
BIOPOLY MERS 

Irreversible Thermodynamic Analysis of 
Electrophoretic Light Scattering Experiments 

L. FRIEDHOFF and B. J. BERNE, 
Columbia University, New York, N .  Y.  10027 

Synopsis 

A fluctuation theory for electrolyte solutions is developed based on the coupling be- 
tween the equations of nonequilibrium thermodynamics and the Poisson equation. The 
resulting fluctuation theory is applied to the analysis of electrophoretic light scattering. 
It is shown that in a binary electrolyte solution (two ionic species), the Doppler shift is not 
determined by the electrical mobility of either ion, but depends instead on the rate of 
change of transference number with salt concentration. In addition the ionic relaxation 
time is shown to be proportional to the conductivity of the solution. 

INTRODUCTION 

Several theoretical analyses of electrophoretic light scattering have 
been given since its introduction by Ware and Flygarel in 1971. Ste- 
phen2 presented a theoretical treatment based on the assumption that 
the current of each species of ion is independent of that of the other ions 
except insofar as long range electrical forces cause them to interact. 
Although this is often a good approximation, it is well known that in a 
system containing several different species of ions the current of any 
ionic species is also influenced by the gradients of the electrochemical 
potentials of all of the ionic species present. In this paper we present a 
treatment which takes into account this extra source of ion interaction. 
A detailed analysis of the two-ion case is presented. It is found that 
there is a small electrophoretic shift, whereas in the previous theory no 
shift should occur. 

THE FUNDAMENTAL EQUATIONS 

According to Irreversible therrnodynamic~,~ the flux of an ion i in an 

(1) 
where Lij is a phenomenological coefficient, fi, is the electrochemical po- 
tential of the j t h  component, j i  is the number current of the ion species 
i ,  and the Einstein summation convention, where repeated indexes are 
summed, is used (as it is throughout this article). 

electrochemical system is given by the equation 

j, = - L ( ,  grad (;,I 
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The electrochemical potential may be written as 
. 
P ,  = PI + 42, ( 2 )  

where 4 is the electrical potential and zj is the charge of the j t h  ion. 
Equation (1) is often used to analyze steady-state electrochemical ex- 

periments. For example, in an electrolyte solution consisting of only 
two ionic species and a solvent, it can be shown3 that the transference 
numbers t l  and t 2  of the two ionic species, the conductivity K of the so- 
lution, and the diffusion coefficient D of the salt can be related to the 
coefficients Lij as follows 

t ,  = i = 52 

K = 2 z , L , ~ z ~ F ~  

1 ziLrkzk 
rk 

rk 

where F is Faraday's constant, v1 and u2 are the stoichiometric coeffi- 
cients of the ionic species, c, is the salt concentration, and p, is the 
chemical potential of the salt. 

P. = V l P l  + V 2 P 2  

It is important to note that because of the reciprocal relations (LIZ  = 
Lzd, Eqs. (3a)-(3c) can be used to determine all of the kinetic coeffi- 
cients in terms of the three independently measurable quantities tl (or 
t z ) ,  K ,  and D. Actually, Eqs. (3a)-(3c) are not entirely correct because 
certain corrections are required to express the flux, Eq. (l), in the labo- 
ratory fixed axis system. These corrections are small and are therefore 
omitted here. The detailed calculation incorporating these corrections 
can be found el~ewhere.~ 

In an electrophoretic light scattering experiment the electrical poten- 
tial may be written as 

4 = 4 e  + 41 (4) 

where d e  is due to the externally applied field and 41 is due to the charge 
density within the experimental solution itself. Substituting Eqs. (2) 
and (4) into Eq. (1) and using the divergence theorem gives 

_ -  - div [L,, grad ( P ,  + (41 + 4,)z,)l 
3t 

where ci is the concentration of the ith ion. Trivial manipulation gives 

_ -  ac, - div[Lll(($) grad c I  + E,z, + E,z,}] at ( 5 )  

where fie, is the externally imposed electric field and & is the part of 
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the electric field due to the distribution of charge within the experimen- 
tal solution. This internal electric field, EI, depends on the charge den- 
sity p through the Poisson equation 

- - 4T - 
div ( E e  + E,) = div EI = ~p 

where E is the dielectric constant and the second equality follows from 
the assumption that the externally applied field is homogeneous (div fie 
= 0). Since the charge density, p ,  is determined by the ionic concentra- 
tions ci, through the equation 

P = F E W 1  
1 

where F is Faraday's constant. Equations (5), (6), and (7) form a closed 
set of equations for the local concentrations (c; ( i , t  )}. 

In an equilibrium solution, the local concentration ci (i. ,t),  fluctuates 
around the equilibrium concentration c;O, and can thus be expressed as 

c , ( r , t )  = elo + Gc,(r,t) (8) 
where the concentration fluctuation 6ci is usually very small compared 
to cia. Dynamic light scattering is completely determined by the corre- 
lation functions 

F3](q>t) (6c!*(q,o)6cJ(q7 t>> (9) 

where Gc;(q,t) is the spatial Fourier transform of Gci(r, t) ,  and q is the 
Bragg vector or scattering vector. The heterodyne spectrum of the 
scattered light is determined by the time Fourier transforms of Fij (q,t ); 
that is 

where ai = (adaci )  is the designated concentration derivative of the di- 
electric constant. We proceed by combining Eqs. ( 5 ) ,  (61, and (7). The 
resulting equation is then linearized in the concentration fluctuations. 
This linearized equation is then spatially Fourier transformed yielding 
the fundamental set of linearized equations 

where 

D,,  

All  = 
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The time correlation functions F;i(q,t) can easily be determined from 
this set of equations. These turn out to be a linear combination of ex- 
ponential functions { e S a ( q ) t }  with different weighting factors where the 
decay rates {sa(q)) are the roots of the dispersion equation 

det [saaB + q‘D,, + A,, - iw,dq)] = 0 (12) 

LIGHT SCATTERING FROM BINARY ELECTROLYTE 
SOLUTIONS 

In the two-ion case we are dealing with a system which consists of a 
single salt dissolved in a neutral solvent. To lowest order in q ,  Eq. (12) 
has two roots, 

where q2Df and wf (q )  are negligible compared to rf. The crucial param- 
eters are 

47r rf = ( A ~ ,  + A,,) = T K  

D, = D (134 

s-, the slow root, describes the relaxation of electrically neutral concen- 
tration fluctuations, whereas s +, the fast root, describes the relaxation 
of concentration fluctuations which produce a separation of charge. 
Thus I ’ f - l  may be regarded as the “lifetime” of a fluctuation leading to 
a separation of charge, or equivalently as the relaxation time of a local 
fluctuation away from electroneutrality. The concentration fluctuation 
correlation functions are then linear combinations of the two terms 

and the spectrum is a superposition of a very broad Lorentzian of width 
rf centered on the frequency w = 0, 

and two narrow Lorentzians each of width q2D, centered a t  frequencies 
w = i w d q )  
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Thus ws(q)  (given by Eq. (13e) is the Doppler shift. It is proportional to 
the electric field. The slow decay s- is determined by diffusion and by 
a process dependent on the external field. The diffusion is character- 
ized by a diffusion constant which agrees exactly with the result found 
in the analysis of classical electrolyte diffusion experiments, Eq. (3a). 
The term proportional to the electric field may be thought of as an elec- 
trophoresis-like term but it actually describes the mobility of concentra- 
tion boundaries rather than true electrophoresis which cannot occur in 
a simple salt solution (at least in the low-q limit). True electrophoresis 
requires the presence of a third type of ion. It is easy to see that the 
imaginary part of the second root does not measure the velocity of any 
particular ion. I t  is proportional to the mobility of a concentration fluc- 
tuation which may be quite different from the velocity of the ions them- 
selves. 

ESTIMATES OF THE CONCENTRATION BOUNDARY 
MOBILITY AND OTHER PARAMETERS 

In this section we compute the mobility of the concentration bound- 

According to the Debye-Huckel theory the electrical mobility yi of an 
ary on the basis of the Debye-Huckel theory. 

ion of species i is 

The conductance of a solution containing two different ionic species is 
2 

K = F yjcrz, 
,=1 

The transference number of species i is 

In these formulas, 7 is the solution viscosity, Ri is the radius, and ci is 
the molar concentration of ions of species i. qo  is the inverse Debye 
screening length, given by 

where t is the dielectric constant of the solution. 
Combining Eqs. (13e), (16), (17), and (18) gives for the ratio, X I ,  of 
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I I I I I I 

Fig. 1. 1x11, the magnitude of the ratio of the Doppler shift in a binary electrolyte solu- 
tion to that predicted on the basis of the individual ion electric mobility, is plotted versus 
the salt concentration for the conditions indicated. Curve a corresponds to the ordinary 
definition (cf. Eq. (19)) of the ionic strength, whereas curve b corresponds to the modified 
definition (cf. Eq. (22)). 

the concentration boundary mobility w , ( q ) / ( w E l )  to the polyelectrolyte 
mobility y1 (the polyelectrolyte is denoted by label 1) 

In terms of this ratio, the Doppler shift is 

wdq) = (9.E,)XlTl (21) 

so that X1 represents the dimunition in the Doppler shift that will be 
observed. It should be noted that the maximum value of X I  is 0.5. 

In Figure 1, X 1  is plotted versus the salt concentration for the case 
where z1 = lO,z2  = -1, and R1 = 20 A. In curve a Eqs. (19) and (20) 
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were used, whereas for curve b Eq. (20) is used but the Debye shielding 
length is computed from 

4a 
qo2 = 7 [1211Vl + 2 , 2 V 2 ] F 2 C s  (22) 

For reasons explained by Tanford, this is to be used for polyelectrolyte 
solutions instead of Eq. (19). In Figure 2 X I  is likewise plotted for z1 = 
500, 22 = -1, and R1 = lo4 A, R2 = 2 A. The differences between 
curves a and b are the same as above. 

Several things should be noted about these curves. (1) The observed 
Doppler shift should be considerably smaller than would be given by the 
usual ionic mobility. (2) For l-micron spheres, experiments performed 
at  a concentration cs < molehiter give rise to a theoretical Dop- 
pler shift which is approximately one-tenth of that calculated from the 
Stokes-Einstein electrical mobility. 

R ,  = lo4% z ,  =5oo ‘1 R , =  2% z, = - I  

C,  (rnoles/liter) 

Fig. 2. See description of Figure 1. 

Needless to say, these estimates are based on the Debye-Huckel theo- 
ry and are thereby limited by its limitations. Nevertheless, the lesson is 
important. One should exercise great caution in interpreting electro- 
phoretic light scattering. Even at  very high c,, the Doppler shift for a 
binary electrolyte solution is only one-half that given from the electric 
mobility. 

Most experiments are done in ternary solutions or even more compli- 
cated solutions. We expect that for high enough ionic strength, the 
conventional analysis will be valid. Nevertheless, we have not yet stud- 
ied the details of this. 
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SUMMARY AND CONCLUSIONS 

We have applied irreversible thermodynamics to a solution that con- 
tains electrolytes and have derived a set of equations that should be ap- 
plicable to the analysis of electrophoretic light scattering experiments. 
In order to close this set of equations it was necessary to use Maxwell’s 
equation for the divergence of the electric field. When these equations 
are applied to a solution which contains only two types of ions to which 
an external field is applied, it is found that the heterodyne light scatter- 
ing spectrum is shifted. Unlike the usual case, where more than two 
types of ion are present and where the shift is proportional to the veloci- 
ty of one of the types of ions in the solution, the shift in the two ion case 
is proportional to the rate of change of a transference number with con- 
centration, a result which is considerably different from that of the sim- 
ple theories. In addition the ionic relaxation rate is found to be propor- 
tional to the conductivity of the solution. 
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