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A stnple classtcal dynainical system with measure preserving non-crgodic flow 1s devised i order to better understand
reaction dynamics in 1solated molecules Tins model pives rise to rate constants for activated barnier crossing that arse lasger
than the RRKM ratc constanty for the system, This behavior 1s discussed an the hight of recent theoretical work whach gen-
crahzes the statstical theory of reaction raies 1o chaotic but non-trgodic dy namical s stems

1. Introduction

Statstical theorics of reaction dynmamics, such as
RRKM theory and transition state theory, have
played an important role in the modern understand-
ing of chenucal dynamies [1-3]. A necessary but not
sufficient condition for these theorses is that the dy-
namical system be ergodic. In a companion paper [4]
we have shown that even in ergodic systems, there arce
conditions n wiich dynamical correlations give rise
to large deviations from RRKM theory. In a previous
publication we showed that even when a system 1s
non-ergodic, 1t 1s possible to derive a statistical theory
of reaction rates [5,6] In non-ergodic systems phase
space is decomposable into regular and irregular re-
gions. Motion in the regular region is quasiperidodic,
with trajectories confined to invariant mamfolds of
lower dimensionality than the energy hypersurface
in phase space [7]. Motion in the wrregular region is
chaotic. If it is assumed that the motion n the wregu-
lar region randornizes on a time scale short compared
to reaction, then 1t 1s possible to show that the kinet-
1c rate constant for barrier crossing 1s given by [5.6]
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where I indicates a point 1n phase space, x 15 the re-
action coordinate, x =0 is the transition state, and
H(T) 1s the hanultonian, and where
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1s a charactenistic function indicating whenI'is in the
wrregular reglon of phase space. Eq (1) should be con-
trasted with the RRKM rate constant [3] which as-

sumes the space to be ergodic
-
TRRKM
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HT5(E ~ A(T)) -

In the event that all crossing trajectories are chaotic
so that B can be taken as umty in the numerator of
eq. (1), the only difference between eq. (3) and eq.
(1) is the denominator. Since the denonunator of eq.
(3) counts fewer states than that of eq. (2), 1t follows
that in this case

= (X Xp)~

—1 ~1
TNLRRKM = TRRKM - @
Tius nequality anises from the fact that 1n the non-
ergodic system, the regular region of phase space is
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occupied by invariant tori. The irregular trajectories
are eacluded from the regions occupied by these tori
and this gives nse to an “excluded volume effect™.

In our previous study [3,6] of a continuous hamil-
tonian flow we could not detect any case in which
the actual reaction rate TE,{H was larger than T;{R|KM
as predicted by eq. (3). The failure of statistical the-
ory was attributed to correlations in the irregular
motion, and particularly to motion on vague tor [8].

To better understand thus problem we here devise
a very simple reactive system which consists of two
stadum billiards [9] connected at an edge. Motion
through the transition state (TS) requires activation.
This dynamical model 1s sumilar to a model studied in
a compamon paper {4]. In that paper the system is a
K system, that is, an ergodic system. Here we explore
a generahization which gives non-ergodic flow. We
show that under certain conditions, this model defi-
nitely gives rise to rate constants larger than RRKM
rate constants, a result consistent with eq. (1). We
also find that under certain conditions, correlations
n the irregular trajectories give rise to deviations
from eq. (1) which reduce the rate constant

2. The generalized Siamese stadium

The model consists of a billiard [9] of mass m =1
moving freely in the interior of the boundary given in
fig. 1a, and suffering elastic collisions with the wall.
PP, and P3Py arc parali¢l straight lines and Py Py
and P4 P, are arcs of circles of radus r = 1. In the
limit S — 0 the stadium becomes a rectangle which 1s
a completely regular system. On the other hand when
S =1, the system isan ordinary stadium which is com-
pletely ergodic. Motion through the hole is activated;
that is, only when

mz? >E, (5)

can the particle pass through the hole.

As pointed out in a previous publication [4], mo-
tion in the Siamese stadium (fig. 1a) can be generated
by following motion in the single stadium (fig. 1b) by
tagging the trajectory with o0 = —1 when it hits the
transition state (TS) a, and can cross [that is, simul-
taneously satisfies eq. (5)]. Otherwise, the trajectory
1s tagged o = +1. With these trajectories it is possible
to determine the reactive flux,
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INg 1 (a) The Sramese stadum. (b) The gencralized stadun
billiard consists of a umit pomnt mass moving freely inside the
boundary and clastically scattering off the walls. The bound-
ary consists of arcs of a curcle of radius R, yoined discontinu-
ously at points Py, Pa, P3, and Py to parallel walls of length

= | 0, scparated by a distance 2§ The hole in the Siamese
stadium 1s of lengtha The parameters used 1n the text arc k
=glfl, t = 28/l, the encigy barrier Eg, the total energy E.
Systems witht =20.1.8,1.6,1.0,005 withfixed «k =0 1.
£ =0.95 and £ = [.0are studied 1n this paper

k(f)= (X pXg) "

i J4TX(0)5(x(0)) 8(x(1)) 8(£ — H(T)) ©)
JATS(E - H(D)) '

where Xy = Xp is the fraction of time spent by trajec-
tories in wells A and B. k(¢) is a quantity whose initial
value gives the RRKM rate constant, eq. (3), and whose
long-time exponential decay, e~tf7p,,, gives the exact
rate constant 7.}, . The reactive flux is computed by
sampling initial states from the distnbution

() = 0G5 5(E — H)
JdT% 6(%) 5(x) 5(E — H)

M

and then computing eq. (6).

To better understand the dynamics of the Siamese
stadium it 1s useful to employ the global section in-
troduced by Bennettin and Strelcyn [9]. Each collision
of the billiard with the boundary s defined by thepa-

rameters
0<y=VY/IN<], —1<a=sinf<1, ®)

where W is the distance measured clockwise from the
point P, (cf. fig. 1b) to the point of collision, and |I']
15 the circumference of the stadium. The collision an-
gle @ 1s the angle made by the velocity (yust prior to
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collision) with the inward normal to the boundary at
the point of collision. Thus each collision is defined
by the coordinate (n, a) and can be represented by a
point in a bounded two-dimensional cartesian space.
A trajectory gives a point set in this space. Quasiperi-
odic trajectories give rise to closed curves (or “tort™)
whereas irregular trajectories give rise to a random set
of points that must le in the region not occupied by
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tori. Thus global section is the analogue of the Poincaré
surface of section in continuous systems. One way of
studying reaction dynamics is to determine the global
short-time section resulting from sampling imtial points
from the distribution given 1n eq. (7). This 1s the meth-
od used in ref. [1], and adopted here to demonstrate
the dynamical contribution to the reaction dynamics.
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Fig. 2. Rows A-LE correspond respectively to stadia with$ =20, 1.8,1 6, 1.0 and 0 05. Columns 1-4 correspond respectively
to the reactive flux A(¢) (cf. eq. (6)), —In k(t), the short-time global sectron generated by samphing imual states from eq. (7), and
the full global section as defined in the text. The ordinates and abscissas of the global section tn columns 3 and 4 are « and n re-

spectively [cf. eq. (8)].
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3. Results

To better understand reaction dynanucs in non-
ergodic systems, we study a series of Siamese stadiums
all having energy £'= 1, barrier height Eq = 0.95,
length/ =10, radlusR = 1, relative hole size k = afl
=0.1,and mass m =1, but du’ferent widths { =28
ranging from 2.0 to 0.05. When ¢ = 2 0 the system
1s the fully ergodic stadium studied by Benncttin and
Strelcyn. When ¢ = 0.05 the system looks very much
like a long thin rectangle and 1s highly regular.

Representative results of this study are presented
in fig. 2. The rows are labeled A—E and the columns
are labeled 1—-4. Rows A--E respectively give the re-
sults for increasingly regular systems with { = 2.0,
1.8,1.6,1.0 and 0.05. Column 1 gives the normalized
flux, & (1), that 1s, k(t)TRRay Where TRR]\“ 15 the
RRKM rate constant [cf. eq. (3)] which has the ex-
pheit form

Trrkm = 41 - E)2]'PUk/mA)B(E - Ep) ,  9)

where A is the area of the stadium in fig. 1b. Column
2 gives a logarnithmic plot of the normalized flux from
which the rate constant T, 1s determined (cf. table
1). Column 3 gives the global section (short time) and
column 4 gives the global section (long time) found
by sampling mitial points from eq. (7).

System A in fig. 2 1s fully stochastic, as can be
seen from the global section in fig. 2A4. In all systems
studied here, the barrier height 1s very large (£,
=0 95) The states sampled from eq (7) consequently
have a velogity distribution peaked i the forward (x)
dircciion, and these have small wnitial collision angles.
These propagate to the caps, and 1n the full stadium
(system A}, where the cap jowns the straight wall con-
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tinuously, they propagate back with small collision
angles — hence the dense set of points in the short-
time section, fig 2A3. As was potnted out in a previ-
ous publication [5], this correlated motion leads to
recrossing of the transition state at ¢ =~ 100 (as seen
in ﬁg 2A1) and gives rise to a large deviation ('rR\n/
TRRI\M =0.5) from RRKM theory even in an ergodic
system.

System B 1n fig. 2B is also fully ergodic as can be
seen from its global section, fig. 2B4, but now the
circular capsdo not join the straight walls continuous-
ly. Thus although the trajectories are still sampled
with small collision angles, these propagate to the
caps and upon first collhding with caps have large col-
lision angles. The net effect is that the short-time cor-
relation is largely wiped out, as can be seen in the
short-time section i fig. 2B3, and in the reactive flux
in figs. 2B1 and 2B2. The normalized reactive flux is
a single exponential decay with 7gJ, = Tﬁ}mm (cf.
table 1).

System C in fig. 2C has a global section, fig. 204,
that exhibits closed curves (torr). Trajectories giving
rise to these closed curves are quasiperiodic. Irregular
(or stochastic) trajectories also exist and give rise to
the “random™ points in the global section. The short-
time scction in fig. 2C3 consists only of the random
points, thus indicating that all the crossing trajecto-
ries are random. These trajectorics cannot visit regions
of phase space occupied by tori, hence the open re-
gions in fig. 2C3.

System C looks like a system in which the crossing
trajectories are ergodic in the irregular region of phase
spacc. Given the foregomng, a statistical theory [cf. eq-
(1) and the appendix of ref. [3]] should be applicable
[with the added condition that B can be taken as umty

Table |
Sysiem (=29 TRAN/TRRKM TRRK % 10%) )
A 20 049 0.39
B 18 0.98 0.62
c 16 1.2 081
D 10 081 1.7
C 0.05 - 402

1) Where the absolute umit of time 15 212 5
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in the numerator of eq. (1) because all the crossing
trajectories are irregular]. This leads us to predict that
the reactive flux [cf. eq. (6)] will be a single exponen-
tial decay with decay constant Tﬁ,!n given by eq. (1)
(with B =1 in the numerator). Figs. 2C] and 2C2 give
excellent agreement with this prediction, and more-
over, TRin lfﬁl{KM =1.2; that is, rﬁ\ln is greater

than the RRKM rate constant as expected. Unfortu-
nately we have not yet been able to make an ab mitio
calculation of eq. (1); however, it is clear that this can
be done based on methods outlined in a recent note
[10].

System D, 1n fig. 2D, is much more regular than
system C, as can be seen by comparing the g]olml sec-
tions in figs. 2D4 and 2C4. The short-time section,
fig. 2D3, shows that the crossing trajectories appear
to be random, but not umiformly distributed 1n the
wrregular regions of phase space. Thus we do not ex-
pect that the statistical theory of eq. (1) will be valid,
and indeed it is not. The reactive flux given in figs.
2D1 and 2D2 is highly non-exponential, indicates
short-time correlations similar to those 1n fig. 2A, and
gives rise to rﬁ{n/rﬁflmm <1 (cf. table 1). This cor-
relation cannot be attributed to the same mechanism
invoked in fig. 2A because the caps join the walls dis-
continuously. Is this correlation, which leads to rapid
recrossing, due to vague tori [2,3]? We simply do not
know! This requires further study.

System E in fig. 2E is a highly regular system (¢
= 0.05), as shown by the global section, fig. 2E4, and
the short-time section, fig. 2E3. The reactive flux
consists of a superposition of periodic and quasiper!-
odic crossing trajectories with different periods, and
thus exhubits an oscillatory decay due to dephasing.
Reaction rate constants do not exist at all.

CHEMICAL PHYSICS LETTLRS

26 November 1982
4. Summary

Several points are illustrated by the study of the
Siamese stadium-

(a) When the system is ergodic, dynamical correla-
tions can give rise to deviations from RRKM theory
leading to 7., [iRhin <1 (cf. fig. 2A).

(b) When the system is ergodic, and there are no
dynamical correlations, RRKM theory is valid (cf.
fig. 2B).

(c) When the system is non-crgodic, and the irregu-
lar trajectories uniformly fill the irregular region of
phase space, a statistical theory of reactions [cf. eq.
(1)] is valid and leads to Tﬁln /TEEI(K.\I > 1 (ef. fig. 2C).

(d) Dynamcal correlations in the irregular trajec-
tories (perhaps due to vague tor) [8] giva rise to
strong deviations from the statistical theory [eq. (1)]
and lead to Tﬁ\ln/TﬁﬂRRKM <1. It can accidently
happen that 75| =7l s but that does not
signify the validity of RRKM theory (cf. fig. 2D).
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