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4 hfonte Carlo method 1s devrsed for the study cf systems which have a few quantum degrees of freedom coupled to many 
essentrally chss~cal coordinates The densrty dependence of the solvent-Induced shrfts m the vibratronal spectrum IS mvesn- 
@ted for ;1 dntomlc (I&) &solved m ZI monatonuc flurd (Ar). 

1. Introduction 

The Monte Carlo method has been used to great 

advantage to study thz thermal and mecharucal proper- 

ttes of classical condensed systems [I 1. Recently, con- 
stderable effort has been expended on developmg Monte 
Carlo technrques for fully quantized systems [2,3]. 
Unfortunately, thus effort has not yet progressed to 
the pomt where firrue temperature fully ab mitlo slmu- 
latrons of even sample many-body systems can be cnr- 
ned out. In thrs note we address the problem of solvent 
effects on molecular mternai degrees of freedom. Past 
srmulattons have been done only on purely classrcal 
systems We have m mmd systems where the solvent 
conststs of “ciassrcai partrcles”’ whereas the solute has 
one (or more) quantum mechantcai internal degrees 
of freedom. A Monte Carlo technique based on the 
Born-Oppenheimer approxlmatron [4], IS described 
to determrne the thermal properties of the system. 
The method IS then used to determine how “hquid 
argon” perturbs the vrbratronal properties of a drssoived 
Br2 molecule _ 

2. Theory 

The system of interest consists of one “fast” degree 

of freedom, r, and f - 1 slow degrees of freedom, X 
(= X1, - -9 q_.~>- The hamiltonran can be expressed 

as 

H=TstTr~V(r,X)=T,~I;T,, (1) 

where Ta. T, and V(J, X) are respectively the kmet?c 
energy of the slow (s‘s) set of vanables, X, the kmettc 
energy of the fast vanabte, r, and the total potent& 
enerm. The latter depends on the mstantaneous config- 

uration of the system. Hv can be regarded as the energy 
of the fast degree of freedom grven the configuratron of 
the solvent. ff, can be used to generate the adrabatrc 

states C$,,CrlXN, 

~&&-lX~ = E,,(X)3/,CrlX) - (2) 

The Born-Oppe~eimer appro~matlon [S] to the 
states of the full system IS 

9,,,,, +,X1 = ~,,C~IX)~J%,,,(X) s (3) 

where 

~~~+~,*~~~l~,.,~~~=E;,tt,iP,t,~~~ (4) 

The denstty matnv In the canon& ensemble can thus 
be expressed as 

P(r,x;;,x’.13) = F J/;r;(~‘ix’)~,(~I~)P,,(~,~‘,P), 
(5) 

where 

P,*(X, x’ 7 P) = z +;,,r (X’)cP,,,(~)exp(--PE,,,). 
m 

(6) 
When all the slow variables are translatronal, when 
R2/r?M rs small, and when E,(X) varies slowly over the 
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de &o&e wavelength of the slow degrees of freedom, 
rt IS J. sample matter to show that 

p,,(X. X’ p) = (2 7zw7-//r+‘- t)D 

x e\p{-[11f(X- X’V/Yi”p +pEJX)]} (7) 

Here &l IS the mass of tfte clrtsstcai particles Thus for 
Ir”fM --f 0. the density rt~tn~ is to a very good ap- 
prowmatlon diagonal m X Swmlarly. when the SIOW 
degrees of freedom are not only translatronal It can 
be shown that 

P(r.X.J’.X.P)=n,z$ ~~(,‘lx)~,,(iIX)e\p[-PE,,(X)l 
(8) 

where the prehctor. 0, IS sunply t&c ewct clawcal 
burette partttton functron 

Qc =(ll%f-1) fd~e~p~-~~~~~~~ (91 

and P represents the momentd cOtlJUgat2 10 rhe slow 

vanables, X 
At thrs point rt IS worth notmg that the normalized 

diago!or~nl component of the denstty rnntr1\ 

b(Tr x. 0) = 
~,,,~fcrlX>~,,(~IX)e~p~-~~,~~x)~ 

s, exp t-0 E,;W)l 
(10) 

can be sampkd usmg a stnughtforward varratron of 
the Metropolis Mon:e Car10 dgonthm [6] In the Ago- 

rtthm a move r. X* I’ 1 Y’ IS accepted wth probabrhty 

J-l@‘. X’IT, X) (11) 

[ 

~,,~J;~~‘l~‘~~,,~~‘IX’~~~P~--P~,,~~’~l _-- 
= ‘flm I ’ E,! $;C-lX) 9,6-l X)exp [-_PE,,(X)] I _ 

To nnplement thus procedure one must compute the 
ergenfuncttons and etgenvalues ~~/,,(r~X), E,,(X)] and 
f$,,(#fX ), E,,(X’)) m the old and new con~guratto~s 
respectively. The algont~lm starts wth selectron of 
an mtt~al configurntron (ro, Xo) A move 1s then at- 
tempted for one of the classtcal varrables by samphng 
unrformly in some domam Tha move IS then accepted 
or reJected with probabrlrty A(r, X’(T, X). Thus is re- 

peated m sequence for the nekt classical variable, and 
the next untd auf- 1 classical vanabies have been tned. 
A move IS then attempted for the quantum posttton, 
r + r’. YMs move is also sampled uniformly m some 
domain The move is either accepted or reJeCted ac- 
cordmg Co A@‘, Xlr. X). One cycle through thesef 
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degrees of freedom ts called a pass A full sunulatton 

consists of many passes Obvrously many vanatlons 
Lire powble For example, smce I IS the fast vanable, 
one can attempt a move m It after each attempted 
ciasstcal move Thrs procedure generates the equrltbnum 
chstrrbutron of configurattons, and wtth It one can com- 

pute many interestrng propertles of the system 

3 Solvent effects on diatomic molecules 

Consider a dtatomtc molecule drssolved m d mona- 
tomrc host hqutd If Its mass, UI, and moment of tnertta, 
I. IS sufficiently large, the dratomrc’s center of mass 
(c m ) coordinate, R. and rotatronal coordmates. ((I,#) 
are to a good approwrnntton ciasstcal whereas rts vtbra- 
ttonni degree of freedom, T, IS lughly quantrzed Thus 
the set of ~oordrnates X = (R 1, , R,, R 6. @) are 

taken as classtcal coordmates and r IS the smgle fast or 
quantwed coordmate Here RI, R,v sre the posrtrons 
of the solvent atoms (whose mass IS N) In thus case, 
Qc m eq. (9) becomes 

0 = (‘n*~KT/I1’)~ “/Z ? --c (_nttlkTf~t7)3/217~/kTIitC!.(12) 

wnere we have assumed that the centrrfugai energy 
t’/3& -+ .&2/2/ and have thus ignored translatton 
rotatron coupling 

The elgenstates +8,(rlX) = R,(rlX)fr are found by 
solvmg the radraf wave equatmn 

[-(rr’/zu)d’/dr2tV(rfX)]R,,(rlX)= E,,(X)R,(r(rlX). 

(13) 

Clearly the most trme-consummg procedure m the 
algorithm IS the computatton of EII(X) and R,,(rlX) 
for every configuratron X generated by the MC algo- 
nthm. In prmciple, any techmque for solving the 
SchrBdmger equation could be employed. However, 
tt IS ~portant to find an efficient procedure for accom- 
pltslung tms. In a longer paper 271, we provide details 
of a fast perturbatron method for obtammg the E,,(X) 
and R,(rlX) for the diatomic-in-a-solvent problem. 
Smce the point of thts letter IS to provide a simple, 
clear descrtptron of our overall program for thts mtxed 
quantum-classical problem and present prelimmary re- 
sults, rt suffices to present only the barest outhne of 
the detads of the specrfic method employed m obtainmg 

E,,(X) and R,, f&0 
In the soiutron of (f3), we expand V#X) HI a Taylor 
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series m r about Its mmunum, rm, for fixed values of 
the slow variables The harnlomc oscillator, whose fre- 
quency, W, IS fit to the curvature of V(rfX) at Y,. IS 
used as our reference system A scaled length varrabie, 
y = (flo.r/Tr)‘l’(r - r,) and a scaled ener,v vanable, 
E = E/&w are employed. All the rntegra!s needed for 

the 
t: <$,‘p 

erturbatton theory are of the form & ,1 z 
IJJ”IJ/~~~>, where I,!(;“) and $f$ are harmomc os- 

crilator wavefunctrons. In scaled vanables the matrrx 
elements are Independent of solvent ~on~guratio~, 
therefore, they need not be recaIeuIated at every 
Monte Carlo step L-lkewtse, every term m the pertur- 
batron serves can be arranged as a product of configura- 
tion-dependenr and conf~guraiion-independent factors 
The configuratton-dependent factors arejust products 
of the Taylor series ekpanslon coefficrents of the poten- 
teal m terms of the scaled variables. The configuratron- 
mdcpendent factors contam products of scaled matnx 
elements drvtded by differences m zeroth-order scaled 
energies, summed over mtermedrate states. By arrangmg 
the perturbation senes m this way, the matnx elements 
and sunlnlatlons over mtem~e~ate states (I e., the hard 
work) need be performed only once and stored Thus, 
for each configuratron of the slow vanables, we need 
only locarr r, _ evaluate the first few Taylor coefti- 
crents of the potential at ‘;rt, and then perform some 

simpIe multrphcatrons of these with the precalculated 
configuratron independent factors The details of the 
perturbatron sertes. how we truncate tt, and evrdence 
of Its accuracy wrll be grven elsewhere [7] _ 

In tlus paper we present results for a model of Brz 

dssolved in hqurd argon We choose ths model because 
it has already been studred classrcally [8]. In thrs 
model the internal potential of the l3r, ts taken as a 
Morse potentrat with parameters D, =23 100 K, Q = 
1.94a-1 andr,= 2 288 wrth a harmontc frequency 

of 00 = 60.15 ps-1. The argon atoms Interact pan- 
XWS~ with each other through $ Leonard-Jones 12-6 
potential with oArAr = 3 42 a, eArAr= IZOK. The mter- 
action of a Br, molecule wnh an Ar atom IS modeled 
by a sate-sate potential. It is important to note that 
because the electron drstnbutron m a diatomrc mole- 
cule changes with bond Iength, the interaction energy 
between Ar and Br2 should depend on r [9{. Here 
each Br atom is assumed to mteract utlth a given Ar 
atom through a L-J 12-6 potential \mth oArBr= 3.51 
a. Two models for ehBr are considered. In the first, 
eAr& is set to the constant value 143 K, whrle in the 

second 

~&j-) = a - A e.up t-r6 - b)2] , 041 

wvlth b = Te - 0 5 = I .78 a, and the values of a, A and 
y are fitted so that eArBr(re) = 143 K, (de/dr),.,= 143 
KfW and (d%/dt “Ire = 0 +I _ 

The coordmates of tius system are drvrded mto two 
sets. one set consrstmg of the posrtrons of the solvent 
atoms and the c.m posrtron of the dratomrc, and the 
other set consistmg of the internal coordinates (the 
orrentntronal angles and the vrbratronal coordmate) of 
the dratomrc molecule in the hlC aigorlthm each trans- 
lational coordmate (set 1) IS moved wrrh a ml~‘lrmum 
step srze of AI _ The mternal coordtnates are sampled 
by movtng the relative x,y and z components of the 
Br-Br vector (with a maxmnm~ step srze of A,), and 
then finding the angles 0, @ and the vrbratronal drsplace- 
ment r from the cartesran coordmates. In order to II-IX- 
prove the statlsttcs for quanttttes refated to the vtbra- 
tional coordmate, rt was thought best to sample the 
mternal coordrnates more frequently Thus the algo- 
nthm adopted 1s one in which the tnterndl ccordinates 
are moved following each single molecule translatronal 
move Thus a pass consists of N+ I translattonal moves 
and N-t I samphngs of the internal coordmate The 
moves are accepted or rejected according to eq. (11). 

Each srmulatron mcludes a Br, molecule and 107 
As atoms Periochc boundary con&tions are employed. 
The box length, L, is adjusted so that the effective ex- 
cluded volume, x, IS 0.3 for the lower densrty :ase and 
0.6 m the higher density case, where x ts defined by 

X = W6L3) &&& +- ‘Q$re&l\r8r) 

and rrAr = 107 and pzBr = 2. Spherical cut-offs are utr- 
hzed for Icr_r--Ar and Ar-Br potentrals. The cut-offs are 
chosen at &stances for whrch the potentials would be 
1 K. (For the Ar-Br potential this cut-off IS defined 
using a value of E~&-~) = 143 K m the Lennard- 
Jones potential.) 

Each simulation consrsts of 250 passes, each pass 
containing 2 16 moves. The ma-mum step srze, A, 

*I These vtllues of ekes, dafdr and d2&r2 at re are chosen 
to agree wth the values used by Pratt and Chmdler [ 9 ] in 
the attractive part of ~~~~~ We choose this functronai form 
because it is sunple, tiytic, approximately Imear f9] near 
r = re (d2e/dr2 = 0 at re) and goes to fite asymptotic inruts 

It Mfers from the model used by Pratt and Chandler 8.n the 
repukve region 
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Fig 1. D~tr!bu~on of trans~non energtes for the 0 - 1 vtbm- 
tlonal excltntlon from stmulatlons oi Br2 tn Ar. q represents 
the x = 0 3 simukttton (lower denstty) wth E&B* sven by 
eq (14) c represents x = 0 3 smntlatton wth constant chrBr, 
a represents Y = O-6 smtular~on (h@er density) w~tb c&Br 
@ven by eq (14) 0 1s the average of two t~depeRd~n~ stmukt- 
hens Error bars pve =ci as esumated from the twc mdepen- 
dent stmulattons 

of the _r,y and z components for each move of a trans- 
lational coordmate is 1 0 A for the lower densny case 
and 0.35 a for the h&her denstty run. illaumum step 
sizes of d2 = 0 2 a and 0.155 a are employed for the 
mtemnl coordinates m the x = 0 3 and x = 0.6 simula- 
ttons, respectively. 

In fig. 1. we present the rhstrlbutlon of transItion 
frequzncles we-i vibrational excltatlon of Br,. The 
dtstnbution IS very sensitive to density and to the form 
of the potential fun~tlon. When the density is moderate 
o( = 0.3), and E&,& 1s Independent of bond length, 
the oo- 1 lstrlbutton IS quite narrow and centered 
very close to the gas-phase value However, mcluslon 
of the J- dependence III eArBr [eq. (14>] results III a slg- 
mficant red-shft in the transition frequency and some 
broademng of the dlstnbutIon. Two Independent runs 
have been performed for tlus latter case with x = 0.3 
and a bond-length dependent EtiBr. These two runs 
@ve a rough estimate of the error arising from the 

fkrte rtm length. Fig I shows that statlsrlcal errors 
are small, so that the results may be regarded as statis- 
tically slgmficant When the density 1s h.~gh, x = 0.6, 
the dlstrlbutlon of transltlon energes are shlfted to 
the blue, even though the bond-length dependent 
ehBr IS employed The &stnbutlon IS also broadened 
conssderably in each of the three cases considered, 
the distribution functtons are noticeably asymmetnc, 

being skewed to the high-frequency side A similar 
asymmetry was noted by DlJkman and van der Maas 
[IO] m their model calculation of Infrared lme shapes 
of a number of molecules m inert solvents Detaded 
anaiysls of these sfnfts and ~stnbut~on shapes will be 

presented elsewhere [7] 
These resuhs show that the mhomogeneous spectrum 

IS verb sensltlve to the nature of the solvent-molecule 
mteractlons Levesque et al. [ 111 have made a slmllar 
observation 111 relation to the calculation of vlbratlonal 

dephasmg ttmes Raman scattertng mdlcates that the 
poiarizabd~ty. cx(r) of Br2 increases lntzarly with bond 
length for r + re. The potent& models specified by 
eq. (14) mtm~cs ths observed hueamy and leads to the 
qualitative expectation that in a ddute system, where 
attracrlve forces are important, the solute-solvent 

forces should oppose the mtmmolecular restormg 
force and @ve rise to a red-shtft. The results reported 
here show that this IS Indeed the case 3211s study 
further shows that despite the dependence of e on r, 
the solvent effect at high density leads to a substantial 
blue-shift . 

The senattwty of the results to the exact nature of 
the solvent-solute potenttal emphasizes the unportance 
of a rehable slmuIation procedure for studymg these 
systems numencalty. To the best of our knowledge, 
these results represent the first successful hquld sunu- 
latlon that actualIy takes into rhrect account the quan- 
tum nature of vibrations. An approxmlate treatment 
of the vlbratlonal motion that has been employed m 
other c~culatlons [IO,1 I] treats the molecular bond 

as ngd but estrmates the shifts LEI the transitlo~ fre- 
quencies by low-order perturbation theory based upon 
an expansion (up to quadratic terms) of the solvent- 
solute interaction potential about the free molecule 
geometry_ Tlus approximatton should be very reasonable 
for very stiffbonds and ordinary temperatures for wtuch 
it has been apphed, but IS more questIonable for weaker 
bonds. An investrgation of the vahdity of thus sunphfymg 
approximation for various systems is presently under 
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way. To our knowledge, the only other s~ulatloRs of 
these effects are based entirely on classrcal mecfianics. 

In summary, in Gus letter we have outlmed a straight- 
forward and efficient Monte Carlo procedure for dtrectly 
studying solvent effects on molecular vibrations. Thus 

method IS based upon the Born-Oppenheimer approxi- 
mation and treats the rotations and translatrons classi- 
cally, whue takmg the quantum nature of the vlbra- 
trons into account. It s applicable to pure state vibra- 
tronaf distnbutrons as well as thermal drstnbutrons, 
and should be useful in explormg other properttes 
than those focused on here, 

We have apphed thrs method to the problem of in- 
homogeneous broademng of the drstnbutton for 
lowest vrbratronal transrtlon frequency_ We have found 
the results to be very sensitive to the density and also 
to the mteraction potentral employed. 
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