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CONSPECTUS: A principal goal of drug discovery project is to design
molecules that can tightly and selectively bind to the target protein
receptor. Accurate prediction of protein−ligand binding free energies
is therefore of central importance in computational chemistry and
computer aided drug design. Multiple recent improvements in
computing power, classical force field accuracy, enhanced sampling
methods, and simulation setup have enabled accurate and reliable
calculations of protein−ligands binding free energies, and position free
energy calculations to play a guiding role in small molecule drug
discovery. In this Account, we outline the relevant methodological
advances, including the REST2 (Replica Exchange with Solute
Temperting) enhanced sampling, the incorporation of REST2
sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced
simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment,
demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization
campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also
discussed followed by the future methodology development plans to address those limitations. We then report results from a
recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously
optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems.
The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug
discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively
carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates, is potentially
transformative in enabling hard to drug targets to be attacked, and in facilitating the development of superior compounds, in
various dimensions, for a wide range of targets. More effective integration of FEP+ calculations into the drug discovery process
will ensure that the results are deployed in an optimal fashion for yielding the best possible compounds entering the clinic; this is
where the greatest payoff is in the exploitation of computer driven design capabilities.
A key conclusion from the work described is the surprisingly robust and accurate results that are attainable within the
conventional classical simulation, fixed charge paradigm. No doubt there are individual cases that would benefit from a more
sophisticated energy model or dynamical treatment, and properties other than protein−ligand binding energies may be more
sensitive to these approximations. We conclude that an inflection point in the ability of MD simulations to impact drug discovery
has now been attained, due to the confluence of hardware and software development along with the formulation of “good
enough” theoretical methods and models.

■ INTRODUCTION

All atom, explicit solvent molecular dynamics (MD)
simulations have become a powerful tool for modeling
biomolecular systems. Interesting results have been obtained
in studying a wide range of biological processes, including
protein folding, ion channel transport, conformational change
in G-protein coupled receptors, and ligand binding kinetics,
with simulations times reported in the millisecond range.1 The
advent of inexpensive GPU hardware has made extensive MD
simulations routinely available in academic and industrial
laboratories.2−4

In the present Account, we focus on the application of free
energy perturbation (FEP) methods utilizing MD for the

calculation of protein−ligand binding affinities in structure
based drug discovery projects. This problem differs from many
of those enumerated above in that a very high degree of
accuracy (on the order of 1 kcal/mol) and reliability, for a wide
range of ligand chemistries, is required in the calculation of
relative ligand binding affinities to substantively impact hit-to-
lead and lead optimization efforts.5,6 FEP calculations in
principle provide a rigorous evaluation of the free energy
difference ΔΔGAB between the binding affinity of two ligands A
and B. However, the accuracy is critically dependent upon both
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a series of heuristic approximations inherent in the classical
simulation methodology, and the details of the model
parametrization and sampling algorithms.
Over the past 5 years, advances in both computer hardware

and FEP methodology have enabled large-scale testing of the
accuracy and robustness of FEP methods in both retrospective
and prospective studies.5,7−13 We discuss below the progress
that has been made in enhanced sampling, force field
development, and automation of system setup, and report
results comparing to experimental data for a wide range of
ligand−receptor complexes. An illustrative application of FEP
in an industrial drug discovery project is then presented.
Finally, the implications of these developments for drug
discovery efforts going forward, as the calculations continue
to become more efficient and reliable, are considered.

■ FEP METHODOLOGY
Free energy perturbation (FEP) refers to an ensemble of
rigorous statistical mechanical methods enabling the calculation
the free energy change of an alchemical process by slowly
morphing the potential energies, such as the transformation of
ligand A to ligand B, thus giving the relative binding free energy
of the ligands to the same receptor. The thermodynamic cycle
depicted in Figure 1 illustrates how the binding free energy

difference, ΔΔGAB, is typically computed in practice. The
Zwanzig exponential average16 (also called FEP in some
literature) is a representative way among the various
formulations to relate the free energy difference between the
two physical states A and B to the changes in their energy
distributions:14−18

= ⟨ ⟩β β− Δ − Δ→ →e eF U x( )
A

A B A B (1)

where ΔUA→B(x) is the potential energy difference between the
two states at configuration x, and the average is taken over the

ensemble of configurations sampled for state A. In practice, a
number of intermediate states (also called lambda windows)
are introduced such that the neighboring windows have
sufficient overlapped regions in phase space to enable
converged free energy calculations.
Since the first FEP calculations of protein−ligand binding

were carried out in 1980s,19 a standardized approach,
incorporating a series of heuristic approximations, has been
developed which accounts for the great majority of FEP
simulations performed to date.20,21 First, the configurations are
sampled through classical molecular dynamics simulations, as
opposed to a quantum mechanical treatment of nuclear
motion.22,23 Second, a molecular mechanics force field based
on atom-centered fixed charges is employed.7,24−33 Typical
functional form of the force field is given by
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The use of fixed charges instead of an explicit representation of
polarization effects, and other limitations of the details of the
functional form, potentially limit the accuracy and robustness of
the model. Third, typical FEP simulation times are of limited
duration; as the potential energy surface of the protein−ligand
complex exhibits a huge number of local minima, the system
can become trapped and fail to execute ergodic sampling across
configuration space.34−40

The use of the classical equations of motion and neglect of
explicit polarization effects constitute major approximation to
the exact physics, adopted because of the large increase in
complexity and computational cost associated with more
realistic treatments. Over the past 5 years, we have endeavored
to answer a relatively straightforward question: what sort of
accuracy can be achieved with the standard classical simulation,
fixed charge FEP methodology, if a large engineering effort is
made to improve the parametrization of the force field, apply
enhanced sampling methods that are better able to overcome
barriers, and ensure that the initial system setup is as precise as
possible? Below we briefly outline the improvements in the
force field, sampling algorithms, and implementation that
constitute our current approach, which we call FEP+.5

Comparisons with extensive and diverse experimental data
sets are presented to address the key issues of accuracy and
reliability of the FEP calculations.

■ THE OPLS3 FORCE FIELD
OPLS3 is based on the OPLS force field developed over the
past 30 years by Jorgensen and co-workers.7,24−26 The
functional form is that of eq 2, although some off center
charges are employed for ring nitrogens and halogens, based on
investigations showing that asymmetries in the atomic charge
distribution play a particularly important role in these cases (a
similar modification may be required for sulfur; this is currently
under investigation).7,26 van der Waals parameters, and some
atomic charges, are obtained from fitting to liquid state
thermodynamic data; valence force field parameters such as

Figure 1. Thermodynamic pathway used for relative binding free
energy calculations. The protein is depicted in green, the aqueous
solvent in blue, the initial ligand “1” in red, and the final ligand “2” in
yellow. The relative binding free energy is calculated via two distinct
alchemical transformations where first alchemical transformation “A” is
used to determine the free energy of transforming ligand 1 to ligand 2
in the solvent; and second alchemical transformation “B” is used to
determine the free energy of transforming ligand 1 to ligand 2 in the
receptor. The difference between the free energies obtained from
alchemical transformations A and B can be rigorously related to the
binding free energy difference of the two ligands 1 and 2.
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torsions are primarily determined by fitting to high level
quantum chemical data, although parameters for proteins are
modified based on angular distributions for both the backbone
and side chain as found in the Protein Data Bank (PDB). The
CM1a-BCC model is used to determine molecular charges;
bond charge corrections are obtained from fitting to aqueous
solvation free energy data, and from quantum chemical
calculations. This overall approach to parametrization is similar
to that used for other widely used force fields such as
CHARMm and AMBER.27−31

Where OPLS3 differs from these alternative force fields is in
the degree of parametrization that has been applied, particularly
to the valence force field and the charge model. First, OPLS3
contains more than 15 000 torsional parameters, as well as
thousands of stretching and bending parameters.7 Second, the
BCC component of the charge model has been explicitly
optimized to improve agreement with aqueous solvation free
energies for a database of small organic molecules with known
experimental data. Detailed comparisons with alternative force

fields, demonstrating substantial improvement in both areas, are
provided in refs 7 and 41.
Despite the vastly increased coverage of torsional parameter

space in OPLS3, the constant search for new compounds and
chemistries in drug discovery projects inevitably yields
compounds with torsions not accurately represented by
parameters in the force field database. In such cases,
development of a customized torsional parameter set is needed
to accurately describe the interaction energies of the
unparameterized chemical groups. This issue is addressed in
OPLS3 by an automated algorithm, here denoted FFBuilder,
that detects the lack of a good match and initiates quantum
chemical calculations, followed by torsional fitting, to obtain the
missing parameters.7

■ THE FEP/REST SAMPLING METHOD

Numerous sampling algorithms have been proposed to enable
biomolecular MD simulations to escape from being trapped in
local minima. The REST2 method (Replica Exchange with
Solvent Tempering 2) employs multiple parallel simulations in

Figure 2. (a) FEP+ workflow for protein−ligand binding affinities calculations. (b) Example of a mapping of a perturbation space onto a set of
pathways for thrombin ligands generated from the workflow. Each line represents two FEP+ calculations, one conducted in the receptor and one in
solution, each perturbing between the two connected ligands. (c) Correlation plot of FEP+ predicted and experimental binding affinities for
thrombin ligands. Reproduced from ref 5. Copyright 2015 American Chemical Society.
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which the potential energies of a selected subsystem (selected
because conformational changes in this region might not be
sampled efficiently otherwise) have been scaled in a way that
mimics the application of a locally higher temperature as one
ascends the replica ladder, but leaves the rest of the system at
the desired temperature.36 This has the effect of reducing the
number of replicas needed and greatly increasing the
acceptance probability of the Monte Carlo replica exchange,
thereby accelerating the sampling while maintaining detailed
balance.36 The lowest replica has no scaling and thus represents
the thermodynamics of interest.
In the application of REST2 to FEP calculations for protein−

ligand complexes, which we call FEP/REST, the elevated
effective local temperatures are focused in the region of the
ligand where an alchemical change is being performed, and
protein residues close to the binding pocket may also be
inc luded in the enhanced s amp l ing r eg i on i f
needed.5,8,10,11,34,35,37,39,42 In FEP/REST, the effective temper-
ature of the enhanced sampling region, as a function of lambda,
gradually increases from room temperature with lambda = 0 for
the initial physical state to a much higher temperature with an
intermediate lambda value equal to 0.5 (the highest effective
temperature is about 1000 K for a typical perturbation with
about 20 heavy atoms in the hot region); then, the temperature
is gradually lowered to room temperature while lambda is
increased to 1 corresponding to the final physical state. In this
way, the potential energies for the two end points reach the
correct physical states, and enhanced sampling can be achieved
through the increased effective temperatures of the inter-
mediate lambda windows. This effective local heating via the
scaling of the Hamiltonian significantly improves the efficiency
of exchanging the configurations across the temperature ladder
over other alternatives, such as temperature replica exchange
method.35,36

■ THE FEP+ IMPLEMENTATION
The above-mentioned FEP/REST sampling method using the
OPLS3 force field has been implemented in the Desmond GPU
molecular dynamics simulation package which is called FEP+.5

Within FEP+, FFbuilder can be used to obtain customized
torsional parameters to extend the torsional coverage,7 and
calculation setup and cycle closure convergence analysis37 has
also been fully automated through a graphical user interface. An
entire suite of calculations for a series of compounds can be
launched with a graph that automatically enumerates the
transformations needed for prediction of the molecules in the
specified ensemble of ligands.5,43 Multiple pathways can be run
for each calculation, enabling a superior convergence error

estimate (via “cycle closure” formulas) to be produced.37,43,44

The workflow of the FEP+ calculations for a series of thrombin
ligands is shown in Figure 2 as an example.

■ REQUIREMENTS FOR ACHIEVING A SUCCESSFUL
FEP+ SIMULATION; LIMITATIONS AND PITFALLS
OF THE CURRENT IMPLEMENTATION

FEP+ is a physics-based method, and a sufficiently accurate
initial structure for the complex is required to obtain reasonable
results. The method is fairly tolerant of relatively low-resolution
crystal structures; resolution below 2.5 Å is generally sufficient,
and good results have been obtained in the 2.5−3.0 Å
resolution range. Some successes have also been achieved using
homology models rather than crystal structures, although more
extensive testing is needed before a definitive guide to this type
of application can be produced.45 On the other hand, if there
are a substantial number of missing residues, or unresolved
loops, in contact with the ligand, it is going to be difficult to
achieve high accuracy unless the missing or unresolved
structures can be accurately constructed using computational
methods.46 In addition, while the binding enthalpy and entropy
can also be obtained by multiple free energy simulations at
different temperatures through Van ’t Hoff equation, they are
much difficult to converge and more extensive testing is needed
to assess the accuracy with which these quantities can be
routinely computed.
An important issue that affects the utility of any FEP

methodology in practical applications is the magnitude of the
perturbation that can be handled without unacceptable loss of
accuracy. The FEP+ protocol has been found to yield robust
results for perturbations up to 10 heavy atoms,5 a significant
advance as compared to much of the prior work in the
literature, even though perturbations inducing significant
protein motion are still challenging for the current technol-
ogy.34,46 Further, perturbations larger than 10 heavy atoms are
routinely pursued with project needs, and a similar level of
accuracy of 1 kcal/mol RMSE (root-mean-square error) is most
typically obtained. When pursuing such very large perturba-
tions, it is crucial to closely monitor the cycle closure hysteresis
values to ensure that the predicted free energies remain largely
independent of the particular sampled alchemical path.
Finally, there are a number of specific problems that can

adversely affect the accuracy of FEP results. For example,
classical force fields for transition metals are generally not as
accurate as for organic molecules; if a perturbation involves a
change in the metal−ligand interaction, the FEP results may
have larger errors than are normally observed. Water molecules

Table 1. Relative Binding Free Energy Results for the OPLS 2005, OPLS2.1, and OPLS3 Force Fieldsa

OPLS_2005 OPLS2.1 OPLS3

system no. cmpds R2 RMSE R2 RMSE R2 RMSE

BACE 36 0.01 1.35 0.56 1.03 0.64 0.89
CDK2 16 0.48 0.98 0.07 1.27 0.51 0.86
JNK1 21 0.75 0.87 0.74 0.87 0.76 0.62
MCL1 42 0.46 1.77 0.62 1.44 0.37 1.4
P38 34 0.32 0.95 0.54 0.97 0.57 1.05
PTP1B 23 0.55 1.55 0.5 1.05 0.79 0.57
thrombin 11 0.21 1.35 0.4 0.97 0.38 0.83
Tyk2 16 0.86 0.75 0.8 0.98 0.84 0.98
weighted avg 1.28 ± 0.06 1.11 ± 0.05 0.95 ± 0.04

aThis table is reproduced from ref 7. Copyright 2016 American Chemical Society.
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can become kinetically trapped in the interior of the protein
when a perturbation should push them out into bulk solution.
Likewise, if the ligand or the protein changes protonation state
upon binding, the accuracy of the prediction may suffer. We
expect these issues will diminish with the next round of
methodological improvements, including enhanced sampling of
water equilibration, constant pH simulation, broader coverage
on chemical space by the force field, as well as more efficient
and convergent enhanced sampling of the protein motion
related degrees of freedom. Lastly, the current implementation
of FEP+ protocol does not support the change of the total
charge on the ligand, i.e., transforming a neutral ligand into an
ionic species, which we hope to resolve this limitation in the
future.

■ BENCHMARK RESULTS FOR FEP+ BINDING
AFFINITY PREDICTION

To evaluate the performance of the FEP+ methodology in a
statistically meaningful fashion, we have assembled a large,
diverse data set of test cases, based on the results of medicinal
chemistry studies reported in the literature. Each data set
contains a series of related ligands, and their binding free
energies, to a specified protein target of pharmaceutical interest.
Details of the data set have been presented previously in ref 5.
Table 1 reports the FEP+ predictions of the binding affinity,

RMS errors, and correlation coefficients for this data set versus
the experimental binding affinities, using the most recent FEP+
implementation and the OPLS3 force field. The first three
columns in Table 1 enumerate results using three different
versions of the OPLS force field (OPLS2005, OPLS2.1,
OPLS3), while employing the same sampling methodology.
Performance is robust across the various data sets, with the
error following an approximately Gaussian distribution, as
shown in Table 2. Furthermore, the RMS error decreases

systematically with improvement in the force field. Importantly,
this improvement comes from functional form modification and
fitting to additional quantum chemical data; no direct fitting to
protein−ligand binding affinities was utilized.
The RMS error for current best practices FEP+ reported in

Table 1, 0.95 kcal/mol, includes errors in both computational
and experimental results. Taking the estimate in ref 6 for the
experimental target data RMSE to be approximately 0.5 kcal/
mol, and using the relation:

σ σ σ= +i jtot
2 2

(3)

where σtot is the total apparent error and σi and σj are individual
contributions from experimental and computational results,
respectively. We would further observe for this particular case

σ= +0.95 kcal/mol 0.5 kcal/mol2
FEPintrinsic

2
(4)

where σFEPintrinsic is the expected intrinsic error of the FEP+
prediction if perfectly accurate experimental data were available,
which in this case implies an intrinsic RMSE of 0.8 kcal/mol.
This is relatively close to the experimental RMS error itself,
suggesting further improvement in the force field and sampling
algorithms may yield another ∼0.1−0.2 kcal/mol improvement;
but unless experimental measurements start to be routinely
made with much higher precision, further progress in the near
future is going to be very difficult, as it becomes increasingly
challenging to separate true computational outliers from
experimental noise. Furthermore, the motivation for increasing
the precision of experimental assays is limited, as what
ultimately matters in a drug discovery project is the in vivo
efficacy; there is often a good correlation between in vitro
assays and in vivo affinity, but not in most cases beyond the
level of 0.5 kcal/mol.
To further substantiate this finding, we have recently

undertaken a large-scale review of FEP+ scoring accuracy
across projects both within our groups, and within industrial
and academic collaborators. At the time of this writing, we are
aware of 92 distinct applications of FEP+ to score small
molecule ligand series, both prospective and retrospective,
where the number of ligands was sufficiently large to make
judgments regarding the accuracy of the scoring for the series.
This data set includes the scoring of more than 3000 ligands
where the resulting computed affinity could be directly
compared to the experimental data either prior to or
subsequent to the FEP+ calculations. Key statistics of this
large-scale analysis are presented on Table 3. Quite

encouragingly, the average and median RMS errors across
this very large test set (including extensive prospective studies)
agrees well with the earlier reported estimates, suggesting such
accuracy should be reliably observed in future projects.
It is important to note that, in addition to using an accurate

force field, accurate predictions are also critically dependent on
the efficiency of the sampling. If ordinary FEP is used without
REST2 enhanced sampling, a variety of perturbations can not
be converged on even longer time scales resulting in much
worse free energy predictions.35,37,40,47 We have found in the
context of our discovery collaborations this is especially
important for prospective work where the binding modes of

Table 2. Histogram of the Error Distribution of the OPLS3
Relative Binding Free Energy Results versus the
Experimental Data Adapted from Ref 7a

error (kcal/mol) % obsd % expected

% < 0.5 42% 38%
% < 1.0 73% 68%
% < 1.5 87% 86%
% < 2.0 94% 95%
% < 3.0 99.4% 99.70%

aThe error distribution closely follows the expected distribution for a
prediction method with Gaussian error distribution of 1 kcal/mol.

Table 3. Key Statistics of a Recent Large-Scale Review of
FEP+ Scoring Accuracy

total no. of projects 92
total no. of ligands 3021
no. of academic collaborations 4
no. of internal projects 26
no. of discovery collaboration 24
no. of industrial projects 38
no. of prospective projects 27
avg RMSE of all projects 1.1 kcal/mol
median RMSE of all projects 1.0 kcal/mol
avg R2 value of all projects 0.57
median R2 of all projects 0.62
avg RMSE of prospective projects 1.1 kcal/mol
median RMSE of prospective projects 1.0 kcal/mol
avg R2 value of prospective projects 0.66
median R2 value of prospective projects 0.68

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.7b00083
Acc. Chem. Res. 2017, 50, 1625−1632

1629

http://dx.doi.org/10.1021/acs.accounts.7b00083


the R-groups may not yet be fully understood from the project
crystallography and structure−activity relationship.

■ MASSIVE FEP+ SCREENING IN DRUG DISCOVERY
PROJECTS

The greatest impact of FEP calculations in a drug discovery
project is manifested when a very small number of compounds
in a large set of plausible candidates will optimally advance the
project. In such a situation, conventional approaches will
generally be unable to locate the optimal molecules to make
without incurring extraordinarily large expenses in synthetic
chemistry. Situations of this type occur routinely in drug
discovery efforts. For example, if a high degree of selectivity is
required against multiple, closely related family members, it is
likely to be very difficult to simultaneously achieve these
objectives, along with other properties like potency, solubility,
metabolic stability, and membrane permeability. A second
factor that can contribute significantly to the degree of difficulty
is the nature of the target; some targets possess very challenging
binding sites, for which designing a drug-like yet potent
molecule constitutes a major hurdle.
We briefly outline a recent project in which very large

numbers of molecules were computationally assayed via FEP+
calculations. In this drug discovery program, described in detail
in ref 48, the focus of the project was the development of a
selective inhibitor of Tyk2, a kinase involved in control of
immune response. Inhibition of Tyk2 has been shown to
modulate autoimmune disease, for example, in animal models
of psoriasis. However, Tyk2 is a member of the JAK family of
kinases, which includes JAK1, JAK2, and JAK3. Overly strong
inhibition of other members of the family can result in side
effects including anemia and enhanced susceptibility to
infection. Therefore, the project goal was to design a molecule
with 100× selectivity of Tyk2 against the JAK kinases, which is
quite challenging due to the high degree of active site similarity
between these proteins, as depicted in Figure 3.48 FEP+
calculations for the project incorporated all three selectivity
criteria, as well as potency and solubility. Other properties, such
as membrane permeability and metabolic stability, were
modeled using more approximate computational methods.

A total of 4000 design ideas, starting from a number of
different lead compounds, were computationally screened via
FEP+. Of these, 46 compounds were prioritized for synthesis
on the basis of the calculations, and 9 were found to meet the
target potency, selectivity, and solubility criteria after
experimental testing. A number of these compounds have
been shown to potently inhibit targeted immune cell cytokine
signaling, and demonstrate outstanding efficacy in ameliorating
disease in mouse models of psoriasis.48

■ DISCUSSIONS AND CONCLUSIONS

We have established, via extensive retrospective and prospective
testing, that FEP+ is capable of potency, and selectivity
predictions that are beginning to approach the limit of
experimental accuracy. FEP+ calculations have a cost and
speed advantage that is 100−1000× as compared to a brute
force experimental evaluation of all of the proposed candidate
molecules. The ability to effectively carry out projects
evaluating tens of thousands, or hundreds of thousands, of
proposed drug candidates is potentially transformative in
enabling hard to drug targets to be attacked.
Continued developments of both experimental and computa-

tional technology will enhance both the efficacy and domain of
applicability of FEP-enabled drug discovery. Increasing
numbers of high-resolution protein structures, accelerated by
the emergence of cryo-electron microscopy methods for
structure determination, and augmented by increasingly capable
homology modeling approaches, will increase the fraction of
targets amenable to structure-based drug design. Improvements
in sampling, GPU hardware, and molecular mechanics force
fields will enhance the reliability of FEP predictions while
systematically reducing the computational cost per calculation,
following the Moore’s law curve in that regard.
Possibly the most exciting, although more speculative,

opportunity is in the potential expansion of chemical space,
beyond the ∼100 000−300 000 compounds that could
comfortably be evaluated via FEP+ in a project to the billions
or trillions of compounds accessible in a de novo design
approach. Improvements in more approximate methods, such
as docking, empirical scoring functions, and continuum solvent

Figure 3. Superimposed crystal structures of Tyk2, JAK1, JAK2, and JAK3 cocrystallized with tofacitinib in stereo representation (PDB IDs 3LXK,
3LXN, 3FUP, and 3EYG, respectively).
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based energy models, are needed to make such an approach
practical; but free energy calculations have a fundamental role
to play in this type of workflow, serving to provide benchmark
evaluation of molecules emerging from earlier stages,
generating new low energy receptor conformations, and
recycling these conformations, along with their reorganization
energies, back into the earlier stages. The ability to access an
ultralarge chemical space could enable highly challenging drug
design problems to be solved with precision molecules in a
fashion that is currently not possible, enabling a renaissance in
the potential of small molecule drug discovery.
We are optimistic about the future of MD-based atomistic

simulation, not only in the area of biomolecular modeling, but
also in describing a wide variety of materials and chemical
processes. Further advances will be needed in quantum
chemistry, force field development, and simulation technology
to reach the point of reliable quantitative prediction in these
related fields, but these can be expected in the next several
decades. For the present, FEP-enabled drug discovery
applications are poised at an exciting historical moment, with
the opportunity for extensive validation in the clinic over the
next 5−10 years.
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