarest circumstances). The only option open to us is
to evaluate these moments from computer experiment and compare the
C,(k, t) resulting from a solution of Eq. (5.71) with the. computer-
generated C,(k, £). This is precisely what Ailawadi and Zwanzig (1969;
Ailawadi et al., 1971) did. Rahman {1967) computed C, (k, ¢} for liquid
argon at a series of large values of k. Ailawadi and Zwanzig then found the
coefficient of 2 in 9. (k, ¢} and compared the C, (k, ¢) that resulted with
Rahman’s data. Their results are shown in Fig. 10. The qualitative agree-

Kz.90 K3l.43 K=l
L7l Tet33 T=1

183 ®=2.10 K=2.50
27 T:1.20 Tt

Culky w)
C ikt

K= .63 T ke [ kenro [ keov [ ke2.23
=199 T=153 Tel.28 Tel2! T={.20

L M gl 1|

w in IOl2 /sec

Fic. 10. The power spectrum of the normalized transverse-current correlation
function for various values of & X 10® cm™! from computer experiments (solid line)
and from the Gaussian memory function (dots). )

. 1 !
+]
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Fic. 11, The power spectrum of the normalized longitudinal current correlation

function for various values of & x 10% cm~? from computer experiments (solid line),
and from the Gaussian memory funetion (dots).

ment should be noted. They also tried other forms of the memaory func-
tion g, (k, ). Ailawadi and Zwanzig applied this philesophy to the calcu-
lation of the longitudinal current-density correlation function,

Culks, 1) = (Jy*(k, 0)]y(Is, 2)>/< | Ju(k, 0) 2.

These results are presented in Fig. 11. Note the excellent agreement with
the computer experiments,

It can be concluded that “gencralized hydrodynamics” accounts for
both the small-%, large-z, and the large-k, small-¢ limits of time correla-
tion functions. This represents significant progress in the theory of fluids,

E. Tue LiNear MOMENTUM AND ANGULAR MOMENTUM
AvuTocoRRELATION FuNCTIONS

The normalized velocity autocorrelation function p(t) is
(t) = <v(0) - v(2)>/<v(0) - ¥(0)y = <{p(0) - p()>/<P(0) - P(0)), (5.73)
: &
¥

5 10 520 % 5 10 15 %0
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where v and p are the center-of-mass velocity and momentum of a given
molecule, This function reflects the single-particle dynamics of atoms
in liquids, solids, and gases.

The full time dependence of (¢} ¢an in principle be obtained from the
incoherent differential scattering cross section for thermal neutrons
[S,(k, )] in the following way. From Eq. (5.11), we see that

—d2F(k, t)/dt? =k - (vexp —ik « v | expilt | vexp ik - 1) - k

It follows from the discussion in Section V,A that

-—hm (1/R2)E (K, ) = } <v(0) - v(t)> = § <oDp(t).

The Fourier transform of this equation is
lim (w?/E?)S(k, 0) = } (0CG(w), (5.74)
k-ro

where G{w) is the power spectrum of p(2),
G(w) = Re (1fz) [ dt e=ioty(t) = Re (1m)f(iws) ~ (5.75)

and @(s) is the Laplace transform of y(¢). Thus, a measurement of S,(k, w)
from neutron scattering is sufficient for determining G(«w) and thereby y(£).

The normalized velocity autocorrelation function contains all the infor-
mation required for the computation of the coefficient of self-diffusion
D, or, correspondingly, the friction coefficient y = kT [mD. This follows
from the Kubo relation

D = kTjmy = lim $¢o%$(s)
80
= lim n@HG(w), (5.76)

where y(s) = [ df e~"'p(t) and the last equality follows from Eq. (.5.29).
Substitution of Eq. (5.74) shows that D(or y) can be determined directly
from neutron scattering,

D = lim lim (mw?(22)S,(k, ). (5.77)

w0 k0

Thi;e. should not be surprising, since F,(k,¢) contains (t} through
LAy, :

The memory-function equation for p(#) is

(2|0t = — | : dv K (z)p(t — 7). (5.78)
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This is to be solved subject to the initial condition 9(0) = 1. The Laplace
transform of Eq. (5.78) yields the solution
#(s) = 1/[s + K, (s)]

‘ 3.79
¥(t) = (1/2mi)($ds e[s + Ry(s)]), &.7)

where K, (s) is the Laplace transform of K, (t). From Eq. (5.76), it follows

that the friction coefficient y, is

y = lim K (s). {5.80)
&0

Only for special cases can p(f) or K,(2) be determined analytically,
For example: for a free particle, p(¢) = 1; for a Brownian particle,
p(t) = e~"; and for a particle performing perfect harmonic motion of
frequency w,, () = cos wyt. The models for which 9(¢) has been com-
puted exactly are (1) the classical motion of a particle in a box (Nossal,
1965), (2) the quantum-mechanical motion of a particle in a box (Kinsey
et al., 1969), the Brownian motion of a particle in a classical lattice of one,
two, and three dimensions (Rubin, 1961), (4) the motion of a particle in
a three-dimensional quantum harmonic lattice, and (5) the motion of
a particle in a one-dimensional, many-body system of hard rods (hard
spheres in one dimension) (Lebowitz, Percus, and Sykes, 1969).

The first thing that will be demonstrated in this section is how the
cxponential form of y(#),

P(t) = e = g-TI/M, (5.81)

for- the motion of a heavy particle (Brownian particle} of mass M in a
fluid of light particles of mass m follows from the memory-function equa-
tion for (f). For simplicity, it is assumed that the B particle is identical
in every respect to the solvent particles except that M 3> m. It follows
from this assumption that the pair potential between a fluid and a Brown-
tan particle is identical to the pair potential between two fluid particles,
so that the mean-square force on the B particle is the same as the mean-
square force acting on a fluid particle. The B particle will travel on the
average with a much smaller velocity V than the fluid particles since
(V¥ = 3RT/M. It follows from these considerations that the Liouville
operator L can be separated into a part L; and a part Ly, where

§

il = Z [v;« 8[0r; 4+ F; » 8[dp;], N fluid atoms,
i1 i

: (5.82)

ily =V . 9/0R + Fg + 8/0P,

-
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where F, is the force on particle j (contains interactions with the B particle)
and Fy is the force exerted on the B particle by the fluid particles. In an
equilibrium system, the velocity V will fluctuate with a root-mean-square
value proportional to M-V/2, If we are only interested in fluctuations of this
order, it follows that 7Ly is of order (m/M)'? compared with iL¢, Thus,
in the limit of infinite mass for the B particle, the effects of iLy are
expected to be negligible compared to L.
The memory function K,(t) for the B particle can be written as

K,(t) = <a| exp[i(1 — P)Le]| &>V
= (3MRT)(Fs | expli(l — PY(Lc+ Le)] | Fsd,  (5:83)

where Fp is the force acting on the B particle This formula follows
from Eq. (3.44).

The normalized velocity correlation function for a B particle is, ac-
cording to the phenomenological theory of B motion,

() = e,

where the friction constant { is determined from hydrodynamics
(Chandrasekhar, 1945)

= bnna.

This is called the Stokes formula. Here, 7, is the shear viscosity of the
fluid and « is the radius of the B particle. It should be noted that, if the
radius of the B particle is held fixed, { does not change as M — oo,
"Consequently, in Brownian-motion theory the time dependence of a y(#)
is associated with the mass in the combination #/M. Let us redefine the
time scale to be = == t/M. Then y(#) goes as e~¢* Consider the double limit
lim lim p(f) =% (5.84)
t>ca M-roo
rm=oonst
The decay e—¥¥ does not change in this limit. Once again, we may
determine the Brownian p(#) from the exact ¢(z) in Eq. (5.79),

w(t) = (120§ ds s + Ro(9)]).

Now we introduce the new time variable v = #/M and the new Laplace
variable x = Ms. Then,

w(t) = (1 /Zm')(§ dx e[ 4 MK,,@)T). (5.85)
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Now we take the double limit of this equation, keeping 7 fixed. Provided
that Ky(s) is a continuous function of (s,M) at (0, co), this limit gives

fim ﬂ?m p(t) = exp -—[ 11m MKW(x/M)]-r (5.86)
T=const

Comparison with Eq. {5.84) yields
= 3,141_?:0 MK (/M) = lim lim MEK(s). (5.87)

80 Moo

The last equality follows from the assumed continuity of K(s) at s = 0
(continuity has not been proved). This expression for the self-diffusion
coefficient is still not in its most useful form because K, (s} depends on
the projection operator.

Consider the function @,(¢),

D,(2) = <a(0) - a(t)>/<x®
= (Fg(0) » Fy(t))/3MAT
= (Fp | exp[i(L¢ + Ly)t] | Fud/3MRT. (5.88)

The functions @,(t) and K,(?) are related through their Laplace trans-
forms [see Eq. (3.13a)]

M, (s) = MK (5)/[1 + (1)K, (s)], (5.89)

where K,(s) is given explicitly in Eq. (5.83). Since both R, (s) and &,(s)
depend on the mass of the B particle only through Ly and the denominator
IMET, it follows that

lim lim (1/s)K,(s) =0, (5.90)
0 M-roo
and consequently,
Elfol .ﬂi’l-“];-r:o MR (s) = 1:{? ﬂl{lir; M (s). (5.91)

Thus, the friction coefficient ¢ is determined by the force autocorrelation

function @,(¢). Combining Egs. (5.87) and (5.91),
¢ =lim lim M®,(s). (5.92)

>0 M-roo
Now, from Eq. (5.88), it follows that

MB,fs) = 3kT (FB ‘ ;

s — #(L; + Lg)

[ Fs) (5.93)
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The limit as M — co is consequently

i a0 =t fmh e

This follows from the dependence of Fy only on the pair pOtf.:ntif‘ils, and
the dependence of Ly on M-¥2 Thus, the friction constant is given by
the formula ‘
{ = lim (1 [3RT) J.:o dt exp[—st]{Fyp + (exp iL)Fp). (5.95)
g0

This formula was first derived by Kirkwood in an entirely diﬁterent way.
It is completely consistent with the exact treatment of Brownian motion
first developed by Lebowitz and Rubin (1963). -

We conclude this discussion of Brownian motion by describing ho‘w
¢ can be determined by computer experiment. Since only L¢ appears in
the propagator of the time corrélation function, the system shou.ld consist
of a particle held fixed in the fluid (infinite mass). The fluid particles then

1.0

C.8F

o
@»
T

o
IS
T

Autocorrelotion functions

o
[
|

. . .3
Time 1 in 107 sec

Fi16. 12.- The normalized velocity autocorrelation function for the COM motion of
CO molecules from computer experiments (modified Stockmayer potential),

9. Time-Dependent Properties of Condensed Media 653

move in the central force of this fixed particle (which is identical to the
fluid particles in all other respects). The total force exerted by the fluid
particles on the fixed particle is F. The time correlation function of this
force then is determined by the methods of Section IV,B. Then the fric-
tion coefficient is determined by integration. This coefficient is independ-
ent of the B-particle mass. Thus, for a B particle of finite mass, it is
expected that 9(t) = e, with ¢ determined by the computer experi-
ment,

- The normalized time correlation function ¥(t) in liquids has (compared
to B motion) a complicated non exponential dependence on time. One
feature that is present in all computer experiments can be summarized as
follows (Harp and Berne, 1970). There is an interval of time for which
the center-of-mass velocity autocorrelation function is negative. See, for
example, Figs. 12 and 13. The negative region indicates that, on the aver-
age, a displacement of a molecule toward its nearest neighbors is followed
by a displacement back toward its initial position. The time at which »(t)
goes negative, ¢, can be approximately computed from the nearest-
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Time in 107 sec

F1c. 13. The normalized velocity autocorrelation function (for 150 time origins)
for a one-dimensional system of Lennard-Jones (6-12) particles. :
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neighbor distance / (position of first peak in the pair correlation function)
the diameter of the molecules ¢, and the root-mean-square velocity,
<w®Y2, Then the velocity turning point t_ = (I — o)/{¥*»¥% Since p(z)
goes negative, the events leading to the decay of these functions are cor-
related. In other words, a molecule must retain some memory of its
interactions for a finite time period. Later, we shall construct a theory for
p(t) that accounts for these empirical observations. It suffices to say
that we have also determined K (t) from our computer experiments.
The normalized velocity correlation functions and their corresponding
“memory functions are presented in Figs. 14 and 15.

The center-of-mass velocity correlation function depends on changes in
both the magnitude and the direction of. the center-of-mass velocity.
Therefore, it is interesting to determine which of these changes con-
tributes most to the overall time dependence of ¢{¢). In order to investi-
gate this problem, we have determined the correlation functions

a(2) = {s{0)s(2)>/ 5%, D(t) = <{e(0) - eft), (5.96)

1.0
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. R~
Time tin 10 3 sec

Fi1c. 14, The normalized memory function K, (t}/K,(0) corresponding to the velocity
autocorrelation function from computer experiments {solid line) and from the Gaussian
II approximation (squares).
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1.0

0.8

o
53]

©
S

Autocorrelation functiohs
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Time 1in 17 sec
Fig. 15. The normalized velocity autocorrelation functions from the computer
experiment (solid line), the Gaussian I1 memory function (solid dots), and the short
time expansion corresponding to the memory functions in Fig. 14 (open dots): p(2)

=1 — 3((a®/{oD)e? + @[t

where s(t) = | v(t)| is the speed of the molecule at time ¢ and e(t)
= v(¢)/ | v(¢)| is the direction of its velocity at the same time [v(?#)
= s(t)e(?)]. Now, o(t) and D(t) have the following properties

lim o(f) = (D = 8/3m,  o(0) = 1

_ (5.97)
lim D(t) = (&> « (&> =0, D(0)=1. |
Lo .

In Fig. 16 9(2), o(2), and D(¢) are presented. It should be noted that D(t)
and y(2#) are indistinguishable within the errors (indicated by bars} of
the computer experiment. This same conclusion obtains in all the liquids
that we have studied by computer experiment. This conclusion might be
useful since it indicates that ¥/(¢) can be determined from the theoretically
simpler function D{f).

The first attempt to account for the structure of a time correlation func-

" tion using memoty functions was in fact the attempt (Berne et al., 1966)
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Fic. 16. The normatized velocity correlation function (¢} (solid line), directional
correlation function D(z) (dots), and speed correlation function o(f) (squares) from
computer experiment (modified Stockmayer simulation).

to determine the normalized velocity autocorrelation function (t) based
on the simple ansatz that the memory function K, (2),

Ky(t) = <a| exp i(l — P)Lt| a3/,
depends on a single relaxation time, that is,
K, () = ({a®|{v®))et (5.98)

Since this calculation serves as a prototype for much that has been done
in the field of time correlation functions, it is useful to present this work
in some detail. It should be kept in mind that precisely the same methods
that are discussed in the remainder of this section have been applied by
many investigators (Ailwadi, 1969; Ailwadi et al,, 1971; Akcasu an'd
Daniels, 1970; Chung and Yip, 1969; Forster et al., 1968a,b; Martin
and Yip, 1968; Singwi and Tosi, 1967) to the computation of other cor-
relation functions, 1.e., <o_x(M)ox{®)> Ci(k, 1), C(k, 1), Fi(k, t), F(k, 1),
and many others.
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The exponential memory function satisfies the required condition that
K, (0) = (a*»[<v*). This single-relaxation-time approximation corre-
sponds to a stochastic model in which the fluctuating force has a Lorentz-
ian spectrum. Thus, if the fluctuating force is a Gaussian Markov process,
it follows that the memory function must have this simple form. Of
course, it would be naive to assume that this exponential memory will
accurately account for the dynamical behavior in liquids. It should be
regarded as a simple model which has certain qualitative features that we
expect real memory functions to have. It decays to zero and, moreover,
is of a sufficiently simple mathematical form that the velocity auto-
correlation function

p(#) = <¥(0) - V() [<e?

can be determined analytically from the memory-function equation. That
the exponential form of the memory function can never be the exact mem-
ory function follows from the fact that it has odd derivatives at the
initial instant, and furthermore, its moments, u,,, do not exist for
n = 1. The corresponding power spectrum of the velocity will be non-
Lorentzian with finite moments y,, only for # < 1, It should be noted
that this non-Lorentzian power spectrum is a considerable improve-
ment over more traditional theories according to which the power
spectrurn of the velocity is Lorentzian (cf. Brownian motion). A Lo-
rentzian power spectrum has finite moments only for n = 0, whereas
the exponential memory function leads to a velocity power spectrum
which has finite moments for » << 1. It is therefore quite profitable to
study the properties of the exponential memory.

To proceed, it is necessary to evaluate the single relaxation time a1,
which appears in Eq. (5.98). This is easily accomplished as follows.
The Laplace transform of Eq. (5.98) is

R y(s) = <@[<e®(s + ). (5.99)
From Eq. (5.80) it follows that
y = RTIMD = lim B (s) = (1ja){a®>[<z®,  (5.100)
0

and the relaxation time o1 can be determined from an experimental de-
termination of the friction coefficient y (or self-diffusion coefficient).
It aleo follows from Eq. (5.76) that '

1y = lim §(s) = j:" dt y(z). (5.101)
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Therefore, A
@ = ({a"[(v%) f _dry(t) (5.102)
and the single-relaxation-time memory function is
K1) = (<a>/<0%) exp| —(Cafcon)e [ ar w)) (.103)

The velocity autocorrelation function can be obtained by sub’sl:ituting
Eq. (5.99) into Eq. (5.79),

w(t) = (127) § ds e[(s + a)js(s - ) + <af<o23)]
Laplace inversion then yields

P(8) = [1/(ss — s.)][sy €t — s_ 1], (5.104a)

where s, are the roots of the equation s® + as |- {a% <o =0,
sz = —a{l & [1 — 4%/ (v®at]i2} (5.104b)
Dcpending on the values of {4%), (¥%), and y, these roots can be complex,
Explicity, if ‘
D < 2RTIM)|[<a® w2 ],

the roots will be complex and u(¢) will oscillate so that
p(t) = e=¥2 {cos(}Aat) + (1/2) sin(}at)},

where

A= [—1 4 4(aD<v*)(1/er)]V2, (5.105)

The power spectrum of the velocity correlation function is, consequently,
Glw) = @fa)sis(sr + 5522 + o) + 08)],  (5.106)

and goes asymptotically as 1/w*. This is why y,, does not exist for z > 1.

The exponential memory approximation is presented in Figs. 17 and 18.
 This initial attempt to compute the time correlation function was
followed by a study of the Gaussian memory function, with no signifi-
cantly new resuits (Singwi and Tosi, 1967). The Gaussian themory,
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K, (N/K, (0)
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Fuy

0.2

Time ¢ in 107 sec

F1g. 17. The normalized memoty function K, (t)/K,(0) corresponding to the
veloeity correlation function from computer experiment (solid line), the exponential
memory (dots), and Gaussian I approximation {squares).

adjusted to give the correct diffusion coefficient, is found in exactly the
same way as the exponential memory. It turns out to bet '

KoD) = (@)@t exp | altypaicasconye [ ar pe) | (5.107)

'The major advantage of this memory function is that all of its moments
are finite, The corresponding velocity correlation function cannot be
determined analytically, but must be studied numerically, The results
of this approximation appear elsewhere (Hatp and Berne, 1970). There
are alternative forms of the Gaussian memory function corresponding
to p(2). From the information-theory calculation of memory functions
where only the first two moments are known, it follows that the optinral

tInthe following discussion this is referred to as the Gaussian memory I approximation.
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Fic, 18. The normalized veiocity autocorrelation functions from the computer
experiment (solid line), the Gaussian I memory function (squares), and the short-time
expansion corresponding to the memory functions in Fig. 17 (solid dots).

memory function® is

= (U, | Uyy exp — (322U, | UKUL| Uy — <U | UL}
Ko(t) = <U, | Uypd exp — {327 | (5.108)
In this approximation,

K, (1) = (Catyj<o) exp — {$[¢d2[<a®> — {a®[<oB]}; (5.109)

p(¢) and K,(#) corresponding to this approximation are presented in
Figs. 14 and 15. This result can be applied to the calculation of ¢(f) and to
the calculation of the friction coefficients. The Laplace transform of
K,(t) is such that

lim K, (5) = (w2)V%,

8>0

where

p = (@D D |(aty — (a?y|<ohy] e, (5.110)

t Inl the following discussion this approximation is called Gaussian memory II.

UL U
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Consequently, from Eq. (5.80), it follows that
y = By (0) = (m/2)"u.

This is a formula for a transport coefficient (y) in terms of equilibrium
moments, 'This illustrates a method for determining transport coefficients
in terms of equilibrium moments.

Time correlation functions can also be computed from their continued-
fraction representations by exploiting a hierarchy of approximations of the
following kind. Suppose that the #th-order “random force’ has a white
spectrum. It follows that

Ka(t) = 2, 6(8),  Ru(s) = 4. (5.111)

It is obvious from Eq. (3.113) that this assumption allows the continued-
fraction approximation to be truncated at the #th iterate so that

1
s+ 4.2
s+ A2
s AE

C"V(S) =

(5.112)

s+ 42
o

The terms 4;* are well-defined equilibrium averages. On the other
hand, A, depends on the integral

Ay = f:" dt K, (t). (5.113) .

To proceed, it is necessary to evaluate this coefficient. One possible
procedure is to use a measured value of the transport coefficient which is
related to Cyy(0) through a Kubo relation. Another possibility is to relate
/4, to the moments of G,,(w).

This method of approximation is applied to the velocity correla-
tion function, although it can be applied to the other time correlation
functions that have been discussed. For the purposes of this illustrative
example, let us assume that the second-order random force has a white
spectrum. Then, the continued-fraction representation of u(s) is

) =S | (5.114)
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- Comparison with Eq. (296) shows that
R,(s) = 42(s + 2y), (5.115)

s6.that the memory function corresponding to the velocity correlation

funt ion is
’ K (t)y = 42 e, {5.116)

This is juét the single-relaxation-time memory with

A2 = (a®[{e% : (5.117)

and

A2/ = 9, (5.118)

where y is the friction coefficient. Consequently, the truncation of the
continued-fraction expansion at K,, leads to the simple exponential
memory function that we described earlier, Eq. (5.98), and thereby to the
corresponding time correlation function. This approx:matwvn be
carried through for higher-order truncations. For example, the trunca-

tion at Ky(s) yields .

o) =%
s+4E (5.119)
s+ 4,2
s+ A
A% and Az? are the well-defined equilibrium moments
—_— — 2 2
= {fi| [ = <D [KeD, (5.120)

A = {fo| f> = [@D[Ka?) — {a®[<D],

which have already been evaluated. The Laplace transform of the memory

function is
4.2
s+ 4,2 (5.121)
s A

R (5)=—"+

The friction coefficient y is conscquently
y = K,(0) = 4,%4,/4, (5.122)
The parameter 1, is consequently

Ay = (o2 [<a®) [ [{a®) — ({a®[<v™) ]y, (5.123)
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and can consequently be determined from the experimental value of the
friction coefficient. It follows from Eq. (5.119) that

) = [(* 4 A2) + SAII(A2 + AgF - ) + A(d2 + )], (5.124)

This expression can be analytically inverted to yield the velocity auto-
co?élation function. The power spectrum G{w) corresponding to this
ofrelation function is

Go) = (Um}[ 24?423 (@0[4)2 + A0 — 0] 4 4,2[4;° — 0?]2)].
(5.125)

This power spectrum falls off asymptotically as 1/w® and has finite mo-
ments f,, for # < 2. A comparison of this approximation with experi-
ment is presented in Fig. 19.

The normalized angular momentum autocorrelation function A (8) 18

Ay (2} = JO) - T[T, (5.126)
1.0 5
L ===y {t} From simulation
o8l ¢ i From gaussian
' memory I
~ 2
o Yit)=1- | <ua>12
c 0.6 € <y®>
2 bl <02>f4
E - 24 <
2 0
5 0.4r ® * Mori's 3 parameter
3 * memaory
[ L
g
2 o2
k- o
I * * ¥
o n “:eioo%-*..-
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.\.7
r x °
-0, 2=
* %
1 | | 1 i ! 1 1 1
0 5 10

—i3
Time t in 10 7~ seg

Fig. 19. The normalized velocity autocorrelation function from the computer
experiment {modified Stockmayer simulation) and from the third iterate of the continued-
fraction representation.
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where J is the angular momentum of the diatornic molecule about its
center of mass (COM). Prior to our computer experiments, little, if
indeed anything, was known about the full time evolution of A4;(t) in
gases or liquids.

The full time dependence of A,(t) can in principle (but not generally
in practice) be determined from NMR experiments. When the relaxation
of nuclear spins is dominated by the coupling of the nuclear spins to the
rotational motion of the molecules (a rotating molecule generates a
magnetic field at the nucleus), the spin relaxation time is determined by
the function 4,(¢). For nuclei with spin 1/2, the spin—rotation interaction
leads to an interaction Hamiltonian 57’ = — ¢l - §, where I and J

are respectively the nuclear and rotational angular momenta of the mol-

ecule and ¢ is the spin—rotation coupling constant. When this is the major
contribution to spin relaxation, the spin relaxation time T; is (Abragam,

1961)
(1Ty) = (IRTerj3m) [ dt vt d,(t) = (IRTe327%)Glwo). (5:127)

This formula follows directly from Section I1,D. Here, w, is the Larmor
precession frequency (w, = yH), I'is the moment of inertia of the dia-
tomic molecule, and G{w,) is the power spectrum of the angular mo-
mentum. Thus, to find 4,(t), it is necessary to determine 1/77 as a func-
tion of the Larmor frequency w,; that is, a function of the Zeeman field
H, and then to invert the Fourier transform. This is usually impossible
to do for a liquid, for the following reason, In liquids, Ay(t) decays on a
time scale of order 10— sec, which is many orders of magnitude faster
than typical precessional periods (1fwy ~ 10-° sec). Thus, the power
spectrum Gy{w,) is, to excellent approximation, G,(0), a constant, for
these frequencies. It is precisely because w, can only be varied around
such a small value (wy ~ 10-% sec—?} that G;(«) cannot be determined
for all frequencies. We conclude that, in liquids, magnetic resonance is
only capable of providing the integral

ﬁ&&m=amam

This integral is also related to the rotational diffusion coefficient Dy,
as we now show.

Consider the unit vector u(z) pointing in the direction of the molecular
axis of a rigid rod at time ¢. The angle that this vector makes with u(0)
is denoted by 0(). According to Debye (1929) the rotational diffusion
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coefficient, Dy is

Dy = lim (6%(t)> 142, (5.128)

The mean-square angular deviation <8?(f)) can be found in the following
way., Note that the following integral of the angular velocity w(z),
[§ dt; w(t), is a vector whose magnitude is the angular displacement
#(1). The mean-square angular displacement can consequently be written
in terms of this integral as

@) = () [ de, [dt, Jits) - e,

there I i3 the moment of inertia of the molecule, The correlation func-
tion (J(Z;) - J{t,))> is a stationary, even function of the time—a result
that follows from the fact that an equilibrium average is being taken,

) - Tt = <3O) - J(ta— )3
then,
@)y = @) [ dty [ dt, JO) - Tt — -

Introduction of the normalized stationary angular momentum correlation

function A;(¢} into this integral, followed by an integration by parts,
yields

Dy = (D2 lim [ a' [L— ([} As(¥),
{—reo
If the integral [3° dt £4,(t) exists, then the above limit is
D= (RTID) [T dt 4y(2) = (RTIDA,(0)
= (kT(=D)Gy(0) = kT|Typ, (5.129)
where the equilibrium mean-square angular momentum 2JRT has been
used and 4,(0) is the Laplace transform 4;(s) of 4,(¢) at s = 0. The
rotational friction coefficient 4, is so defined ghat
Dy = RT[Iyy. (5.130)

The memory-function equation for A4;(¢) is

(0jonya,i5y = — [ : dt K ()4t — 7). (5.131)
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This is to be solved subject to the initial condition 4,;(0) = 1. The La-
place transform of Eq. (5.131) yields solution

Ay(s) = 1s + Ry(s)]

(5:132)
A = (1 /Zm')(ggds i[5 + KJ(s)]).

From Eq. (5.129), it follows that the rotational friction coefficient y, is

e = lim K(s). (5.133)
Kifar 1]

The detailed behavior of 4,(t) has been determined analytically only
for a few very special cases. For example; for a free rotor, A,() = 1;
for a Brownian rotor, A,(t) = e~¥&!", for a torsional harmonic oscillator
of frequency w,, A;(t) = cos wyt, and for a Brownian torsional oscillator,
As(t) is a damped periodic function.

In the classical theory of rotational Brownian motion, it is assumed that
the angular momentum J satisfies a Langevin equation

dJjdt = — yg] + N(t),

- where N is a random torque with properties analogous to the random
 force in translational B metion [see Egs. (3.89)]. It follows from a solution
of this equation that '

Ay(t) = e~rrltl = gtrItVT

for the motion of a heavy rod of mement of inertia J in a fluid of much

lighter molecules. This form of A4,(¢) can be deduced from the memory-
function equation just as the translational Brownian result was deduced
from its corresponding memory function in the previous subsection. The
result of this analysis is :

{r = lim (1/2k7) | :" dt e~(Np » eLrtNp). (5.134)
80

That is, the friction coefficient is given by the correlation function of the
torque Np acting on a rigid rod held fixed in the fluid. This is analogous
to the formula for ¢ derived in the last subsection.

Prior to our computer experiments (Berne and Harp, 1970; Harp and
Berne, 1970), little if indeed anything had been reported about the full
time evolution of the angular momentum autocorrelation function of

diatomic molecules in gases and liquids. In most discussions of spin re-
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laxation, it was assumed that A(¢) was exponential, In.our computer
experiments, it was shown that in liquids A;(2) has a complicated non-
exponential on the time. All of our computer studies show that in diatomic
liquids with potentials that have a strong noncentral character there is
an interval of time for which 4(¢) is negative, This negative region indi-
cates that on the average a molecule suffers a sufficiently strong collision
with the cage of its nearest neighbors that the torque acting on it is large
enough to reverse the direction of its angular momentum. The time at
which A,(t) first goes negative in these cases is comparable to the cor-
responding time for (z). On the other hand, all of our studies show that,
for potentials with weak noncentral character, A,(2) does not go negative.
This complicated behavior of 4,(t), although not known before, is quite
expected, Since 4,(t) goes negative, the events contributing to its decay
are correlated, The memory function should then decay on the same time
scale as A,(2). It suffices to say that we also determined K 7(8) from
computer experiments, Figures 20 and 21 show 4 s(t) and its correspond-
ing memory functions.

A;(#) depends on changes in both the magnitude and direction of J.

1.0
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Time tin 10" sec

Fie. 20, The normalized memoty function K;(£)/K(0) corresponding to the
angular momentum autocorrelation function from computer experiment (modified
Stockmayer potential) (solid line) and the Gaussian 11 approximation {squares).
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Fic. 21. The normalized angular momentum autocorrelation function A1) from
computer experiment (solid Yne), the Gaussian 11 memory function (solid dots), and
the short-time expansion corresponding to the memory functions in Fig. 20 (open

dots): Ay(£) = 1 — BLNDNDIE + HUNDI TN

As in the case of the linear center-of-mass velocity, we have determined
the correlation functions

ay{t) = {w(0)w(t}>/[{w®,
Dy(t) = <{es(0) » es(t)),
where o(t) = | J(t}|/I is the angular speed of the molecule at time ¢

and e,(t) = J(2)/ | J(¢) | is the direction of the angular velocity at time 2.
Here, o,(t) and D,(t) have the following properties:

(5.135)

lim o,(t) = Co¥<w? = nft,  o,{0) =1

rree : (5.136)
lim Dy(2) = Cep> « (&> =0, D;(0)= 1. .

oo

In Fig. 22, Ay(f), J,(t), and Dy(2) are presented. It should be noted that

A P

T T
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Fi1c. 22. The normalized angular momentum carrelation function A4,(t) (solid line),

directional correlation function D,(t) (dots), and angular speed correlation function
os{t) (squares), from computer experiment (modified Stockmayer simulation).

A;(t) and Dy(¢) are indistinguishable within the errars of the computer
experiment.
The same methods can be used to compute the time correlation func-

tion A4,(z) as were applied to the computation of (2) in the last section.
We merely summarize the results here.
The exponential memory function

K;(t) = (KN%[{J?) et

ap = (KNBTDW 1 ys) = (KN j:° dt' A, (5.137)

where {/N%) is the mean-square torque acting on a molecule, leads to the
normalized time correlation function '

A;(t) = [1f{s4 — s )] {s6%f — s_en};

where s, are the roots of the equation s* 4 ags + (N%/{(J* =0

(5.138a)
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Explicity, if
Dy > 2[RT)I[<N* %],

the roots will be complex and 4,(¢) will oscillate. This is the case in liquids
when the potential is strongly noncentral. According to our computer
experiments, the inequality is satisfied. Then,

A;(t) = e~/ {cos[Aagz/2] + (1/A) sin[Aent/2]} (5.138b)
h= NS Dant — 1]

The Gaussian memory function is
Kot) = (N[ exp— | L (N o)t [ at Aty |
= (ANB{J%) exp — [[I=]VEHNDL 5 yp]?

From information theory, when the first two moments of K,(¢) are
known, it follows that the optimal memory function is

Ki(t) = (KNDJ?) exp — {B2[AND/(NE — (NDJDY). (5.140)

The results of this approximation are presented in Figs. 19 and 20.
This result can be applied to the calculation of the rotational friction coef-
ficient in terms of equilibrium moments.

(5.139)

VL. Molecular Orientations in Gases and Liquids

A, ExPERIMENTAL PrOBES OF MOLECULAR REORIENTATIONS

Many experiments probe the dynamics of molecular rotational motions
in solids, liquids, and gases. For example, neutron-scattering experi-
ments probe both translational and rotational motions of molecules
(Egelstaff, 1965, 1967; Sears, 1966a, b; 1967). The differential scattering
cross section (d%¢/d2 dw) for a neutron of momentum %k, to be scattered
into a solid angle d2 with final momentum 7k, and with energy change
i = 7*(k? — Ry?)[2m was determined by Van Hove to be

(d20/d2 dw) = T (d*6}dQ dw), 5,
. «,f .

d*0ldQ dw), ; = (d2c|dQ2 dew)n2 8, ; + (d20/d2 dw)eP,
( Je. 2 Oap 7
(d0/dD dew)es = No(helho) (@ee)*S7o(5, ),

(d*0/dQ dw)i = (NNg)2(kefko)(aon)* (alen) S*(k, o).

(6.1)
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Here, (d?0/dQ dw), is the differential scattering cross section for the
scattering of the neutrons off nuclei of type a, of which there are N,,
the indices “inc” and “col’” denote incoherent and coherent scattering,
afae and agyy are the inicoherent and coherent scattering lengths (properties
of the nuclei) of nuclei of type o, Sp*(k, w) is the spectral density of the
time correlation function Fz(k, £) for nuclei a,

S0 = [ s

N
x { 3. exp[—ik - £,(0)] explik - r,.(z)}) (6.2)
=
and 5*4(k, w) is the spectral density of F*#(k, #) for nuclei of type , f,

8 (k, w) = (1/2) | : dt exp[—iwt](N,N,)-1/2

Ny ¥
X <le exp[—ik - ry(0)] :-fi exp[ik » rz(t)]> (6.3)

To see how neutron scattering can be used to determine the dynamics of
molecular rotation, we consider the case when the incoherent scattering
lengths of all the different nuclei in the system are much larger than the
coherent scattering lengths (i.e., hydrogen nuclei). Then, from Eq. (6.1),

(dP0/dfd dw) =¥ (d%0[dQ dw)ine,
(d20{dQ2 dw)ps =~ N, (kelk,)Seo(k, ).
It follows that only Sg‘;“(k, w} is determined. For simplicity, we consider

only diatomic molecules. The position of a nucleus of type « in the Jth
molecule is

5 =R, + (ufm.)p;,

. where R; is the COM position of the molecule, u is the reduced mass of

the molecule, m, is the mass of the nucleus of type o, and p; is a vector
whose direction represents the orientation of molecule j and whose mag-
nitude is the interatomic separation. At sufficiently low temperatures,
the overwhelming majority of molecules are in their ground vibrational
states. [t is then permissible to represent these molecules by rigid rotors
so that g; = agu;, where g, is the equilibrium separation and u; is the
orientation of molecule j. Then,

r; = Ry + (ufm,)agu;
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and
FE(h, 1) = (UNV) 3, Cexpl—sk - Ry(0)] explil - R(©)]

x {exp[—ik' - w;(0)} exp[ik’ - ()]} (6-4)
where k' = (yaojmx)k. It is often a good approximation to decouple the
center-of-mass motion from the reorientation (rel) motion: :

Foa(k, t) = Foo(k, 1) Fi(k, t), {6.5)
where N ’

Fem(t, 1) = (1N) (3 (expl—ik - Ry(0)] explik - R(1))

=1 (6.6) .-

Fio(, 1) = (11N) {3, expl—ik' + w(O)] oxplik’ - (1))

The assumption that the translational and rotational motions are de-
coupled is expected to be good for nearly spherical molecules. For
polymers, it may well be that there is significant coupling between these

degrees of freedom. The coupling has its origin in the fact that a molecule *

may encounter less frictional drag when moving along one molecular
axis then it does along another. For example, a long, cylindrical molecule
will move more casily in a direction along its cylindrical axis then along
a direction transverse to this axis. Since we are talking here about small
molecules, this kind of coupling should be small. This approximation
has been tested in our computer experiments, however, it is not appro-
priate to go into these details here.

Feom(k, t) can be computed by the methods described in Section V,A.
The relative part can be computed in the following way. The Rayleigh
expansion of a plane wave is ‘

e = da 3, (1R Y1, m(20) Y (26)

where j,(x) is a spherical Bessel function of the first kind, @, = (6, @)
and £, = (0;, @) are the orientations of the vectors r and k in a given
Cartestan coordinate system, and Y, ,,(£2) is a surface spherical harmonic.
Tt follows that

e ) = ({40 3 () Vi @0 Vil
x[4n ¥ @) R Vi Qo)) Vi @8) ) (67)

vim

where Q,() specifies the orientation u(} of the molecule at time 2.
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In order to evaluate the average indicated by the brackets, it is nec-
essary to determine the joint probability distribution P(£2,, &2, #) of the
orientation £2; at time zero and the orientation £2 at time £ In the absence
of an external orienting. field, the orientations in an equilibrium ensemble
must be randomly distributed so that

[ 42, [ de P, 251 =1, (6.82)
[ 40, P(Qy, 0: 1) = P(@) = 1j4m, (6.8b)
[ 42 P2y, @5 1) = P(Qy) = 14 (6.8¢)

(6.82) is simply the normalization condition, whereas (6.8b) and (6.8¢)
reflect the fact that the orientations in an equilibrium ensemble are
uniformly distributed at all times. Since the surface spherical harmonics
form a complete orthonormal set, it is possible to expand the joint
probability distribution P(£2,, £;t) in this set,

P2, 050 = ;m z;}n’ Bl (Y m(@) YEa(Q),  (69)
where the expansion coeflicients are

Bip'(t) = [ d2 [ dQ P(2, 25 1) Yn(@0) Vi (@)

6.10
Bl (1) = (Ym0 Yo m(2(1)) e

. From™ conditions (6.8a-—c) and the rotational invariance of the equilib-

rium ensemble it follows that’

B%:‘;’Nm‘(o) == (1/47;) al,l’ 6m,m’:
Bi:#'(t) = bi,m(t) 61,1’ 6m,m"

Bo(t) = 1/4xn
' (t) / (6.11)

From Eq. (6.10), :
by, m(t) = (Y u(R(0)) ¥y n(Q(2))) (6.12)
Thus, quite generally for an equilibrium ensemble,

P2, 2;1) = ;;n < #m(‘Q{O))Yl,m(g(t)pyl.m(-d:) In(@). (6.13)

The §peciﬁc dynamics are contained entirely within the time correlation
functions (¥§,(2(0) Y, (2.
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The general form of the distribution function can be used to compute
Fi(k, t). Then it follows that

Fgel(k, t) = 16m2 g}l !][(kr) i2 i Yl,m(Qk) 12< Yfm(gu(o))yl,m(gu(t))iﬁ14)

In the aBsence of an aligning field, F(k, ¢) and F,,(lf, t) must be even
* functions of k and cannot therefore depend on the orientation of k, ie.,
©,. Tt follows therefore that

Fi(k, 1) = (147) | d2, PPk, 2).

Now, substituting Eq. (6.14) into this, together with the orthonormality
condition on ¥ ,.(£2;), it follows that

Frk, t) = 4n Y | (R} | VE(£2.00)) Y, m(Qu(£) - (6.15)
Lm
According to the spherical harmonic addition theorem,
!
Pyu(0) - u()) = [4=/(2l + 1)] i_l YEn(Qu(0) Y1, m(82,(2))-

Therefore,

Fo(k, 1) = 5 2L+ 1)| ji(uhagim,) |*(P(a(0) - w(®)).  (6:16)
1=0

It follows that the incoherent differential scattering cross section for
neutrons is determined by Fem(k, t) and (P (u(0) - u()p. When
pagkim, is small, the sum is rapidly convergent and only the first two
terms need be retained. Although we restricted our attention to the case
of incoherent scattering, it is quite possible to treat other cases by these
methods. The interested reader should have no trouble generalizing these
results. The major point to be noted here is that neutron scattering can be

used to determine orientational time correlation functions (Sears, 1966,

1967) <(Py(u(0) - u{t})>. : ‘

The correlation function (P;(u{0) - u(?)}> can be determme'd spectro-
scopically. As was shown in Section I1,C the infrared _absorpt-ion coefhi-
cient a(w) of a system of heteronuclear diatomic molecules is

o) = (rwfic)[1 — e#leI(a), (6.17)

Hw) = (1f2m) [T di eitoenicPy(a(0) - u(d)),
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and w, is the vibrational frequency of the molecule. Fourier inversion of
the normalized spectrum (w) determines ¢(P,(u(0) « u(£))>. This kind
of analysis has been carried through on the spectrum of a series of different
molecules as a function of temperature and pressure (Gordon, 1968).

Another method for determining {P;(u(0) - u(#))> is through dielec-
tric relaxation experiments. The linear response of an equilibrium system
to a time-dependent electrical field is completely determined by the
complex susceptibility, which, in this case, is the frequency-dependent
dielectric constant s(w),

e(w) = '(w) — ig" (o). (6.18)

As was shown in Section II,B the imaginary part & is related to the energy
absorption and, moreover, gives that part of the polarization that is
90° out of phase with the applied {monochromatic field). Energy is ab-
sorbed when the permanent dipole moments of the molecules cannot
reorient rapidly enough to follow the changing electric field. Debye
showed that & (w) could be related to the dynamics of molecular re-
orientations (Debye, 1929). In fact, ¢'’(w) is related to the absorption
coefficient a{w) {Gordon, 1968). The real part &'(w) describes that part of
the response that is in phase with the applied field, and in fact determines
the real part of the refractive index of the medium.

Glarum (1960} and Cole {1965) have independently formulated theories
that give #(w) in terms of the time correlation function Dy(t) = <u(0) -
u(z)}>, where u is the direction of the permanent dipole

N

+1f, (6.19)

[ elw) — £ ]”1 1 3e, { 1

&) — €oo o 26y + 2o, | t0D,({w) — 1
and where D,(iw) is simply the Laplace transform of D,(#) with Laplace
variable s = jw. Here, &, is the static dielectric constant and &, is the
high-frequency dielectric constant.

A measurement of &(w) can thus be used to extract D,(s = iw) and
thereby <(u(0) - u(t)> by Laplace inversion. It should be noted that the
Laplace transform of (dD,(t)/dt) is sD,(s) — 1, which appears in
(6.19) for s =1{w. Now, the memory-function equation for D(¢)

= <w(0) - u()> is

55 Dult) =~ [ & Ko@De =0 DO =1, (620)



676 Bruce ]. Berne

and consequently, the Laplace transform of the dipolar correlation func-
tion is

Dysy=1[s + (&)} (6.21)
Substitution of this with s = fe into Eq. (6.19) shows that
—_ . = 2 . .
[_S(Tc:l_'_si_.] =1 2¢, -Tf Eoo io[Rp(io)] ™
or -
o) =t ] _ (2t te) Ly
[ g(w) — & ]_( e, ) — Kp(iw), (6.22)

It can be concluded that dielectric relaxation can be used to measure the
memory function R p(iw) that corresponds to Dy (),

Ropliw) = j :" dt exp[—iot]<u | expli(l — PYLe [ 6> (6.23)

The correlation function (P,(u(0) - u(t))> can be determined from
depolarized light scattering either from the vibration-rotation Raman
spectrum or from the rotational Raman (Rayleigh wing). It can also be
obtained for large molecules from the depolarization of fluorescence.

Light is scattered because it induces an oscillating dipole moment
in the scattering system which then radiates (Fabilinsky, 1968). If the
system contains molecules that are optically anisotropic, the polarization
of the radiation can change due to the scattering event. It is no wonder
then that light scattering should be related to the polarizability tensor «
of the molecules (x - E; is the induced dipole moment in a molecule
due to the incident radiation field E;). The polarizability tensor of a mol-
ecule in the ground electronic state can be expanded in the vibrational
displacements Qr, v = 1, ...,m of the n vibrational “normal” modes.
In the space fixed coordinate system, this expansion is, for molecule j,

dj = Oljo + Z‘l ij"ij, . (6.24’)

where o,° is the polarizability tensor for the molecule in its equilibrium
configuration, and o’ is proportional to the derivative of o with respect to
the displacement Q) evaluated for @y =0, »=1,...,n). The po-
larizability tensor of molecule j can be divided into two parts: an iso-
tropic part o;] and a traceless part B;, so that

o = a,-l + ﬁj, oy = %Tr G, (6.25)
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where | is the unit tensor. The same separation can be applied to «;°
and o, so that o ’

Qo o
o = a®l +B,°% @ =1Tra

=l + By, o =3Tray (6:26)

It. should be noted that &; depends on the orientation of molecule j
}mth respect to the laboratory fixed coordinate system. Since the trace is
1nva‘riant to a rotation (unitary transformation), it follows that «° a;
are independent of the orientations of the molecule. On the other harmJl
B By depend on the orientation angles. It follows that the isotropi(:
parts of the polarizability tensor do not change the polarization of the
light,

It can be shown (Gordon, 1968) that the differential scattering
cross section (d?0/dQ dw) describing the event that a photon is
scattered from its initial direction of propagation k; into the solid angle
df2 suffering a wave-vector change k = k; — k, (k; being the final wave
vector of the photon) and a frequency change s — w,, can be separated
into two parts: a part (d%¢/df2 dw), that gives the spectrum of scattered
light with polarization in the same plane as the incident beam, and a
part (d?0/dR2 dw), that gives the spectrum of scattered light with,polari-
zation perpendicular to that of the incident beam. In an isotropic system
it is more convenient to define an isotropic cross section (d%s/df2 dw)iso’
such that

(d20[dQ dw)zo = (d%0)dR dw), — $(d20]d2 dw),. (6.27)

If the vibrational frequencies are well separated from each other, that is

if their separations exceed the breadth of the spectral bands, it is pOSSibIe,.
to define cross sections corresponding to each mode. It can then be shown
that these cross sections for the scattering off a single molecule are

A(d20)dRQ dw)y, o (1/27) f : dt exp[—iwt]{e,2(0)e,(2)

X explik + (x(t) — £, (6.28a)
W(d0]dS2 du)yy oo (1/2) [ dt expl—iat)ay(O)a(2)

X explik - (;(t) — rO)]> expliwt],  (6.28b)
14(d0]dQ do),® oc (1/2) [ di expl—iwr](Tx () - B0)

X explikk « (£,(2) ~ r(E)]>. (6.28¢)
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P(do/dQ dw)y oc (1/2m) [ dt exp[—iwt)(Tr By (e) 8,/0)
x explik - (5,(t) — t,ON]> explimt).  (6.28d)

Here, 1 is the circular wavelength (1/2=) of the scattered light, w, is the
frequency of the th normal mode, r,(t) — r;(0) is the displacement of
the COM of molecule j in the time ¢, exp[ik - (r;(t) — 1;(0))] gives rise
to the velocity dependence {Doppler breadth) of each of the lines, and
k = k; — k, specifies the momentum change #k of the photon due to
the scattering (k = 2k, sin 0/2, where 8 is the scattering angle). Band
{6.28a) is just the undisplaced line or Rayleigh line. Band (6.28c) is the
pure rotational Raman line, which, for a diatomic molecule, consists of
$QS bands. Band (6.28b) is the isotropic vibrational Stokes Raman scat-
tering, and band (6.28b) is the depolarized vibration-rotation Raman band
(which, in diatomic molecule, is simply made up of the well-known

0QS8 bands).
For the purpose of analysis, it is convenient to define a normalized
spectrum f(k, ) of a given band as

1(k, w) = #3(d2}dR dw) / jmd dew #(d%dQ dw), (6.29)

where the integral simply goes over the specific band in question. Since
the contributions (6.28a-d) are all Fourier transforms of time correlation

functions, it follows that, for the prototype,
H(d20}dR dw) o zin [ dretorcar @Ay,

[ _do 23(da[d do) oc (A(O)AOD,

so that the normalized spectrum is the power spectrum of the normalized
correlation function (A+(0)A(2)>{¢] A *». That is,

1 .
I, ) = = [ drei=iC A (0) A/ | AO) [,
Thus, corresponding to (6.28b), for example, we have

Fisofk, @) = (1/27) [ ™ dtexp[—i(w — w,)]
X L, (0)ay(2) explik « (r,(t) — 100015 /<o (0)ors (0>
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If light is scatte{'ed off an assembly of molecules in an isotropic system
f;;her than off a single molecule, there will be a change in the formulas
en, ‘

Tk, @) = (1/27) f f: dt eyl (k, 1), (6.30a)
Bool, ) = (1)2) {77 dt e-stwmoni (i 1), (6.30b)
Lo (&, @) = (1/22) [ dt eioty o(k, ), (6.30c)
Lk w) = (1/22) [ dresto-oity (i, 1), (6.300)

, . . .
where the ’s are the normalized time correlation functions

Viso(ks £) = F(k, t)/5(k), (6.31a)
Yiso(k, 1) = Fi(k, 1), (6.31b)
wafls ) ={{ 5 Trp20) - Be) explik - (xit) — £,0))
: ' I
/{2, Trero - pro)) (631¢)

) = (3 TeBr0) - £00) /(5 1) - B x Rtk
(6.31d)

The'se formulas were written for a pure fluid of molecules, in which:
o&-" is zllss‘umed to be a property of each molecule, which is invariant in
tl'me; it is assumed that there is no correlation between the vibrational
displacements on different molecules [KQ#(0)Or(£)> = 0 for j71 and
a%l v and ¥'}; and w, contains an imaginary part corresponding to the
‘v1brationai lifetime of the »th mode due to collisions and radiation damp-
ing. It is often further assumed that the orientations on different molecules
are uncorrelated, but this is not assumed here. Since the Fourier trans-
ig;';:jv soihi‘t(k, t} and Fy(k, ) are S(k, @) and S,(k, o), respectively, it
Isolk, w) = S(k, w)/S(k), #

Brso(k, w) = Sk, v — ). (6.32)

Thus, the: isotrt?pic Rayleigh line shape is determined by S(k, w), as
was mentioned in the last section. Moreover, the isotropic Stokes scat-




—

680 ) Bruce J. Berne

tering from the »th mode provides information about the motion of indi-
vidual r‘nolecules, the self-motion. In mixtures, it turns out that, bacal.Jse
different molecules have different vibrational frequencies, the self-motion
of the different components can be singled out séo that S,(k, @) for e:ach
kind of molecule can in principle be determined.

It follows from (6.30dI; and (6.31d) that {Tr p*(0) - B“(t))K-Tr B*(0)
» B(0)> can be determined from the depolarizefl Stch?s scattering from
the »th mode. Usually, F,(k, ) can be ignored since it is so slowly vary-
ing on the time scale of P(¢} that it can be taken as unity. C'}ordon (1968)
has analyzed this correlation function in detail.. _For diatomic gases (there
is only one mode), F=I(k, @) contains the familiar O, Q, and S branches
corresponding to vibration-rotation transitions. Gordon shows that for
this case

Ik, @) = (1/27) [ db e¥eeiPyu(0) - u)y,  (6:33)

where the superscript 1 indicates the only vibrational mode in the molecule.
If correlations between orientations on different molecules can be neglect-
ed, it can be shown from Egs. (6.30) and (6.31c) that

10 — (127) [ dt e=iot(Pyfui0) - w()), (6.34)

which in diatomic gases gives the SOS bands. As the pressure ig raised,
the O, Q, and S bands merge into one broad band centered a't w, , whereas
the SOS bands collapse into one broad band at @ = O..Thls.latter band
is called the Rayleigh wing. This is easy to see: For a diatomic molecule,
the most general traceless tensor P is cfuu — fu - u d;). Then,

Tr(0) - B(t) =@ ¥, [(a(0)us(t))(us(0)ues(8)) — $2i(0)45(0) 05

— duy(8)u(2) By + ¥ 04y]
= ¢*[(u(0) - u(®))* —4]
= §ciPy(u(0) + u(¥)),
. (k, £) = (Py(u(0) - u(®))>Filk, 7).
The depolarization of fluorescence can be used to Probe the dynamics
of molecular reorientations of large molecules (Perrin, 1926). Ir% these
experiments, an assembly of molecules is exposed to a pulse of linearly

polarized radiation [e; being the unit vector specifying the slirection of
polarization of the incident light, E((£)] which is resonant with an elec-

S
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tronic transition | 0) — | f) in the molecule. The transition probability
for a molecule j to make the transition | 0) — | f) Is proportional to
|(f] 1 + €0) |2 where g, is the dipole operator of molecule J. If the
chromophor is rigid, the transition dipole (f]| w; | 0 will have a definite
direction in the molecule and thus (f|u, - €| 0) will depend on the
orientation of the molecule in the space fixed system. If the molecules
are randomly oriented before the application of the pulse it will excite
only those molecules with orientations such that the transition dipoles
have a component along €;, and the orientational distribution of excited

. molecules will be

P(£o) oc | gy - € |2 = cos? B {€; || = axis),
0 being the angle between y and £. After the pulse is applied, the excited
molecules will begin to fluorescence. The fluorescence may involve the
same states [} — | 0) or there may first be a non radiative decay to a
different state | f') followed by the fluorescence from | f') — | 0), The
probability that the photon will be emitted with polarization €; will be
proportional to | (0|, « e¢| /') |% The state | f') will have a finite life-
time 7y so that photons will not immediately be emitted. Moreover, the
transition matrix element (0] ;| ') will in general lie in a different di-
rection in the chromaphor’s body-fixed frame than does (7|, | 0) (since
the states | f) and | f') are different). Let us follow what happens to a
molecule after it is excited. Before a photon is emitted, the molecule will
rotate, and the transition dipole will reorient. The molecule can emit a
photon of a given polarization, say e, if its transition dipole at theinstant of
emission has a component along ;. Thus, the emitted flux of photons with
given polarization should be modulated by the rotational motions of the
molecules. Since the exciting pulse produces a cos? distribution of excited
molecules, the fluorescent intensity will reflect how this non equilibrium
distribution returns to the usiiform (equilibrium) distribution,

Let 1,(t) and I, {¢) be the intensities of fluorescence where the emitted
photons have polarizations parallel to €;(e;]| €;) and perpendicular to
€i(er 1 €;), respectively,. Then the polarization ratio #(z) is defined as

r(8) = () — LAV + 21.(9)- (6.35)

For simplicity, we present the case where the fluorescence comes from
the same state | ) to which the molecule was excited. Then it can be
shown that

r(t) = E{Py(u(0) - u(t)), (6.36)
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where u is a unit vector pointing in the direction of the transition dipole
(f!w]0). Let 7; be the lifetime of the state [f). Thus, if 7 is very
short compared with the correlation time of the reorientation, the mole-
cules will have no time to rotate, and only polarized emission will be ob-
served. On the other hand, if 7; is long compared withthe correlation
time of {(Py(u(0) - u(?))), emission will take place only after the mol-
ecules have been reoriented and complete depolarization will result.
In either of these extremes, the depolarization will not give useful
information about the correlation function. Since 7y ~ 10-® sec for
electronic transitions, and since typical orientational correlation times
for small molecules are ~10-11sec, this experiment is not very useful
for the determination of correlation functions in small molecules. On
the other hand, molecules of large moment of inertia (polymers) have
correlation times of order 10-# sec and can clearly be studied. Expériments
of this kind have been useful for determining the rotational diffusion
coefficients and thereby, the size and shape of such molecules as
myglobin (Tao, 1969).

It can be concluded that the dynamics of molecular rotations can be
probed by a variety of spectroscopic methods. It is therefore quite im-
portant to investigate the properties of the correlation functions {P;(u(0)
+u(?))) in different systems. Moreover, the results of one experiment
may greatly aid in the analysis of another experiment. For example,
{P;(m(0) « u(z))) and (P,(u(0) - u(#))> can be determined from absorp-
tion and light-scattering experiments and can then be applied to neutron-
scattering experiments so that the translational correlation functions can

be analyzed.

B. Free Rigip RoTors: CrLassicaL aND Quantum TIME CORRELATION
FuNcTIONS

Orientational correlation functions play an important role in absorp-
tion, Raman, Rayleigh, NMR, ESR, and neutron-scattering spectroscopy.
‘Unfortunately, only a small number of such correlation functions have
been determined analytically, ard these correspond to very simple
models. Ironically, much is known about the behavior of time cor-
relation functions in condensed media (Berne & Forster,  1971). Com-
puter simulations of monoatomic and diatomic classical liquids provide
a complete development of the positions and momenta of the constit-
uent particles of the liquid. Consequently, the time correlation functions

?
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of any two mechanical properties can be determined. Sirice these machine
studies determine only the classical correlation functions, they are often
not directly applicable to quantum-mechanical, ie., real systems. A
number of approximations have been proposed to deduce the quantum-
mechanical correlation function from the corresponding classical func-
tion. The accuracy of these approximations is rather difficult to assess.
In the following (Kushick and Berne, 1970), we compare exact classical
and quantum-mechanical behavior of some orientational time correlation
functions that are frequently encountered in spectroscopic studies.

1. The One-Dimensional Rigid Rotor

Here, the normalized dipolar autocorrelation function for a classical
and quantum-mechanical ensemble of one-dimensional rigid rotors is
determined. Let u be a unit vector along the rigid rotor axis, Then

DY(f) = u(0) - u(e)y,  Dgn(e) = (3[u(0); u(®)],> (6.37)

are r<.es_pective1y the classical and quantum-mechanical time correlation
functions. The quantum-mechanical function involves the anticom-
mutator [4, 8], =4 -f + B - 4. Since u(0) and u(t) are Hermitian
operators, D{™(¢) is a real function of the time >

.T he one-dimensional rigid rotor is a rotor constrained to rotate in a
given plane. For this case, D{\(2) is easy to evaluate. For a free rotor
u(0) - u(t) = cos wt, where w is the rotational velocity and wi is thE:
angle between u(0) and u(z). The distribution of angular velocities is
p(w) = (I]2nkT)? exp —(flw?2). Consequently,

Dty = () -u@) = f: dw p(w) cos wt = exp —12/2, (6.38)‘

where 7 == (w®!¥ is a reduced time, {w®q = RT/I is the mean-square
angular velocity, and 7 is the rotor's moment of inertia.

The corresponding quantum time correlation function is more difficult
to evaluate. The Hamiltonian of the free one-dimensional rotor is 7
= (1j2I)] 2, where [, is the angular momentum (perpendicular to the
plane of rotation). The cigenvalues and cofresponding eigenfunctions are
& == Bm*[2], @ (@) = (2m)Vigime where m =0, 41, ..., and ¢ is
the angle that specifies the orientation of the rotor in the plane of rotation.
In the energy representation, DI™(z) is '

ng(t) = 2 Oy * Uy, COS wmnr! (639)



684 Bruce J. Berne

where g, is the Boltzmann factor e~/ and u,,, is the nmth matrix
clement of u, where u == i cos ¢ + jsus ¢. Here, i and j are two basis
vectors which span the space of the rotational plane. Evaluation of the
matrix elements yields Wy, » Wpn = ${00 me1 + n,m—1]- Then,

oo
DI(t) = cos @yt Re }] O~ exp]—phiwyn’] exp[—2inwgt],  (6.40)
where w, = %J2I. This function is periodic with period 2nfwy. This is
the recurrence time for the quantum-mechanical time correlation func-
tion. In order to calculate DI™(z), the two sums

4-00
Iy = Y exp[—pfhon’] exp[—i2nw,t]
v (6.41)
0By = Y exp[—phogn’}=TI(0)
must be determined. For the purposes of comparing the classical and
quantum time correlation functions, it is most convenient to evaluate the
above sums using the Poisson summation formula {Abragam, 1961),
according to which, if F(x) is a good function and G(y) is its Fourier
transform, then .
+ oo -+
Y. F(m)= (1) 3 Gn/d) _ (6.42)
m=—co N=—00
Consider the function F(x) = exp —? and its corresponding Fourier
transform G(y) = /7 exp —n’y*. Therefore, by the Poisson summation
formula
oo +o0
W exp[— ] = (i Y (exp —atm?lE). (6.43)
M—ca N=—co
If we let A% = Bhiw,, the left-hand side of the preceding equation is the
partition function, so that

0() = (wphony® T expl—mintiphad.  (64)

The advantage of this formula is that it is rapidly convergent for high

temperatures or small Biim,, whereas the original sum is not. Now,

- (rt]fhio,)V is the classical partition function and the sum gives the quan-

tum corrections to the classical partition function and consequently to
the thermodynamic properties. -

Consider the function F(x) = exp[—x? — 27ixz] and its corresponding
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¢

Fo_urier transform G(y) = (m)"2 exp[—n®(y + 2)?]. According to the
Poisson summation formula,

+oo
N expl[f—lzmz] exp[—niZlm] = {m/AL)2 +Z exp[—n¥{nji + =2)?].

M=—00
R=—00

If we let 12 = Bk, and 2 = wyt/nd, the left-hand sid i i
o 1) o it 0 ol [7A, eft-hand side of this equation

I(t) = (nlfhog) expl gttt {fiio] Y. expl—atnt|fio]
X exp[—2innwqt|fio,]. T (6.45)
From Egs. (6.44) and (6.45), it is concluded that

D™(t) = cos wgt exp(— w2/ fw,)

x{ f exp(—a®n?/fhiw,) exp(Z—z'nnz/ﬁh)/ Jf ex’p(-nzn?/ﬁﬁwo)}.

A=--00
n=—00

Since wy/ff = ETI2] = 1wy, the factor ex )
el s pl— w22/ fhew,] i ]
to exp _(<w2>c1t2/2) or D}’I(Z), and 0 f o] 8 equa

D;‘m(z) = D, (1) cos wyt
X{ni';exp[—nznzfﬂﬁwo] exp[—2nintiph] | 3. exp[—awf,].
(6.46)

. The strong difference between the classical and quantum-mechanical

c.()rh?lation functions should be noted. The quantum-mechanical func-
tion is periodic with period 2m/w,. This has profound effects on the spec-
tral line shapes that would be observed. Note that as ] — oo, w, = %/2]
- O,. the period 2m/w, — oo, and D™ (1) — D{\(¢). Another w;y of in-
dicating this behavior is to say that as # — 0 (correspondence rule limit)

the quantum time correlation function approaches its classical counterpart.

Le? us express DI™(f) in terms of the dimensionless time 7 = (@Y
and in addition define the dimensionless parameter x = w /<w2>ci{2
= #if(4TkT)v2. Note that x is the ratio of the quantum of anguular" mcc)—
mentum, and (JRT)? the root-mean square classical thermal angular
momentumn, of the rotor. In terms of these reduced vériables,

D{™(z) = D{(t) cos wt N
X {ﬂ_i‘; exp[—n®n®/2x?] exp[-—aint«] / f exp [_%2,32/2302]}'
(6.47)
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The parameter ¥ is small when the thermal angular momentum is large
compared to the quantum of angular momentum. Thus, if 7 is fized and
x — 0, it follows that

lim D{"(x) = Di(x).
T

The classical limit is attained when KoYt > #i. In these reduced
variables, the recurrence time for Dy(2) is 2] x.

Schofield (1960; Egelstaff, 1962; Egelstaff and Schofield, 1962) has
proposed that the quantum-mechanical one-sided time correlation func-
tion <A(0)A(f)>qm can be approximated from the classical autocorrela-
tion function from the equation

A AR = (AOAGE — TDys.  (649)

This approximate quantum-mechanical time correlation function satisfies
the condition of detailed balance, but does not satisfy any sum rule.
For example, at ¢ =0, the quantum-mechanical function should be
(A%, but the Schofield approximation leads to CAVA(—AB{2Y .
Egelstaff (1961) showed that, if y? = ¢t — i#ift, then another approxi-
mation to the one-sided function that satisfies the condition of detailed
balance and in addition the above sum rule is :

CAQ)AR)EE = AOAGYa (6.49)
Let us compare these two approximations with the exact result in Eq.
(6.47):
Cu(0) - u(e)yigT = Dt — ipj2) = Di(t)eierteenl4.
Cu(0) - u()Eg = Dy{(er — inpr)vY= DY@

(6.50)

Consequently, since D™(t) is the real part of the quantum one-sided
correlation function, the Schofield and Egelstaff approximations become,
in reduced coordinates, '

DSCE (1) = exp —(x%/2) Df(v) cos #7,

DEC(1) == D§(7) cos x7.

(6.51)

It should be noted that the Egelstail correction is identical to the
B, — 0 limit (that is, the high-temperature limit) of the full quantum-
mechanical time correlation function for short times even though it
does not predict the recurrence phenomena.
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hThese resul.ts are plotted in Figs, 23 and 24. It can be concluded
that there are important differences between quantum and classical time

corr‘elatlon functions and, moreover, the Egelstaff and Schofield approxi-
mations are of limited utility.
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2. The Rigid Heteronuclear Diatomic Molecule

DY(¢) and D¥™(z) can be computed for a rigid molecule rotating in
3-space. Then,
' D¥(z) =2 f * dx = exp[—=2?] cos 27, (6.52)

i 0

where v = (2kT[I}?t is a dimensionless time. This integra_l cannot l?e
evaluated analytically, but a numerical calculation of D§{(z) is plotted in
Fig. 25. , ‘ _ '

The corresponding quantum-mechanical time correlation function
D), is ,

M(4) = u~2 Re e | M| | JM) |2 expli(ewgar — @pap)t],
DI(t) = p - JM;’M‘ e | (J (6.53)
where | JM) s the eigenket of the Hamiltonian A = (1/2I)]? correspcrmdr-
ing to the eigenvalue gy = iy =]/(] + %)_ﬁQ/ZI, and (JMjw| M)
is the transition dipole moment for the transition | J'M') — | JM ) Sub-
stituting the known values of the matrix elements, together w%th the
Boltzmann factor gy == (exp — ffiwyge)fQ and the degeneracies gy
== 2J + 1 yields, after some manipulation, -~

D) =2 5 (] + Dfexp —(J + 1$h0g)Q
% [cosh{(J + 1)BAa,] cos[2(] + 1)wyt]. (6.54)
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Fie. 25. The dipolar autocorrelation function (0} - u(t)> for a rigid heteronuclear
diatomic motecule, {x) classical. Note the recurrence (open dots).
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If we introduce the dimensionless variables x? — Tw2[2RT = Bliw,[4,
T = wgt/x, we have

DY™(3): |
| Jiz(f - Dlexp[—4(J 4 1)%*] cosh[4(] + 1)a%] cos[2(] + 1)az]]
Ji (2] + 1) exp[—4J(] + 1)x?] (6.55)

Here, the sums in the expression for D{™(%) converge quickly enough
to be calculated directly. The results of these calculations are plotted
in Fig. 25.

As was observed before, the quantum-mechanical time correlation func-
tion is periodic with recurrence time 7/x. Again the strong contrast with
classical correlation functions should be noted.

Even in the high-temperature, high-moment-of-inertia limit, the dif-
ference between classical and quantum time correlation functions may
be observable. The vibration-rotation spectrum is

\1’£w) = (1j2) [*7 dt e~iotemim Danz) (6.56)

where 7y is the lifetime of the excited vibrational state. When collisions
play no role in the lifetime, 1{7y is the spontaneous emission rate and is
of order {10+% sec=™. Thus, if the recurrence time mjwy = 2l (~10-12
sec) is small compared with 7y, recurrences will be observable.

C. ErFects oF CoLLI1SIONS ON MOLECULAR REORIENTATIONS

The orientation of a diatomic molecule is specified by a unit vector u
pointing along the molecular axis, Every orientation can be specified by
a point on a unit sphere. As the molecule rotates, this point moves along
a trajectory on the surface of the sphere. If the molecule rotates freely,
the point u will complete a cycle with a frequency equal to the molecular
rotational speed | w |. If the molecule suffers collisions, then its motion is
represented by jagged trajectories due to the change in its rotational
velocity on collision, In dilute gases, collisions willsbe so infrequent that
the point will travel on long arcs of great circles before suffering a col-

lision and shifting to a new arc. As the density increases, the collisions

will become so frequent that the point will perform a kind of Brownian
motion on the surface of the unit sphere.




690 Bruce J. Berne

The following is a simple stochastic model for collisional reorienta-
tion which provides a great deal of insight into the mechanism of rotational
" motion (Gordon, 19652, b):

1. A molecule undergoes free rotational motion until it is interupted
by a hard-core collision of zero duration.
2. Collisions change the molecule’s rotational velocity but do no\f change
its orientation. o

3. Successive hard-core collisions are uncorrelated, that is, the instants '

at which the collisions occur form a pure random process and the angular
_velocity changes produced by the collisions are uncorrelated.
4 Each collision radomizes the direction of the angular momentum.

It follows from these considerations that after # collisions which occur
at the times £, ..., , 2 molecule that rotates with the angular speeds

Wy + .. Wy between these collisions will have
n+l
u(0) « u(t) | con = [] €08 @;(t; — &), £ by, (6.57)
11

where #, = 0 and #,,, = . From condition 3, these collisions can occur
atany timesuchthat 0 <, <, < -+ Sha =1 All possible choices

of the collision times are equally probable, so that the average of Eq.

- {6.57) over all possible collision times given the sequence of rotational
speeds is

—_— nl atl oty
u(0y “u(E)r = —[1 f Dty cos 0ty = ta), b =1 (6.58)
i=l

Now, the probability for # collisions in the time # is the Poisson distribu-
tion (collisions are independent and random)

Pt = L2 exp — g, (6.59)

where w, is the gas kinetic collision frequency (= 1}z, T being the average
time between collisions). Then, averaging u(0) - u(f)" over P,(z) gives

the correlation function <u(0} - (), for a specific set of rotational
speeds {@y, .vos @ o os iR

) 0 ot 741 bign
@{0) (), = zo w e n1 J-o dt;gos wit; — t-y). (6.60)
n= j= ]

This correlation function must now be averaged over the joint probability
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distri_b.uti_on of molecular speeds P(w,, ..., @, ...). According to
conditiont 4, this joint probability factorizes, '

Plwg, ... ¢ ...)= ﬂlp(mj), (6.61)

fsi_nce the collisions randomize the angular velocities. Now, P(w;) is
just the Maxwell distribution of speeds '

P(w;) = (I[2kT)o; exp[—Flog)2]. (6.62)
“This average is |
D;(t) = <a(0) - u(z)>
o0 ntl g ’
= 3, o epl—og) ] [ dtims expl—onlt; — t;.1)]

X {cos w(t; — ;4 )>

o0 n+l o
= nzﬂ wo".‘ L4 _J.‘(: dtj-—l exp[— wn(tJ —_— tj_]_)] <COS CU(tj hand tj_1)>-
o (6.63)
Now, {a(0) - u(t)y for a free particle is
() - u(t)y = {cos wi). (6.64)

This was computed in the previous section and is presented in Fig. 24.

Equation (6.63) contains this function in combination with e, Let us
define the function D,y(#), '

Doy(f) = e=v*{cos we.
Equation (6.63) then becomes

¢
D,(t) = Dyy(t) + w, fﬂ dty Dot — £)D1(2:)
+ gt | " dty Dyoft R ‘
¢ [, 4t Diolt — 1) [ dty Diofts — 1)Dao(t) + ..
This can be iterated to give the integral equation
¢
Dy(t) = Dift) + s [ dt’ Dol — #)Ds(§). (6.65)

Again we define the dimensionless variables v — (MDY, v = (WY,
and w = wy/{w?>Y% Then

Dy(v) = Dyofr) + w ff @7’ Dy(z — v)Dy(7") (6.66)

+
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The parameter @ measures the ratio of collision frequency to rotational
frequency at a given temperature and density. If w is very small, we
expect to have free rotation, whereas if @ is very large, we expect to see
very little free motion. In fact, in this latter limit we expect to see Brownian
rotations. This model cannot be computed analytically. In Fig. 26 this
function is computed for different values of w. Note that, as w increases,
D,(z) goes from the free-rotor to the Brownian-rotor model.

)o I T T T | T | | T
0.8
06

bITY

Q4 P

0.2

tadted

-c2t- 7

] 1 I 1 ]

Time
Fig. 26, The dipolar autocorrelation function <u(0) « u(t)> for CO in CCl, solution
compared with the theoretical curve Eq. (6.66) (bottom cutve), and in CHCI,; solution
compared with theory (top curve). ' '

D, INFORMATION THEORY OF ORIENTATIONAL DigrrieuTioN FUNCTIONS

It would be very convenient if (Py(u(0) - u(f))> for I=2, ... could
be determined from knowledge of (P;(u(0) - u(z)}>. If this could be done,
it would then be possible, for example, to predict Raman band shapes
from ir band shapes, or neutron-scattering cross sections from infrared
spectroscopic data. In order to make these predictions, the distribution
function of u(0) and u(?) has to be guessed from one or more of its
known moments. In the following (Berne et al., 1968), we shall make
this guess by maximizing the information entropy of this distribution
subject to the known (experimental) behavior of ¢(u(0) « uft)>.

First, suppose that a spherical surface of unit radius is drawn and the
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center of this sphere is taken as the origin of a spherical polar coordinate
system. Suppose further that w(0) the initial orientation of a diatomic
molecule, is represented by the unit vector z along the positive Z axis of
this system. As time progresses, u will move about on the surface of the
sphere and at any particular instant of time ? its orientation will be
uniquely specified by its polar and azimuthal angles # and ¢. The actual
path that u traces out on the surface will, in general, be very complicated
due to the continual interaction of the diatomic molecule with its neigh-
bors. Let P(6, ¢; £) 42 be the probability at time ¢ that @ is oriented in
the direction of the solid angle d2. After a time # that is long comlﬁared
to the orientational relaxation time, P(f, ¢;¢) will be independent of
its initial value and will tend toward the uniform distribution, i.e.,

lim P, ¢; 1) = 1j4n
=00 ’

The time correlation functions <Py(u(0) - u(?))> can be computed pro-
vided P(9, ¢; t) is known since

(Pu(0) - u(®)> = [ d@ P(B, $; t)Pycos 0). (6.67)

[t is now assumed that {Pi(u(0) - u(t})> = <u(0) - u()> is known
and we want to guess the probability distribution P. We do this by

.thaximizing the information entropy S[P] of the distribution P,

SIP] = — [ 4R P(2; 1) In P@; 1) (6.68)
subject to the constraints
P(2;8) =0, | (6.692)
f dQ P(Q; 1) = 1, (6.69b)
[ a2 P(@, 1) cos B = <P,(u(0) » u(t)]>, (6.69¢)

where (a) and (b) are the conditions that P be a probability distribution

‘and (c} is the condition that P gives the right dipolar correlation func-

tion. Introducing Eq. (6.69) into the problem via Lagrange multipliers
o and g gives * ‘

6 [ dQ[PInP — (@ -+ 1)P — f cos OP] = 0,

(6.70)
ja’Q[lnP—a—ﬁcose] 8P = 0,
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or
P(Q; 1) == gxtf o0 (6.71)

This distribution automatically satisfies the positivity condition (6.6%9a).
This distribution function can be expanded in Legendre polynomials,

P@2i1) =& 3 (21 + 1)Byaya(B)Pr(cos 0) (6.72)
' _'whei-e
Bi1(B) = (7/28)2L, 11 a(B)s (6.73)

.I,,H,z(ﬁ) is the modified spherical Bessel function of the ﬁ;st kind. The
functions B,.1/5(8) can be determined from the recursion relations

BuyanlB) = £x(F) sinh § + g, _o(8) cosh B

sl — o) = (21 + DFIEE),  m— O =L, 42, D
with
LB =18 glf)=— 1/
It is then easy to see that
Byo(f) = sinh B/
By5(B) = — sinh §/f% - cosh §jf 675)

Bso(B) = (3/8° + 1/f) sinh § — (3/6%) cosh §
Byoff) = [1/8% + 5/8° + 15/8*] sinh § -~ (3/4°) cosh f

The Lagrange multipliers  and g are determined from the constraints
(6.69b) and (6.69¢). From (6.69a),

| 402 P(@; 1) = 4me ByyyfB) = 1,

or
l e* = 1{4nB, () - (6.76)

This result follows directly from the orthogonality relation on the Le- |

gendre polynomials,
[ 4 P, (cos 6)P n(cos 0) = [4n/2n + 1)] Sum- (6.77)

From Egs. (6.72) and (6.76),
P(@; 1) = [14aBya(B)] 3 (27 + 1)Busyalf)Palcos 6).  (6.78)
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Consequently,’.
{Py(u(0) - u(t))> = Byys(B)|By(B)- . (679
Constraint (6.69c) gives
<@(0) - u(t)> = (Py(u(0) - u())> = Byus(B)/B1a(f).  (6.80)
From Eq. (6.75), we see that
u(0) - u(e)y = [—1/p(z) + coth A(£)] == L(A(1));

L{B) is the well-known Langevin function from the theory of paramag-
netism; f(2) can be determined from the experimental dipolar correla-
tion function <u(0} - u()>.

The higher-order correlation functions such awz(u.(O) «u())> can
now be determined in terms of §(¢) and thereby in terms of ¢u(0) - u(#)>.
For example,

<Pa(u(0) - u(t))> = ByslB)/Bra(B) = [3/8% + 1] — (3/8) coth
=1— (3/BENL(B(2)) (6.81)

and

{Py(u{0) - u{t))> = Baa(B)]B1(8)
= [1 - 15/f#] coth § — [1/8 + S/f* + 15/6°]. (6.82)

Maximizing the information entropy of a distribution gives in some
sense the {‘smoothest” distribution consistent with our available informa-
tion on this distribution. We have tested the information-theory predic-
tion of (Py(u(0) < u(®))> from <u(0) « u(z)> for two different systems:
the Stockmayer and modified Stockmayer simulations of CO. We have
already seen that these two systems represent two extreme forms of
molecular rotational motion. In the Stockmayer simulation, the molecules
rotate essentially freely, whereas in the modified Stockmayer simulation,
there is evidence for strongly hindered rotational motion. Figure 27
shows <u(0) - u(z)> from the Stockmayer simulation, and the experi-
mental {P,(u(0) - u(t))> and its information—theory plediction are pre-
sented in Fig. 28, In this particular instance, the information-theory
prediction agrees with experiment only for short times, i.e., # < 4.5
X 10~ sec. Figure 29 shows <u(0) - u(t)> from the modified Stock-
mayer simulation, and the experimental (P,(u(0) - u(?))> and its in-
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Fig. 27. Plot of ¢(P,(u{0) - u(®))> (solid point) and <P;(a(0) - u(f))> (square
point} from the Stockmayer simulation (solid Yine} and from the gas phase for.‘CO gas
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Fie. 28. Comparison of {Py(u{0) u(t))} from Stockmayer (solid line) and from
information theory (solid points).
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Fig. 29. Plot of {P,(u(0) » u{$)}> and {(Po(u(0) - u(2))> from the modified Stock-
mayer simulation, ’

formation-theory prediction are presented in Fig. 30. Note that in this
example the information-theory prediction isin excellent agreement with
experiment for ¢ << 102 sec. This is a significant result, since in this
patrticular instance, the decay of (P,(wu(0) -wu(z))> is predominantly
governed by intermolecular interactions and, hence, would be very dif-
ficult to calculate theoretically from first principles.

E. RorarionaL Brownian MoTion

'When the relative collision frequency w in Eq. (6.66) is large, molecules
are so frequently jostled by collisions that they rarely can complete free
rotational cycles. This is usually the case in liquids. Debye proposed a
random walk theory of rotational reorientation of point dipoles in
liquids (Debye, 1929). According to Debye, the joint probability P(2,,
£2; 1) for 2 molecule to have the orientation £ at time ¢ and the orienta-
tion £, at ¢ = 0 satisfies the equation

7] 1 d A a ] a2
7 f= DR[““—sine "55(5‘“6”55") sy gD (683
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Fie. 30. Plot of ¢P(u{0) « u(2))> and {P,(u(0) - u(t))> from computer experiment
{modified Stockmayer simulation) (solid line) and from information theory {dots).

where the angles 6 and ¢ the specify orientation of the dipole at time tand
Dy is the “rotational diffusion constant.” The operator in parenth§sis
is simply the angular part of the Laplacian. From quantum mechanics,
vire know that this is identical to — J2/#2, where [ is the angular momentum
operator in the central force problem. Let us call the dimensionless angulﬁr
momentum operator I = (1/%)f. Then Debye’s equation for isotropic
rotational Brownian motion is

(9]3)P(Qy, Q5 t) = — DItP(2o, 25 1). (6.84)

The total angular momentum operator I? has the weli-known surface
spherical harmonics as eigenfunctions,

BY,n(@) = L+ DY@ LY0n(Q) = mYyu(@).  (6.85)

It is obvious, then, that Eq. (6.83) can be solved by expanding P2, 2;1).

in the surface spherical harmonics. In Section VLA, it was shown that
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the only expansion consistent with the system being in thermal equi-
librium is
Py, 2;1) = 2 (D YEn(Q) Y (o) (6.86)
where ’
b m(®) = <Y Q(0)) Y, m(€(2))>

a‘ncli where b;,,(0) = 1/47 Substitution of Eq, (6.86) into Eq. (6.84)
yields

" d
LEm Yin( @)Y n(0) 51 bm(t) é V(@) Yim(Q0)[— 1 + 1)Dyby m(2)]

where the fact that Y¥,(2) is an eigenfunction of 2 has been exploited.

Taking the scalar product of this equation with Y (2YY,.(Q,) yvields
the equation for 4, ,,(¢) '

(302, m(8) = — I + 1)Dgy (), (6.87)
which has the solutior:_t [subject to the boundaty condition &; ,,(0)=1/4x]
bi,m(t) = (1/4m) exp[—2( - 1)Dgt]. {6.88)

We have thus determined the joint probability
P2y, Q; 1) = (1/4n) . Vi@ V() expl—Ki + 1)Drt] (6.89)
and ;he time qbrreiation function
YTn(R0)) Y1, m(2(1))> = (1f4n) exp — (I + 1)Dygt] (6.90)

ff)\r an equilibrium ensemble of isotropic Brownian rotors, Note that the
time-dependent coefficient #;,,(t) does not depend on m, i.e., there is a
(2l + 1)fold degeneracy. This is because all space-fixed directions are

- equivalent in an isotropic system. If an external electric field is switched

on, the degeneracy is lifted and &, ,,(z) will also depend on m.

All of the experiments that have been discussed tequire time correla-
tions like (P;(u(0) - u(z))> where u is the direction of the dipole moment
u. These functions can be computed in the following way. From the
spherical harmonic addition theorem, ‘

Pa(0) - u(t) = B/l + 1)] 3 YEn(@Q)Vn(@(),
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where the angles 2(0) and Q(t) specify the directions of u(0) and u(t).
Thus, ;
P a0y - u(®))y = [4=/2+ 1] mz_z<Yfm(9(0))yl,m(9(t))>v (6.91)

which, from Eq. (6.90), yields
(Pyu(0) - u(®))> = exp[— KI + 1)Dat). (6.92)
Debye’s theory of isotropic rotational diffusion of point dipoles leads
«to the following results for:

1. Neutron scattering, Eq. (6.16):

Fok, ) = 3 (21 -+ 1) | jilwkagim,) |* exp[—I(I + 1)Dxt]: (6.93)
i=o ]
2. Infrared absorption, Eq. (6.17):
(Py(u(0) - u()> = &%, (6.94)
1 2Dy, _
He) = — 75w -+ CDzy
3. Dielectric relaxation, Eq. (6.22):
elw)— e 17V _ 1 gy ( W ) 6.95)
[ (80?_800 ] =1 1230—1—300 2Dy, (
4. Raman scattering, Eqs. (6.33) and (6.34):
(Py(u(0) - u(t))> = e
w 1 6Dz
IP(@) = — o — o + 6Dk (6.96)
1 ' 6DR
IP0) = < T T [6DaP
5. The depolarization of fluorescence, Eq. (6.36):
T(t) — %_e-‘-sDRt_ (697)

In the event that a molecule is nonspherical, the I?ebye theorylr, w
describes the rotational diffusion. of isotropic (spherical) molecules,

v has been generalized by Favro. This genera-
B D e e i the soma . section. It should be noted

ization is di i i f this
lization is discussed in the remainder o :
that this development is completely analogous to the foregoing.

The problem of describing the rotations of rigid polyatomic molecules

hich
does
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has been solved completely. The orientation of a rigid body is specified
with respect to a space-fixed Cartesian coordinate system by the three
Eulerian angles o, f, y. In terms of the molecular axes (or body-fixed
axes), ¢ and § are the azimuthal and polar angles of the body-fixed Z
axis in the space-fixed frame and y is the angle that specifies orientation

. of the molecule about its own 2z axis.

The Wigner rotation matrices Dy, 2(2)[Q = (e, §, y)] form a complete
orthogonal set of functions which span the space of these Euler angles .
Any function of these angles can consequently be expressed as a linear
combination of the rotation matrices. The transformation properties of *
the matrices under rotations are described in the books by Rose (1957)
and Edmunds (1957). Only a few of their more important properties
are summarized below:

D2 () = (—1)5¥ Dy (), (6.98a)

J.dQ Dy g (2D g(9Q) = (87" /(2] + 1)) 8.0 Sar.20 O 57> (6.98b)

Dy 4(Q,) = ;DiM(Qz)Dﬁ;(aﬁ(f)), (6.98¢)
D) = 3, Dea(20)D31,(82(1)), (6.98)
% DI e @)Dl (@) = bx.x0, (6.98¢)
¥ D a(@)Dir,x(2) = ut a00» (6.981)

where df2 = da d(cos 8) dy. Property (a) follows from the symmetry
properties of the rotation matrices. Property (b) expresses the ortho-
gonality property. If a body with orientation £, is rotated through an
angle 642, to the new orientation £2,, then the rotation matrices transform
under this rotation according to properties (¢) and (d). Properties (e)
and (f) express the completeness or closure relations of the Wigner
rotation matrices.

These functions are very useful in both classical and quantum-me-
chanical studies of rotational motion. They have an added significance
in quantum theory, where they are eigenfunctions of the total angular
momentum L? and the angular momentum L8 and LB around the space-
fixed and body-fixed 2z axes, respectively:

L2Df () = —i#(6]8y) D} (@) = —hMD ()
LD} 3(@) = —i(8]0a) DY 1(Q) = —AK DY 31()
LD} (@) = JU + 1)EDE(®) -

(6.99)
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Let K(£2,t] 2,,0)dQ be the transition probability that a molecule
stating with orientation £, at the initial instant = 0 will rotate in such
a way that it will have an orientation within df2 of 2 at time #. Since the
functions D% 5,($2) span the space of all functions of £2, then K(£2,¢ | 2,,0)
can be expanded in these functions as

K(2,t]2,0)= 5 b () D% iw(20)D%e(2).  (6.100)
JM

It is perhaps more transparent to determine the form of K(Q, | £2,, 0)
using the arguments that were developed in the sections on linear mol-
ecules. Let P(£2, #) be the probability density for finding a molecule with
orientation £2 at time ¢ Then P(£2, t) can be expanded in the complete
set D 1,(£2) as follows:

o Jd
P(Q,t) = Jgu . ﬂ;_J @k (D (1), (6.101)

with the expansion coefficient a%, y(f).

ek u(t) = [ dQ P(Q, ODE w(@)[2] + 1)f8a*].  (6.102)
If the molecule has an orientation 2, at ¢ =0, it fc:]lows that K(£,
t| £2,,0) == P(£, t). In that case,

P(R2,0) = 6(2 — 12,)

and y
ag,11(0) = [(2] -+ 1)/82%]Dg 1(R). (6.103)
If af 44(2) is expressed as a% 3 (0)F % 3(2), it follows that
K(@,t]2,0) = 3 [(2] + /e Ik a(ODF DDk (@), (6104)
In thermodynamic equilibrium, molecules are distributed with the

random distribution P{f2,) = 1/8x% Consequently, the joint probability
distribution P(£2, #; £, 0) is simply P(Q)K(2, | 2,,0) or

P2y, 2;8) = 1/8* 3 [(2]+ 1)/87“’2]FEZF,M(t)D{Z?M('Q)D!{%.M(QO)-‘-.
TRM (6.105)

In this case, it is a simple matter to determine the time-dependent func-
tions FY ,(f) in terms of orientational time correlations functions.
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Multiplication of Eq. (6.105) by Dz*(2,)D% 1(2) followed by an in-
tegration over df2 df2, with subsequent use of the orthogonality property
Eq. (6.98b) yields

(DEu(Q0)DE (RN = [H(2] + DIFE (t),  (6.106)

where the left-hand side is a time correlation function in an equilibrium

or uniform ensemble. Consequently,
P20, 238)= 3 [(2] + 1)/8a"KDFu(2(0))D% 1(2())>
X Dgtu(2)D%,14(20) (6.107)

for an equilibrium system. Note that this function is normalized, as it
must be. This follows from the fact that D§ ((2)=1= DY o(£2,). If the
molecule is linear and if the body-fixed 5 axis is along the molecular
axis, then the orientation of the molecule in the space-fixed system is
specified by - and § with = 0. In this case, D% (=, 8, 0) = D% (e, 8, 0)
and the joint probability distribution P(Q, ¢; £2,, 0) correctly reduces for
linear molecules to Eq. (6.86).

This formulation is quite general. It is casy to specialize it to spe-
cific models. All that remains is to compute Fi 5(2) or, equivalently,
<D (2(0)) Dy 2(2(2))). For example, Favro has derived the rotational
diffusion equation for an arbitrary rigid rotor,

(8/88)P(Q, ) = — M - Dy - MIP(®, 1), (6.108)

‘ £

where M is the dimensionless angular momentum operator and Dy, is

the rotational diffusion tensor. This equation is simple if the body-fixed

axes are chosen as the principal axes of the rotational diffusion tensor. In
this case,

(a/at)P(‘Q= ‘f') = _IDaaMu2 + DI;-I;:]Q‘.!ﬁ2 + Dchcz]! (6'109)

where the Euler angles {a, 8, ) define the rotation that carries the space
fixed coordinate system into the principal axes of diffusion, , &, ¢, fixed in
the body, and M,, M,, and M, are the dimensionless angular momentum
operators along these principal axes. This equation cannot be solved
exactly for the asymmetric rotor. Nevertheless, all time correlation func-
tions with J < 2 can be determined. The solution is quite tedious. For
the sake of simplicity we discuss the solution for the symmetric top.
The symmetric top is h rigid Brownian rotor with two grincipal diffusion
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coefficients equal, say Dy = Dy, then

8P, 1){0t = —[DaalMa* + M) + D MZ2P. (6.110)
Since M?® = Mg + My + M it follows that
aP(R, )8t = —[Daa M2 4 (D, — Da) 1P, (6.111)

VA he symmetric top’s sym-
is th lar momentum operator about t
ffgti‘; ta;isar;fuz axis and M? is the total angular momentum.DIt s};"{;‘;ﬁ
be noted that this reduced to Eq. (6.84) when Dy = Doy = Dee-
Eq. (6.99)
[Daaﬂz + (Dcc - Daa)Maz]D{(fM(Q)
= DuJU + 1) + (D — Da)M*IDE (@)

. . . . he
Consequently the Wigner rotation matrices are eigenfunctions of t

diffusion operator. Thus if P(0, t) is expanded in D#u(2) [Ea. (5.128}],
the diffusion equation becomes
> (0100ak D) 2
I
. = ; a%,M(t)[DanU‘,F 4+ Do — Daa)Ma]DK.M(Q)' (6.112)
JEH

. - J .
Taking the scalar product of this equation with Dg 1(£2) yields

9 gty = (D] (] + Dt (D — DM Nakan(®) - (G119)
ot

whose solution is o
@ 14(t) = ak14(0) exp —[J(J + DD + MD,, — Daa)lt. (6:114)
is wi s that
Comparison of this with Eq. (6.104) shows t .
' FE,M(“’) = exp —U(J + 1)Daa + Mz(Dcc - Daa)]t' (6115)
From Eq. (6.106), it follows that
(DR D 221 ;
Ki (1@ jlz—jk;))l exp —[J(J + 1)Daa + M¥DecDaa)lt (6.116)
and
P(@y, ;) = Z_‘: 1/822[(2] + 1)/87*|DEex( 2Dk 2e(20)
Jxlzxp '"'U(] + 1)Daa —+ (Dcc - Daa)Mz]t' (6117)
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These are the orientational time correlation functions and the joint
probability distribution for the symmetric top Broronian rigid rotor.

For a freely-rotating molecule, it should be noted from Eq. (6.98d)
that

DE(QONDEM(E) = T DF5e( 20Dk r(20) D e (32(1)),
' (6.118)

where a molecule with initial orientation 2, rotates freely through an
angle 8£2(¢) to the new orientation £2(¢). For a free rotor, 62(¢) depends
only on the angular velocities about the three principal axes of rotation
and the time. Consequently, an average over an initial uniform distribu-
‘tion P(£2,) = 1/8a% can be performed, so that, for a free rotor,

, ' 1
D (Q(0)Dim(R(0))> = FYES <D, (820>,
where the latter average is over a Maxwell distribution of angular velocites
about the body-fixed axes. These averages have been explicitly computed
(Bt. Pierre and Steele, 1969; Fixman and Rider, 1969). They are carried

out in an analogous way to Eq. (6.52) of this section. From Eq. (6.106),
we see that

(6.119)

Fi w{t) = (D u(30(2))>. (6.120)

Suppose that a correlation function of some vector property that lies
fixed within the molecule is needed. As the molecule rotates, this vector
will change its orientation in the laboratory or space-fixed coordinate
system. This is important, for example, if the vector is a transition dipole
moment p; then absorption and fluorescence of light will depend on the
reorientation of W in the laboratory frame.

Generally, the vector w is known in Cartesian form,

Hz
b=ty
ts

It s easier to solve problems of this kind if the vector is in spherical vector

from ps, where
#
s = |t | =
M1

(—-wx + zm)/«/i)
Hz .
1z + i1,/ 2
&
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"This is most easily done {Rose, 1957) by applying the unitary transforma-
tion U so that

pe=U -,
where
wl w0
Ue—L. ( 0 0 \/E)
A2 1 — 0

The spherical vector pg can be transformed from body-fixed pgP to
space-fixed pg® coordinate axes by the unitary matrix D(£2),

wg® = D({2) « pg®,
where D is a 3 X 3 unitary matrix with matrix elements

Dis(2) Dio(@) Di(®)
D(Q) = | Di.(2) Do) D3 (L)
ADLL(Q) DL(@) Di_(9)

(6.121)

and where 2 is the orientation in Eulerian angles of the body-fixed axes
with respect to.the space-fixed axes.

In general, the vector p® does not point along any of the principal axes
of the molecular frame. Suppose pB is characterized by the polar and azi-
muthal angles (6, #) relative to the molecular z axis. Then the body-
fixed spherical compenents of pBg are

D16, ¢)
ws® = u| Di%(0, ¢)
D (6, 6}

Suppose that at time ¢ = 0 the body-fixed axes have an orientation 2,
with respect to the space-fixed system. Then the spherical dipole moment
in the space-fixed system at ¢ = 0, pg®(0), 15

#s5(0) = D(2y) - s (6.122)

Likewise, if the molecular orientation is {2, at time ¢, the spherical dipole
moment in the space-fixed system at time 2, pg5(2), is
usS(t) = D(R) - ps®. (6.123)

If should be noted that the dot product of a pair of vectors is invariant
to a unitary transformation; consequently, the projection of the Cartesian
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vector p(#) on (0) in the laboratory frame is equal to the scalar product
of the spherical vectors,

-1
w(0) - m(2) = Zl 2 *(0) 3(2)
== #3*(0),3(8) + §*(O)u,S(t) + LS¥(O)S, (8).
When Eqgs. (6.121)-(6.123) are substituted into this, it is found that
#(0) - () = p# eins, DEar(Q0) Dk w(2)DYy.,o(8, $)DYE4(6, 4). (6.124)

Consequently, the dipolar correlation function is

W(0) - )y = p® n;w (DEu(R0) D, 1 (20> Dl o6, $)D¥ (9, ).
\ (6.125)

- Att =0, it is easy to show that (u(0) . (0)> = 1. This follows from the

orthogonality of the D matrices,
The correlation function that appears in this formula can be evaluated

using the joint probability distribution for an equilibrium ens ble gi
by Eq. (6.105). Then, . e s

(DEmAR0)Dk 4(R(1))> = 3Fk (2} 831 317 (6.126)
so that

@(0) - u(e)> = u2 2, Faelt) | Dieo0, ¢) |2
=t ¥ DRu(0) Dk (1) | Do, $) | (6.127)

It should be noted that this function depends on the position of P in the
body-fixed frame. If the molecule is linear D45 .0(0, 0, 0) = 87 0 and

w(0) » p()> = 42 2 Fho() = wt 2 DZo(R(0) Dk o[ 2(1))>.

Subs_titutic.)n of Eq. (6.98d), with subsequent use of the orthogonality
relation, yields, for a linear molecule,

®(0) + (1)) = wi D4 (82(1))> = pi(Pycos O(2)),  (6.128)

where §(z) is the angle between p(0) and g(¢). This is an obvious result,
but serves as a useful consistency check,
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In the general case, the time correlation functions (D¥(£2(0))
x DY »(£2(#))> must be determined. For the rotational Brownian mo-
tion of a symmetric top,

@O - p@p = st 3 | Dial6, )1
X exp[—2Dy qt] exp[—M* (D, — D, )t), (6.129)
For a sphericzﬂ-top molecule, D,, = D, = Dp, and
(u(0) - ult)) = 2 e2Dx. (6.130)

It is often necessary to consider time correlation functions of real,
symmetrical Cartesian tensors (3 X 3 matrix). For example, we saw that
the depolarized component of the light-scattering spectrum is determined
by the time correlation function

Cy(t) = (Tr p*(0) - BV
where P is a real, symmetrical, traceless tensor
ﬁ = o — CCIE

which involves the polarizability tensor a of the molecule in the laboratory
frame. In this section, our aim will be to evaluate this time correlation

function.
" Let TEF and TSF stand for the symmetric Cartesian tensor
Toe Toy Lo
T={T, Tn T (6.131)
T:z:z T'p'z Tzz

in the body-fixed and space-fixed coordinate systems. In the body-fixed
system, the matrix elements are properties of the molecule, such as,
for example, the polarizabilities or moments of inertia along different
directions in the molecule. It is often convenient to choose a body-
fixed coordinate system that diagonalizes T®F. This is always possible,
since a real, symmetric tensor is a Hermitian matrix. The axes of this
coordinate system are called principal axes. Then, -

TEF O 0
TBE = [ 0 TEF 0 .. (6.132a)
0 0 TEF

9. Tune-Dependent F roper ties of Condensed I\’Iedla 709
I !l 1s ter 1501 SlIIlpllﬁ. S COIlSldeI abls‘ Wien the y p
€ h bOd 08SCEses e]eIIlentS

1. Symmetrical-top molecule: TBF = TEF = T,; TEF
y

2z = 4y

T, 0 0
T ={0 T, 0
(6.132b
¢ o0 T, )
2. Spherical-top molecule: TEF — THF — TBF — TBF,
T 0 0
BF _
T =(0 T 0 , (6.132c¢)
0 o T

A .
o :.ther m?lecu.le reorients, the space-fixed tensor T5¥ changes. Since
atis required is the space-fixed tensor (molecular properties are probed

in the laboratory or s
pace-fixed system), we must stud
under rotations, Note that ’ ey bow T transforms

TS7(2) = R-4(@) - T3% . R(2),

3;};&11; dR(g) :15 the ?otation operator, which has the effect of rotating
i ti;t}:e :?}:es }Ilnto the space-fixed axes, and 12 is the set of Euler
e e Spe1;::1 4 tI e body-fixed coordinate system with respect to the
P rOblemys Vcém. n what folIows,'we merely summarize the solution to
fhis pb - We can 'tra.nsf'orm this matrix equation into the spherical
asis by applying the similarity transformation with the matrix U. Then

UTSF@2)U-! = [UR-U] « [UTBFU-1][URU-]
or ' . |
SSF(Q) = D(Q)SBFD-1(R2),

ﬁ;:re SdSF ar:'ld SBF are the spherical tensors corresponding to TSF and
» and D is the Wigner rotation matrix of Eq. (6.121)

Di(2) Dij2) Di_y@
D(@) = (D} (Q) DLy®) D&Lf@%
ADL Q) DL (@) D, (@)

Sl?nsequently, S8E(£2) depends on products of Dy 4(2). To simplify
Is result, these products are expanded in terms of D%y with the
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Clebsch—Gordon coefficients as expansion coefficients. This is a.rather
elaborate proceedure. We merely present the results in a form which the
reader will have no trouble using. For this purpose, we define a set of
spherical components as :

T, = %{Tx:c -+ Tyy + Tzz]!
Tiz = %[sz — Tz.'y] - isz,

{6.133a)
T:tl = ? [Tza: :': ITZy]:
Ty = Q2NB)T. — ¥ T + Tyl
These equations can be solved for Ty(f,j = #, 3, 2),
Ty = Tr — (1/\/6)T0 + (Tha+ T,)/2
Ty =T — (1/\/6)T0 — (T + T,)/2,
T = Tit+ GO, (6.133b)
Ty = (Tig— T.,)}2,
Tzz = (T+1 - —l)lzr
Ty = (Th+ T2

Thus, the symmetrical tensor T is completely specified by T, T,ﬂ,' Tﬂ.’
and 7. In the body-fixed system, T®¥ is diagonal, so that TH¥ = 0 ( 5 )
and = .

TE [T 4 13+ 73
TE = {TE — T,

Ta =0,

T3 = 2V 6)[TEF — Y(TEF + 1],

(6.133¢)

so that

T¥ _ (V6T

+(TF + T2 0 0
TEr _ " TFF — (14/6)TE" 0
oz Ly

TP + (2/6) TP
(6.134)

0 0

The problem to be solved is the following: Knowing TBF, find TSP,

The solution is simply stated in terms of the spherical ¢omponents
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Ly, Ty, Tizs Tyy. It can be shown that T5¥ and TPF are related by

17 = 1P,

‘ 2

¥ = ¥ DTS, aw—0, 11, 40  (6135)
nim—3

where the set T5T is given in Eq. (6.133¢), and where £ specifies the
orientation of the space-fixed with respect to the body-fixed axes. The

. resulting T8 are used in conjunction with Eq, (6.133b) to determine

T2'. From Egq. (6.135a), we see that

SF BF
T = I

TEP(2) = D o(@)TE* + [D3,4(@) + Di_(@))TP",
TEH(2) = Dy o @)TFF + [D4,4(R) + Diyo(Q)] TP,
TH@) = DLo(@)TF* + [DLe (@) + D2, _,(Q)]TF",

(6.135b)

From Eq. (6.133b), it is easily seen that the matrix elements T3 depend
on the orientation of the molecule through the Wigner function D% u (),

since they are linear combinations of TEF ().

Let us compute time correlation functions of the form (T§F*(0) 757 (2)>.
From Eq. (6.135a), it follows that

(TE*O)TE () = <D,2,f(9(0))D;2,,,-(Q(z))>TIBF*T,BF. (6.136)
]

It was already shown that in an equilibrium ensemble
DR QONDLAQ))> == <D (R0) DL b, %, (6.137)
so that

TEOT)> = 5 DY QOWDYLED | TP |2 8,0 (6.138)

Let us now form the traceless tensor [,

Fe=T— Ty, (6.139)

‘whose elements I can be written in terms of 7,7, Ty, Ty, from

Eq. (6.133b). Let us in fact compute the time correlation function

Ci(t) = (TreF#(Q) . N (3 (6.140)
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of this tensor. This can be expanded as

Cult) = 3 (TEF*(0)TER()>: (6.141)

From Eqgs. (6.133b), (6.141), and (6.138), we see that
(CEHOVE S’F(lf)>} = WKIFFOVTET(2)> -+ FKTH*O)TH Y

ROV HON T*O)TE (P, _
(TFHOVTEQ@) = KTFHO)TE (), 6142
TEOTH@) = ITHOTHO) + TEOTHD,
TEOF 5’5“»} — TSP (O)TSE() + <TSFHQ)TSE(E).
(TEFHOTF D)

Substitution into Eq. (6.141) yields the result
)= 3 (TEFHO)TS (1)) (6.143)

A=—2

From Eq. (6.138), it follows that
= 3 DBHQOMLQOP|TFI  (614)
n,j=—2
This equétion can be simplified considerably when the molecules have
symmetry elements, For example:
1. Symmetrical~top molecule:
T -0 TE=0; ¥ = @VET - T

2

_and

Cy=3| Ty~ Tl 3 <DE@OIDL(Q).  (6.1452)

==l

2. Spherical-top molecule:
T3 = T3 = T$F = 0, C.@#=0 (6.145Db)
In Section E, it was shown that a symmetrical-top Brownian rotor has
the time correlation function

DE(R(0)D} o(2(2))> = § 7P (6.146)
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so that, for the symmetrical-top,
Cift) = & | T\, — T, |? exp(-—6D,3). (6.147)

This function depends on the anisotropy of the axially symmetrical
tensor TBF,

In the case of light scattering, the relevant tensor is the polanzabxhty
tensor «, and the time correlation function that is needed is

' _ <Trp*(0) - By
vl D = 2repmo) poyy o

= S (DIQONDLALWD | a5 o, t).  (6.148)

2n=—2

For the symmetrical-top Brownian rotor (example is tabacco mosaic
virus) {(Dubin er al., 1967)

Fa(k: t) = e_k"m;

[see Eq. (5.10)] and, from Eq. (6.143),

wu(k, ) = exp —[6D, + kD], (6.149)

so that the normalized spectrum is

jJ,(k! w)=

1 [6D, + kD]
e

[w — we)? + [6D, + R2D]JE ° {(6.150)

‘The strength with which this band oceurs is determined by the anisotropy
factor | @ — @, |% These methods can be applied to more complicated

~ systems.
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