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A Monte Carlo method 1s devised for the study cf systems which have a few quantum degrees of freedom coupled to many
essentially classical coordinates The density dependence of the solvent-induced shifts in the vibrational spectrum 1s mvesti-
gated for a diatomic (Bf.) dissolved m a monatomic fluid (Ar).

1. Introduction

The Monte Carlo method has been used to great
advantage to study the thermal and mechanical proper-
ties of classical condensed systems [1]. Recently, con-
siderable effort has been expended on developing Monte
Carlo techniques for fully quantized systems [2,3}].
Unfortunately, this effort has not yet progressed to
the point where fimte temperature fully ab imitio simu-
lations of even simple many-body systems can be car-
ned out. In this note we address the problem of solvent
effects on molecular internal degrees of freedom. Past
simulations have been done only on purely classical
systems We have in mmd systems where the solvent
conststs of “classical particles™ whereas the solute has
one (or more) quantum mechanical internal degrees
of freedom. A Morite Carlo technique based on the
Born—Qppenheimer approximation [4], 1s described
to determune the thermal properties of the system.

The method 1s then used to determine how “hquid
argon’ perturbs the vibrational properties of a dissolved
Br, molecule.

2. Theory

The system of interest consists of one ““fast” degree
of freedom, r, and f—1 slow degrees of freedom, X
EXy.0 Xf—l)' The hamiltonian can be expressed
as

H=T+Te+ Vi, X)=T;+H,, (¢))

where Ty, Ty and V{2, X) are respectively the kinetic
energy of the slow (s) set of vanables, X, the kinetic
energy of the fast vanable, r, and the total potential
energy. The latter depends on the instantaneous config-
urauion of the system. £, can be regarded as the energy
of the fast degree of freedom given the configuration of
the solvent. H,, can be used to generate the adiabatic
states {,,(r| XD},

H, 0,01 X) = E, 00U, (1X) . @

The Born—Oppenheimer approximation {5] to the
states of the full system 1s

l1!JII m (}', X) = l.!l"()'lX) ‘pnnz (X) ) (3)
where
[TS + En (X)] (pn n ('X) = EII n (I)PZ n (X) (4)

The density matnix in the canomical ensemble can thus
be expressed as

P X; X' B) = 25 UL 1X W, (r1 X )0, (X, X', B)
Fi4 (s)

where
’ — “ r * ’ -
P"(X, X » B) = ’Ln-/ “‘,"h'l (-X )(I)n"l (;‘ )exp (_"BEIHYI)'

(6)
When all the slow variables are translational, when
h2/2M 1s small, and when E,,(X) varies slowly over the
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de Broglie wavelength of the slow degrees of freedom,
1t 15 a simple matter to show that

£, (X. X' B)=QaMkT/h2)S~D/2
X exp {—[M(X— X")2/2h28 +BE, (X1} s

Here A1 1s the mass of the classical particles Thus for
#2120 — 0. the density matnix s to a very good ap-

proximation diagonal in X Sumnilarly. when the slow
degrecs of freedom are not only transiational 1t can

be shown that

p(r.X.1' . X.B)= QE U301 XOW,01 X)enp[—8E,(X)]
(8)

where the prefactor. @, 1s stmply the exact classical
kinetic parution function

Q.= (lfigf—l)fd}’e\p (—87T(P)] ©)

and P represents the momenta conjugate to the slow
vanables, X

At thus point 1t 1s worth noting that the normalized
diagonal component of the density matrnix

S RCIX I 0IX) exp [-BE,O)
Zpenp [-BE,(X)]
can be sampled using a straightforward varation of

the Metropolis Monte Carlo algonthm [6] In the algo-
nthm a move r. X—+¢", X' 1s accepted with probability

o@r. X.B)=

A X'l X) an
Z, 01X ), (F1X Yenp [—BE,,(X')]]
2o X) b (riXesp [-BE,(X)] 17

‘—‘—Mm[l,

To implement this procedure one must compute the
eigenfunctions and eigenvalues {¥, (rX), E,,(X)} and
{¥,,(¢"1X ), £,(X")} 1n the old and new configurations
respectively. The algonthm starts with selection of

an mtial configuration (ry, X3) A move 1s then at-
tempted for one of the classical variables by samphng
untformly 1n some domain This move is then accepted
or rejected with probability A(r, X'|r, X). This is re-
peated 1n sequence for the next classical vaniable, and
the next untyd all f— 1 classical vanables have been tried.
A move 1s then attempted for the quantum posttion,

r —r'. This move is also samipled uniformly in some
domain The move 1s etther accepted or rejected ac-
cording to A(r', Xir. X). One cycle through these f
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degrees of freedom is called a pass A full simulation
consists of many passes Obviously many vanations

are possible For example, since # 1s the fast vanable,
one can attempt a move 1n 1t after each attempted
classical move Thus procedure generates the equilibrium
distribution of configurations, and with it one can com-
pute many nteresting properties of the system

3 Solvent effects on diatomic molecules

Consider a diatomic molecule dissolved 1 a mona-
tomic host hiquid [f 1ts mass, #2, and moment of iertia,
I.1s sufficiently large, the diatomic’s center of mass
(c m ) coordinate, R. and rotational coordinates. (8,¢)
are to a good approxumation classical whereas 1ts vibra-
tional degree of freedom, r, 1s hughly quantized Thus
the set of coordmates X = (R, ,Rp,R 6.9)are
taken as classical coordinates and r 1s the single fast or
quantized coordinate Here R;, R, are the posiuons
of the solvent atoms (whose mass 1s Af) In this case,

Q. 1n eq. (9) becomes

Q. = CadkT/n23 N2Q2amk TIh2)3 2201k T H2. (12)

whnere we have assumed that the centrifugal energy
L2{2ur? — £2/2] and have thus ignored translation
rotation coupling

The eigenstates &, (11 X) = R, (| X)/r are found by
solving the radial wave equation

[—(2/2:) A2 {dr? +V(IX)IR, (1 X) = £,(XIR,, (I X).
(13)

Clearly the most time-consumng procedure 1n the
algorithm 1s the computation of E, (X) and R,,(r{X)
for every configuration X generated by the MC algo-
nthm. In principle, any technmique for solving the
Schr8dinger equation could be employed. However,
1t 1s important to find an efficient procedure for accom-
plishang this. In a longer paper [7], we provide detads
of a fast perturbation method for obtaining the £,,(X)
and R, (r| X) for the diatomic-in-a-solvent problem.
Since the point of thus letter 1s to provide a simple,
clear description of ow overall program for thus mixed
quantum-classical problem and present preliminary re-
sults, 1t suffices to present only the barest outhine of
the details of the specific method employed in obtaining
E,(X)and R (rlX).

In the solution of (13), we expand V{r|X) n a Taylor
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sertes n r about its mimmunm, 7, , for fixed values of
the slow variables The harmonic oscillator, whose fre-
quency, o, 1s fit to the curvature of V(r{X)atr,.1s
used as our reference system A scaled length variable,
v = (/M2 - r.) and a scaled energy vanable,

€ = Eflieo are employed. All the integrals needed for
the perturbation theory are of the form yf‘;, n=
WA 1D, where ¢ and Y9 are harmonic os-
aillator wavefunctions. In scaled vanables the matnix
elements are independent of solvent configuration,
therefore, they need not be recalculated at every
Monte Carlo step Likewise, every term in the pertur-
batron senes can be arranged as a product of configura-
ton-dependent and configuration-independent factors
The configuration-dependent factors are just products
of the Taylor series expansion coefficients of the poten-
tial 1n terms of the scaled vanables. The configuration-
mdependent factors contam products of scaled matnx
elements divided by differences in zeroth-order scaled
energies, summed over intermediate states. By arranging
the perturbation senes m this way, the matnx elements
and summations over intermediate states (1 ., the hard
work) need be performed only once and stored Thus,
for each configuration of the slow vanables, we need
only locate r, . evaluate the first few Taylor coeffi-
cients of the potential at 7m- and then perform some
stmple multiplications of these with the precalculated
configuration independent factors The detads of the
perturbation series. how we truncate 1t, and evidence
of 1ts accuracy will be given elsewhere [7].

In this paper we present results for a model of Bry
dissolved in hquid argon We choose this model because
it has already been studied classically [8]. In this
model the internal potential of the Br, 1s taken as a
Morse potentiai with parameters Do =23100K, a=
1.94 8-1 and r, =2 28 A with a harmonic frequency
of oy = 60.15 ps~1. The argon atoms interact pair-
wise with each other through a Lennard-Jones 126
potential with 65,4, =3 424, €5, 4,=120K. The mter-
action of a Br, molecule with an Ar atom is modeled
by a site—site potential. It is important to note that
because the electron distribution mn a diatomic mole-
cule changes with bond length, the interaction energy
between Ar and Br, should depend on r {9]. Here
each Br atom is assumed to interact with a given Ar
atom through a L-J 126 potential with 64,5, = 3.51
A. Two models for €, g are considered. In the first,
€A p; IS set to the constant value 143 K, while in the
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second

earp () =a~ Aexp [—v( ~ b)?], (14)

with b =r,— 05 =1.78 A, and the values of a, 4 and
7 are fitted so that €4,.p5,.(r.) = 143 K, (de/dr),e== 143
K/A and (d%€/ds2),, =0 %',

The coordinates of tius system are divided into two
sets. one set consisting of the positions of the solvent
atoms and the c.m position of the diatomuc, and the
other set consisting of the internal coordinates (the
ornentational angles and the vibrational coordinate) of
the diatomic molecule In the MC algorithm each trans-
lational coordinate (set 1) is moved with a maxumum
step size of Ay. The internal coordinates are sampled
by moving the relative x, ¥ and z components of the
Br—Br vector (with a maximum step size of A,), and
then finding the angles €, ¢ and the vibrational displace-
ment r from the cartesian coordinates. In order to um-
prove the statistics for quantities related to the vibra-
tional coordinate, 1t was thought best to sample the
internal coordinates more frequently Thus the algo-
rnthm adopted 1s one 1n which the internal coordinates
are moved following each single molecule translational
move Thus a pass consists of ¥+ 1 translational moves
and NV +1 samplings of the internal coordinate The
moves are accepted or rejected according to eq. (11).

Each stmulation includes a Br, molecule and 107
Ar atoms Periodic boundary conditions are employed.
The box Iength, L, is adjusted so that the effective ex-
cluded volume, y, 1s 0.3 for the lower density -ase and
0.6 1n the hugher density case, where x 1s defined by

x = (w/6L3) (”A;G%IAI + "‘Br"%rBr)

and 15, = 107 and ng, = 2. Spherical cut-offs are uts-
Lized for Ar—Ar and Ar--Br potentials. The cut-offs are
chosen at distances for which the potentials would be
1 K. (For the Ar—Br potential this cut-off 15 defined
using a value of €,4,5.(r.) = 143 K 1n the Lennard-
Jones potential.)

Each simulation consists ¢f 250 passes, each pass
containing 216 moves. The maximum step size, 4

#1 ‘These values of ¢ o;By» de/dr and d2e/dr? at re are chosen
to agree with the values used by Pratt and Chandler [9] in
the attractive part of 14,5y We choose this functional form
because it is simple, analytic, approximately linear [9] near
r=re (d%¢/dr? = 0 at re) and goes to finte asymptotic limits
It daffers from the model used by Pratt and Chandier in the
repulsive region.
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Fig 1. Distribution of transiuon energies for the 0 — 1 vibra-
tional excitation from simulations of Bra 1n Ar. O represents
the x = 0 3 simulation (lower density) with e ¢ By @ven by

eq (14) c represents x = 0 3 sumulation with constant € AyRBy,
> represents ¥ = 0.6 simulation {(higher density) with eazfpy
given by eq (14) 0 1s the average of two independent simula-
tions Error bars give = o as esumated from the twe indepen-
dent stmulations

of the x, y and z components for each move of a trans-
lational coordinate 1s 1 OA for the lower density case
and 0.35 A for the higher density run. Masimum step
sizes of Ay =02 A and 0.175 A are employed for the
mternal coordinates in the ¥ =0 3 and x = 0.6 simula-
tions, respectively.

In fig. 1. we present the distribution of transition
frequencies wg . ; wnibrational excitation of Br,. The
distnnbution 1s very sensitive to density and to the form
of the potential funcuon. When the density is moderate
(¢ = 0.3), and €, , 15 independent of bond length,
the gy, distribution 1s quite narrow and centered
very close to the gas-phase value However, inclusion
of the r dependence in €4, g, [eq. (14)] resuits 1n a sig-
mficant red-shuft in the transition frequency and some
broadening of the distnbution. Two independent runs
have been performed for this latter case with x =03
and a bond-length dependent €,,,. These two runs
gve a rough estimate of the error arising from the
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finmte run length. Fig I shows that statisucal errors
are small, so that the results may be regarded as statis-
tically significant When the density 1s high, x = 0.6,
the distribution of transition energies are shifted to
the blue, even though the bond-length dependent
€rpr 1S employed The distribution 1s also broadened
considerably in each of the three cases considered,
the distribution functions are noticeably asymmetrc,
being skewed to the high-frequency side A similar
asymmetry was noted by Dykman and van der Maas
[10] in thetr model calculation of infrared line shapes
of a number of molecules 1in mnert sclvents Detailed
analysis of these shifts and distnbution shapes will be
presented elsewhere [7]

These results show that the mmhomogeneous spectrum
1S very sensiitve to the nature of the solvent—molecule
mteractions Levesque et al. [11] have made a similar
observation n relation to the calculation of vibrational
dephasmg times Raman scattering indicates that the
polarizability. a(r) of Br, increases linearly with bond
length for r = r,. The potential models specified by
eq. (14) mimics thus observed hineanty and leads to the
qualitative expectation that in a dilute system, where
attractive forces are important, the solute—solvent
forces should oppose the intramolecular restoring
force and give nise 1o a red-shift. The results reported
here show that this 1s indeed the case This study
further shows that despite the dependence of eonr,
the solvent effect at high density leads to a substantial
blue-shuift.

The sensitivity of the results to the exact nature of
the solvent—solute potential emphasizes the importance
of a reliable simulation procedure for studying these
systems numerically. To the best of our knowledge,
these results represent the first successful iquid simu-
lation that actually takes into direct account the quan-
tum nature of vibrations. An approximate treatment
of the vibrational motion that has been employed in
other calculations [10,11] treats the molecular bond
as ngid but estimates the shifts n the transition fre-
quencies by low-order perturbation theory based upon
an expansion (up to quadratic terms) of the solvent—
solute interaction potential about the free molecule
geometry. This approximation should be very reasonable
for very stiff bonds and ordinary temperatures for which
it has been applied, but 1s more questionable for weaker
bonds. An investigation of the validity of thus simplifying
approximation for various systems 1s presently under
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way. To our knowledge, the only other ssmulations of
these effects are based entirely on classical mechanics.

In summary, in this letter we have outlined a straight-
forward and efficient Monte Carlo procedure for directly

studying solvent effects on molecular vibrations. This

method 1s based upon the Born—Oppenheiuner approxi-

mation and treats the rotations and translations classi-
cally, while taking the quantum nature of the vibra-
tions into account. It 1s applicable to pure state vibra-
tional distributions as well as thermal distributions,
and should be useful in exploring other properties
than those focused on here.

We have applied this method to the problem of in-
homogeneous broadening of the distribution for
lowest vibrational transition frequency. We have found
the results to be very sensitive to the density and also
to the interaction potential employed.

CHEMICAL PHYSICS LETTERS

1 January 1981

References

[1] J.P. Valleau and S.G. Whittington, in. Modern theoretical
chemistry, Vol. §, ed. B J. Berne (Plenum Press, New
York, 1977).

[21 D Ceperley and M.H Kalos, in- Monte Carlo methods in
statistical physics, ed. K. Binder (Springer, Berlin, 1979)

{3] P.A. Whitlock and M.H Kalos, J. Comput. Phys 30
(1979) 351.

{4] G. Baym, Lectrres on quantum mechamcs (Benjamun,
New York, 1969).

[5] R.P. Feynman, Statistical mechanics (Benjamin, Reading,
1972)

{6] N. Metropolis, A W. Metropolis, M.\N Rosenbluth,

A_H. Teller and E. Teller, J. Chem. Phys. 21 (1953)
1087.

{7] M.F. Herman and B.J. Berne, m preparation.

(8] B.C. Freasier, D.L. Jolly, N.D. Hamer and S. Nordholm,
Chem. Phys. 38 (1979) 293.

{9] L-R. Pratt and D. Chandler, J. Chem. Phys. 72 (1980)
4045 .

[10] F.G. Dikman and ¥ H. van der Maas, 3 Chem Phys. 66
{1977) 3871.

[11] D. Levesque, L.J. Weis and D.W. Oxtoby, I Chem. Phys.
72 (1980) 2744,

167



