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The calculation of chemical reaction rate constants is of importance to much of chemistry and
biology. Here we outline useful theoretical methods and numerical techniques for single and many
dimensional systems for weak and strong collision models and discuss connections between
di†erent theories from a uniÐed point of view.

I Introduction

A paradigm for activated barrier crossing is motion on a one
dimensional bistable double well potential. If the barrier
energy is much higher than the thermal energy most ofkB T
the molecules will be located near one of the two minima. The
reacting molecule su†ers collisions with bath molecules which
will perturb the motion of the reaction coordinate in a
random fashion. Those random perturbations will allow the
molecule to cross between the two metastable wells and react.
Because a typical barrier is high compared to the mol-kB T
ecule will spend a very long time near a metastable minimum
and only extremely rarely cross to the other side. Ensemble
averages over such trajectories lead to microscopic chemical
rate laws. Since the recrossings are very seldom it is expected
that subsequent recrossings will be random and uncorrelated
i.e. Poissonian. Recent theoretical progress in treating solvent
e†ects on reaction rate theory has been reviewed in several
comprehensive reviews.1,2

More formal deÐnitions of rate constants have been given.3
The oldest deÐnitions of the rate constant are based on steady
state Ñux ideas. Also the eigenvalue spectrum of the time evol-
ution operator, correlation functions, as well as mean Ðrst
passage times are popular ways of deÐning rate constants. If
the rate constant is well deÐned (i.e. if where Q is thebQA 1
activation energy, is BoltzmannÏs constant andb~1\ kBT , kBT is the absolute temperature) all deÐnitions give the same
results. More precisely, the di†erent deÐnitions yield identical
rate constants up to exponentially small terms of
O[exp([bQ)] compared with terms of order unity. Unfor-
tunately, there are very few models for which the rate constant
is known exactly i.e. up to such exponentially small terms.
One example is a one dimensional di†usion process. Fre-
quently, however, the analysis of a problem is not tractable to
this exponential small order but one can evaluate only the
leading contribution to the rate constant and one neglects
algebraically small terms of order [1/(bQ)] compared to terms
of order unity. An example is the famous Kramers expression

¤ This paper was to have been presented at Faraday Discussion
110, University of St. Andrews, 1stÈ3rd July 1998, but was withdrawn
because the author was ill and therefore unable to attend the meeting.

for the rate constant in the regime of intermediate to high
friction.4

Even though di†erent approaches yield the same results
they vary in usefulness. Correlation functions are very power-
ful for numerical evaluation of rate constants. The reactive
Ñux correlation function describes the time evolution of the
population given the system started at the barrier top. This
function will plateau at a value which can be related to the
rate constant.5h9 Generally the plateau value will be reached
on a microscopic timescale so that simulations do not have to
be run for exponentially long times. Mean Ðrst passage times
which are in many ways equivalent to steady state Ñux ideas
are useful for analytical studies.3 There has been substantial
progress in applying boundary layer techniques for solving
mean Ðrst passage time equations. These techniques were
mainly introduced in the work by Matkowsky and Schuss.10
We will rely heavily on such techniques in Section III. Most of
the ideas outlined above can be applied to unimolecular iso-
merization reactions and dissociation reactions as well to
bimolecular recombination reactions and atom transfer reac-
tions.

Since the full many-body dynamics of a molecule in a liquid
is complicated one often focuses on simple stochastic models.
The idea is to replace the bath gas or liquid by a stochastic
bath. There are two broad classes of stochastic models. In the
Ðrst class one deÐnes a particular model that applies to only a
relatively narrow pressure range. The unimolecular rate
theory of gas phase reactions which describes dissociation
reactions at low pressures,11h13 is such a model. Within this
approach master equations in energy space are considered.
Another example is the theory of di†usion controlled reac-
tions in dense liquids based on the work of Smolu-
chowski.1,14,15 Here one treats the di†usion equations in
position space. On the other hand there are more broad based
stochastic models that apply over the whole density regime.
The original approach of Kramers4 belongs to this second
class. In this case a frictional Langevin equation models the
solvent at all densities. In recent years many models applic-
able over wide density ranges have been proposed. For
example general impulsive collisional models which re-sample
velocities from a given distribution function at a given colli-
sion frequency were discussed by Skinner and Wolynes,16,17
Montgomery et. al.8 and Berne et. al.18 The popular BGK

J. Chem. Soc., Faraday T rans., 1998, 94, 2717È2723 2717



model19 is a particular impulsive collisional model which re-
samples velocities from a MaxwellÈBoltzmann distribution
upon a collision. If a collision changes the velocity only inÐni-
tesimally one recovers the Kramers model (see Skinner and
Wolynes17). Non-Markovian Langevin models have been pro-
posed by Grote and Hynes20 where the frequency dependence
of the friction kernel describes the Ðnite solvent relaxation
times. The original Kramers model utilizes a frequency inde-
pendent friction kernel.

Usually such general models which are applicable over a
wide density range reduce to the more classical models of the
Ðrst group i.e. to unimolecular rate theory at low collision
frequencies or frictions and to theory of di†usion controlled
reactions at high collision rates or frictions. Until now all
these theories have been developed quite independently and
therefore do not incorporate the various interconnections
between these di†erent approaches. By exploiting these inter-
connections we show that much insight into the problems can
be gained.

In all cases given a stochastic model, one is faced with the
problem of calculating the rate constant. This is a nontrivial
problem. It can be done numerically as well as analytically in
some cases. Transition state theory always provides an upper
bound for the rate constant. This is brieÑy considered in
Section II. In the low pressure (or infrequent collision, small
damping) regime the rate constant is determined by a Master
equation in energy space. If the model has a di†usion con-
trolled limit (as for most collisional models at high collision
frequencies) one can evaluate the rate constant in the di†usion
controlled regime. We present in Section III A a general
approach based on asymptotic techniques. Surprisingly it is
relatively easy to construct trivial interpolation formulae
which give reasonable predictions of the rate constants over
the whole friction or collision frequency range. We consider
these ideas in Sections IV C and IV D where we also compare
some of the analytical results with numerical simulations.

II Transition state theory

A General analysis

The transition state rate constant is most conveniently found
from the short time behavior of the reactive Ñux as described
by Pechukas21,22 and Chandler.7 This gives for the rate con-
stant from reactants to products

kTST\
Sd( f ) f 5 h( f 5 )T

Sh( f )T
(1)

where h( . ) is the Heaviside step function, d( . ) the Dirac delta
function and S . . . T represents a canonical average. The reac-
tion coordinate f is a function of internal coordinates of the
molecule which is positive for reactants and negative for pro-
ducts. As an example, the reaction of butane from trans to
gauche states we may deÐne where / is the dihe-f\ /[ /Tdral angle and is chosen near the location of the transÈ/Tgauche saddle. With a reaction coordinate f, the transition
state rate constant at a particular temperature can be evalu-
ated for a given potential energy surface and masses of the
nuclei. Even though any reaction coordinate f which vanishes
near the saddle point is acceptable there is an optimum
choice. Since the transition state theory gives an upper bound
for the true rate constant21 the best choice for the reaction
coordinate f is that which minimizes the transition state rate
constant. Such a choice is in the spirit of variational canonical
transition theory.23 Before we make such an optimal choice
let us simplify eqn. (1) by performing the velocity integral
explicitly. This yields

kTST\
1

J2pb
Sd( f )oM~1@2+

r
f oT

Sh( f )T
(2)

which involves an average over conÐgurational coordinates
only. These coordinates are the positions of the nuclei r \ (r1,. . . , where N is the number of nuclei in the molecule.r2 , r3N)
We have denoted and abbreviatedb \ 1/kBT
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where are the masses of the nuclei in the molecule. Thism
iquantity is proportional to a diagonal element in the Wilson

G-matrix.24 Eqn. (2) can be simpliÐed further by integrating
over the coordinates describing the center of mass position
and the orientation of the molecule. This is possible since the
reaction coordinate f (q) and the potential energy U(q) depend
only on the internal coordinates q. These internal coordinates
can be bond lengths, bond angles etc. and are denoted by q \

. . . , where m is the number of internal degrees of(q1, q2 , q
m
)

freedom i.e. m\ 1 for a diatomic and m\ 3N [ 6 for a poly-
atomic molecule. Let us introduce a Jacobian J(q) for the
transformation from Cartesian coordinates r to internal coor-
dinates q. This integrated Jacobian is the determinant of the
metric tensor times the integral over the center of mass coor-
dinate giving a factor V , the volume of the system and factors
resulting from integrations over the orientational degrees of
freedom. Examples of this quantity will be given later.

We introduce the conÐgurational partition function of reac-
tants

Z
r
\ dre~bU(q)h[ f (q)]\

P
dqJ(q)e~bU(q)h[ f (q)] (4)

where U(q) is the intramolecular potential. This partition func-
tion can be evaluated by steepest descent. There are a fewZ

rpoints to note. First we have to remember that every equiva-
lent reactant minimum contributes in the same way, e.g. there
are two equivalent gauche states in butane which would give a
factor of two in this case. Second, for unbound reactants (e.g.
recombination) we will obtain a further factor of the volume V
of the system. This fact will lead to a rate constant which is
inversely proportional to the volume of the system. In bio-
molecular reaction kinetics it is customary to drop this
volume factor and refer to a biomolecular rate constant per
unit volume.

At this point we can rewrite eqn. (1) as

kTST\
1

J2pb
1

Z
r

P
dqe~bU(q)J(q)oM~1@2+

r
f od[ f (r)] (5)

Let us now pick the optimal reaction coordinate f which
minimizes the transition state rate constant. First of all f (q)
has to vanish at the saddle point of the potential energy
hypersurface to obtain the most favorable Boltzmann factor.
At low temperatures we can expand the potential energy
around the saddle up to quadratic terms and therefore only
worry about a reaction coordinate linear in the displacements
in the internal coordinates. The most favorable orientation of
the reaction coordinate can usually be shown to be normal to
the only unstable mode of the potential energy surface. In the
low temperature limit we can perform the integral by steepest
descent which gives

kTST B
1

J2pb
1

Z
r
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r

f o
T

o+
q
o
T

e~bU(qT)
A2p

b
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]
1

Jf2 f3 , . . . , f
m

(6)

We use the B sign instead of the equality sign to remind
ourselves that we have neglected terms of order (bQ)~1 com-
pared to unity. The subscript T denotes that the quantity in
question is evaluated at the saddle point We haveq \ qT .
denoted by . . . , the positive eigenvalues of the forcef2 , f3 , f

m
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constant matrix

F
ij
\
AL2Ueff
Lq

i
Lq

j

B
T

(7)

Since the transition state is a saddle point this matrix has one
negative eigenvalue which does not enter the result but willf1be important later in the discussion of di†usion controlled
reactions. We have introduced an e†ective potential (see also
Rodger and Sceats25)

Ueff(q)\ U(q)] U
m
(q) (8)

where

U
m
(q)\ [kB T ln J(q) (9)

is a “metric potential.Ï In general the saddle point must be
located on the e†ective potential This potential can beUeff(q).
thought of as a potential of mean force arising from centrifu-
gal distortion. This is analogous to the potential of mean force
in a liquid which similarly modiÐes the potential surface of a
molecule (see for example Chandler26). In the case where the
bare potential U(q) has a well deÐned saddle point the vari-
ation of the metric potential becomes negligible in the low
temperature limit and can simply be replaced by a constant.
Under these circumstances the metric potential modiÐes the
rate constant by a multiplicative factor. In the case where
there is no saddle point on the bare potential surface (as on a
dissociative potential) only the e†ective potential which
includes the metric contribution has a meaningful saddle point
and must be used to locate the transition state. Note that in
this case of equivalent transition states we have to count each
contribution separately e.g. we pick up a factor of two calcu-
lating the rate from trans to gauche butane. The case of a
pseudorotating transition state as occurs in cyclohexane27 for
example would be indicated by a zero eigenvalue of F. In this
case eqn. (6) does not apply since one has to integrate over
this mode explicitly.

III Di†usion controlled reactions

A Asymptotic analysis

In the spatial di†usion regime the distribution function of the
molecule in position space of all the nuclei . . . ,r \ (r1, r2 , r3N),where N is the number of nuclei in the molecule, will be
described by a di†usion equation

LP(r, t)
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i
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P)] ;

i, j
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j

(D1
ij
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is the di†usion tensor of the molecule in position spaceD1
ijand the drift satisÐes detailed balance

A1
i
\

1

P1 eq
;
j

L
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j

(D1
ij
P1 eq) (11)

Here is the equilibrium distribution function andP1 eq
P1 eq(r)P e~bU(r) (12)

where U(r) is the internal potential of the molecule and b \
Since the potential energy depends on the internal1/kBT .

coordinates . . . , only, i.e. U(r), we can explicitlyq \ (q1, q2 , q
m
)

integrate eqn. (10) over the center of mass and orientational
degrees of freedom to obtain
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where
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;
j
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j
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Eqn. (13) is a di†usion equation of the same form as eqn. (10)
but it is written in terms of the internal coordinates q of the
molecule. We have introduced a parameter v which will be
used later to perform asymptotic expansions. It is essentially
the barrier height compared to thermal energy if one intro-
duces properly scaled dimensionless variables. For the sake of
simplicity we will use variables carrying proper dimensions
and set v\ 1 at the end of the calculation. Even though the
internal coordinates again satisfy a di†usion equation the
equilibrium distribution function as well the di†usion coeffi-
cients in eqn. (13) and (14) are modiÐed. The equilibrium dis-
tribution becomes

Peq(q) P J(q)e~bU(q) (15)

where J(q) is the orientationally averaged Jacobian. The di†u-
sion coefficients in internal coordinates are

D
ij
(q) \ ;

k, l

Lq
i

Lr
k

Lq
j

Lr
l

D1
kl

(16)

since they form a contravariant tensor.
The rate constant is evaluated as the inverse of the mean

Ðrst passage time. We have to solve (see Gardiner3)

LsT \ [1 (17)

where

Ls\ v ;
i

A
i
(q)

L
Lq

i

] v2 ;
ij

D
ij
(q)

L2
Lq

i
Lq

j

(18)

Ls is the adjoint of the di†usion operator L introduced in eqn.
(13). Even though one could solve eqn. (17) with absorbing
boundary conditions in the product well, a more practical and
equivalent procedure has been used by Matkowski and
Schuss.28,29 One calculates the mean Ðrst passage time from
the bottom of the well to the separatrix LX which encloses the
reactant region X. The separatrix is a hypersurface in position
space from which a trajectory has equal probability to return
into the reactant well or to proceed into the product well. One
half of the inverse of the mean Ðrst passage time to the
separatrix is then the rate constant. The location of the
separatrix is found by analyzing the stochastic equation of
motion corresponding to eqn. (13)

q5
i
\ A

i
(q) ] m

i
(19)

where is the corresponding white noise source. In the lowm
itemperature limit, i.e. as v] 0, we can neglect the noise term

and the fate of a trajectory started near the saddle will be
determined by the linearized form of eqn. (19).

dq5
i
\ [b ;

i, k
D

ij
F

jk
dq

k
(20)

where we have used the force constant matrix evaluated atF
ijthe saddle [cf. eqn. (7)]. The di†usion tensor entering eqn. (20)

is evaluated at the saddle point as well. We denoted the devi-
ation from the location of the saddle by Let usdq \ q [ qT .
determine the fate of a trajectory which we start close to the
saddle point. The eigenvalue equation for the left (note that
DF is non-symmetric) eigenvectors

DFu
i
\ j

i
u
i

(21)

governs the behavior of these trajectories. Since D is deÐnitely
positive and only one eigenvalue of F is negative there will
usually be a single left eigenvector of DF corresponding to an
unstable mode The eigenvectors corresponding to the(j1 \ 0).
stable positive eigenvalues . . . , will span a hyper-(j2 , j3 , j

m
)

surface which is the separatrix. If we start a trajectory lying in
the separatrix it will converge to the saddle point ; a trajectory
not lying in the separatrix will move away from the saddle.
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This results in a characteristic structure of the mean Ðrst
passage time T (q). The quantity T (q) will change very rapidly
along the normal unit vector to the separatrix. The meannü
Ðrst passage time will develop a boundary layer solution
which can be analyzed by setting

T (q)\ Cv(q) (22)

It turns out that C is exponentially large so we have to solve
only

Lsv\ 0 (23)

Transforming to local coordinates at the saddle point and
introducing a stretched variable where z\g \ z/Jv

we Ðnd that as v] 0 the boundary layer structurenü Æ (q [ q
T
)

is determined by the solution of
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where
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ALA
n

Lg
B
q/qT
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with

A
n
\ ;

i
n
i
A

i
(q) (27)

Note that the drift A vanishes at the saddle which makes it
necessary to keep the lowest non-vanishing term of the Taylor
expansion of this quantity near the saddle. The structure of
the boundary layer which is the solution of eqn. (24) is a
simple error function

v(g)\
S2c

p

P
0

g
dg@ e~cg{2@2 (28)

where we made use of the boundary conditions v(g) \ 0 for
g \ 0 and v(g)] 1 for g ] O. We have used the abbreviation

c\
KA

n(1)
D

nn

K
(29)

Note that this case is di†erent from the cases discussed in the
literature1 where the drift A does not vanish and leads to an
exponential boundary layer of thickness v. Here the drift A
vanishes linearly at the separatrix which leads to an error
function boundary layer of thickness Jv.

Given the boundary layer solution we can evaluate the
undetermined constant C. This is done by the standard trick
of multiplying eqn. (13) by and integrating over X.Peq(q)
Using the Gauss divergence theorem we Ðnd

[Cv2
P
‹X

dSPeq(qs
) ;

ij

n
i
D

ij

Lv
Lq

j

\
P

X

dqPeq(q) (30)

Since the particle has equal probability to reach either well
from the separatrix the rate constant k is 1/(2C). Inserting eqn.
(28) into eqn. (30) and performing the integrals by steepest
descent we Ðnd after some algebra that

k B
o j1 o

Jo f1 o

o+
q

f o

oM~1@2+
r
f o

T

kTST (31)

where and are the negative eigenvalues of DF and F,j1 f1respectively. We used the rate constant given by canon-kTSTical transition state theory eqn. (6). Since the matrix DF

governs the equation of motion near the saddle eqn. (31) looks
similar to the GroteÈHynes relation20 or the equivalent
expression obtained by Langer.30

B Applications

It is quite easy to see that in the case of no rotations and
isotropic mass and di†usion tensor eqn. (31) reduces to the
result derived by Landauer and Swanson31

k \
u

B
c

kTST (32)

where is given bykTST

kTSTB
1

2p

<
i
u

i
(0)

<
i
u

i
(S)

e~bQ (33)

c is the mass weighted friction and is the frequency of theuBunstable normal mode of the saddle. If the rotational contri-
butions are negligible [J(q) \ 1] one can show that eqn. (31)
is exactly equivalent to LangerÏs expression. Eqn. (31) is also
equivalent to the di†usion controlled limit (high friction limit)
of the GroteÈHynes relation applied to the general case of
coupled modes of anisotropic mass and friction. This situation
neglects rotational corrections and has been discussed by
Grote and Hynes32 and van der Zwan and Hynes33 in some
detail.

However, if the rotational degrees of freedom contribute
there are di†erences. First, the reactive frequency determined
by the interaction plus the metric potential will not in general
coincide with the barrier frequency given by the potential
surface alone. In the case of a well deÐned saddle point on the
surface U(q) the metric potential contribution is negligible.
However, on a surface with no saddle point (as in a disso-
ciation reaction) the curvature of this saddle in the e†ective
potential will determine the di†usion controlled fall-o†. The
simplest example of a nontrivial rotational e†ect is the recom-
bination of a diatomic. We want to show that eqn. (31)
applied to a diatomic molecule reduces correctly to the recom-
bination rate constant evaluated by Smoluchowski in 1917

k \ 4p(D1] D2)a (34)

where and are the di†usion coefficients of the individualD1 D2atoms of the diatomic molecule. For a general potential
Debye34 showed that

a~1 \
P
re

=
dr

e~bU(r)
r2

(35)

and is the location of the minimum as well. It is worthwhilerementioning that in one and two dimensions the di†usion con-
trolled rate constants do not exist. It turns out that the square
in the integrand of eqn. (35) is actually the number of spatial
dimensions minus one which makes the integral diverge in one
or two dimensions. Again this is an anomaly of recombination
reactions in less than three dimensions.35,36 To show the
equivalence of eqn. (31) and (34) we expand the integrand in
eqn. (35) around its maximum to second order andr \ r

Treplace the integral by a Gaussian. Note that this was how the
location of the transition state was determined in Section II
where we used the reaction coordinate Usingf \ r [ r

T
.

kTST \
S8p

kb
r
T
2 e~bQ (36)

we can collect terms which give us a factor of and obtainkTST

k \ bJk(D1] D2)
C
[
AL2Ueff

Lr2
B
r/rT

D1@2
kTST (37)
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Using the e†ective potential

Ueff(r)\ U(r)[ 2kBT log r (38)

we Ðnd that eqn. (34) is asymptotically equal to eqn. (37).
Let us apply this relation to the case of a polyatomic of

isotropic mass m and isotropic di†usion tensor D . Further-
more assume that one of the internal coordinates is the reac-
tion coordinate f. Then we obtain

k \
uB
c

kTST (39)

where the mass weighted friction coefficient is

c\
1

bD
(40)

and

uB\
1

Jm

C
[
AL2Ueff

Lf 2
B
T

D1@2
o+

r
f o

T
(41)

is the frequency of the unstable mode of the saddle. One can
actually show that the same value would also be obtained by
performing a normal mode analysis of the molecule at the
saddle point. However, we have to use the potential with the
metric correction (this becomes essential in dissociationÈ
recombination reactions since there is no well deÐned saddle).
Some applications of this formula will be discussed in Sections
IV C and IV D.

We have presented a general theory of di†usion controlled
reactions. The rate constant can be evaluated asymptotically
for the case of a single saddle point which gives the general
result eqn. (31). The quantities needed are the di†usion coeffi-
cients and the potential energy. The resulting expression can
be related to the transition state rate constant. Note that our
approach treats the molecule as fully Ñexible. If one considers
rigid bond molecules the results will be di†erent.37 Our
approach could be extended to the treatment of pseudorotat-
ing transition states such as is encountered in cyclohexane.27

IV Simulations and the intermediate regime

A Interpolation formula

In previous sections we evaluated rate constants in di†erent
limits. In reality one is interested in rate constants at a given
collision rate or Ðction and not in its limiting behavior. Fortu-
nately, simple interpolation formulae are able toPadè-like
predict the rate constants with reasonable accuracy as long as
the assumptions in the limiting theories are met. The idea used
in the following is that any process discussed so far can act as
a rate limiting step. For a large class of models of isomer-
ization reactions or recombinationÈdissociation reactions the
overall rate constant k is then well approximated by

k~1 B klow~1] kTST~1 ] kdiff~1 (42)

where is the low pressure energy activation rate constantklowand is the di†usion controlled rate constant. This can bekdiffthought of as a sum of characteristic times associated with
each process. One encounters analogous relations in the
analysis of linear networks, i.e. the resistance of resistors in
series is given by a similar relation.

Comparison of simulation data shows that this kind of con-
nection formula is usually accurate to within 10È20%. If the
assumptions used to derive the limiting theories are not met,
we cannot expect the connection formula to work. For
example, in the low collision or low friction regime for isomer-
ization one Ðnds that the assumption of rapid statistical

energy equipartitioning is often not met, at least for most
model potential energy surfaces which we have studied.38,39
The high friction regime is reasonably safe unless friction is
extremely anisotropic, the barrier is unphysically low or there
are non-Markovian e†ects in which the bath is very slow.40

B Simulations

To address the validity of such interpolation formulae we
have performed extensive simulations on several systems of
increasing complexity. The simulation data were obtained by
using the reactive Ñux method. The full reactive Ñux method
has been reviewed elsewhere.9 We have also employed a
powerful modiÐcation of the reactive Ñux method called the
“absorbing boundary methodÏ invented by Straub and
Berne.41,42

For simplicity we focus only on the BGK model19,8 and the
Kramers model.4 These two models can be treated using ideas
already introduced in preceding sections. Both models reduce
to spatial di†usion in the high collision rate or high friction
regimes. In the low collision limit these two models behave
very di†erently however. The BGK model is essentially in the
strong collision limit whereas the Kramers model is in the
weak collision limit at low friction.

C Butane

Let us now consider a model of a butane molecule originally
studied in equilibrium by Rebertus et. al.43 The dynamical
properties of this model were considered in a molecular
dynamics simulation by Rosenberg et. al.44 A stochastic simu-
lation has been performed by Montgomery et al.45 where the
solvent was modeled by the BGK model. Their data of the
rate constant as a function of collision frequency are shown in
Fig. 1. We now explain these simulation data in terms of the
theories already discussed. Our analysis will be based on the
assumption that the barrier energy is high compared with
the thermal energy, an assumption which is not really met. In
this case the barriers between the metastable wells are only 3
and 5 times the thermal energy, respectively. We have to keep
this fact in mind when comparing theory with simulation.

The dividing surface used is with the position of/[ /
T

/
Tthe transÈgauche saddle where we locate the transition state.

The mass is isotropic so that the transition state rate constant
for the reaction from the trans to gauche state [cf. eqn. (6)] is

Fig. 1 Rate constant relative to the transition state result as a func-
tion of collision rate for the BGK model for butane. Solid line is the
prediction of the Padè-like approximant eqn. (42) for the statistical
theory for six degrees of freedom. The dashed line is the same theory
applied to a single degree of freedom. Data points are simulation data
with error bars obtained by Montgomery et al.45
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kTSTB
o+

r
/ o

T
nJm

SAL2U
L/2
B
0
e~bQ (43)

where U is the dihedral angle potential. Note that this is
actually twice eqn. (6) since we have two equivalent transition
states for the reaction from the trans to gauche state. Further-
more, the Jacobian for[J(q)\ V 8p2r2s2t2 sin h1 sin h2]butane cancels exactly in eqn. (43) since it does not depend on
the dihedral angle /. Using the molecular dimensions given
by Montgomery et. al.45 we Ðnd that Theo+

r
/ o

T
B 1.5 Ó~1.

dihedral potential is used to evaluate the second derivative
and we obtain

kTSTB 7.8] 1010 s~1 (44)

which is in good agreement with 7.4] 1010 s~1 reported by
Montgomery et. al.45 In the di†usion controlled regime we
have

kdiff \
uB
a

kTST (45)

where

uB \
o+

r
/ o

T
Jm

S
[
AL2U

L/2
B
T

B 2.0] 10~13 s~1 (46)

which is evaluated from the dihedral potential. The same
value is found by performing normal mode analysis of the
butane molecule in the transition state. In the low pressure
regime the rate constant for activation from the gauche well
(bQB 4.95) is, in the strong collision approximation

klowB ap
(bQ)5

5!
e~bQ B 5.4] 10~2 a (47)

where p is the trapping probability in the product (gauche)
wells and where we used the low collision rate regime follow-
ing from the multidimensional strong collision (SC) rate
theory46,47

kSC\ a
(bQ)n~1
(n [ 1) !

e~bQ (48)

Inserting eqn. (47) and the analogous expression for the
reverse reaction into the detailed balance condition we Ðnd
p B 0.31. This calculation used the harmonic approximation
to evaluate the density of states and we have neglected the
role of rotational degrees of freedom which could be treated
using the approach already presented in the literature.1,47 We
insert these results into eqn. (42) and plot the resulting rate
constant as a function of collision frequency in Fig. 1 (solid
curve line). For comparison a one degree of freedom theory
[using eqn. (43) instead eqn. (47)] is also shown (dashed line).
Because of the extremely low barrier we have a quite atypical
situation that the rate constant, in the low collision regime, is
only one order of magnitude larger for six degrees of freedom
than the corresponding rate constant for a single degree of
freedom. In the case of a higher barrier the increase would be
much more pronounced. One can see from Fig. 1 that the
prediction of our theory is at worst within 50% of the simula-
tion data. In the high collision regime the di†usive fall-o† dis-
agrees by 15% which is very good agreement keeping the low
barrier height in mind. In the low collision regime the discrep-
ancy is larger (50%). Keeping the fact in mind that the two
wells in the problem are so shallow, such reasonable agree-
ment is probably fortuitous. In light of this fact it is difficult to
address the source of the discrepancies. In the high collision
regime the discrepancy is almost certainly due to the asymp-
totic expansion used to derive eqn. (45). In the low collision

regime the discrepancy can have several causes : harmonic
approximation for the density of states, high barrier approx-
imation, neglect of rotational contributions or non-RRKM
e†ects. Nevertheless it is comforting to see that such a simple
theory explains the simulation data in a reasonable fashion.

D Cyanide

As a last example we consider a triatomic molecule which can
be thought to mimic HCN-isomerization. However, we do not
attempt to model this reaction quantitatively. The potential,
in reduced units, is given by

U \ 700(1 [ e~2(s~0.9))2

] 400(1 [ e~2(r~0.57 cos2 h~0.78))2] C sin2 h (49)

where s is the CN distance, r is the distance from an H-atom
to the midpoint of the CN bond and h is the angle between
these two distances. The two bonds are represented by deep
Morse potentials and the angular coordinate moves over a
sin2 h potential. A schematic contour plot of the potential as a
function of the H-atom position for a Ðxed CN-bond length is
shown in Fig. 2. The minima correspond to the two stable
reactants (HCN and HNC). There are two saddle points cor-
responding to the transition states in which the molecule
forms and equilateral triangle. The coupling of the modes
comes only from the kinetic energy term. For simplicity we
assume that all mass points have unit mass. We have per-
formed simulations on this potential surface using the
Kramers model where we assume that all the nuclei feel the
same friction per unit mass. Some of the results are shown in
Fig. 3. The theoretical predictions follow the same ideas as
discussed previously. After some algebra the transition state
theory gives [cf. eqn. (6)]

kTSTB
u0
3p

e~bQ (50)

where we have used

u0 \
2

s0

S2C
m

(51)

Here and m\ 1 in reduced units and we take f\ coss0 \ 0.9
h. Since the Jacobian for a cyanide is,

J(q) \ V 8p2r2s2 sin h (52)

the ratio of the Jacobians It is plausibleJ(q
T
) : J(qO) \ 1 : 3.

that the centrifugal distortion makes the stable linear conÐgu-

Fig. 2 Potential surface for the model HCN isomerization. We plot
the potential energy for the position of the H-atom for Ðxed positions
of the C and N-atoms.
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Fig. 3 Rate constants relative to the transition state result as a func-
tion of the friction for the Kramers model in the model HCN poten-
tial surface eqn. (49) with (a) C\ 25 and (b) C\ 100. Solid line is the
prediction of the approximant, eqn. (42), using a statisticalPadè-like
three degrees of freedom theory. The dashed line is the same theory
applied to a single degree of freedom. Data points are simulation data
with 95% conÐdence intervals.

ration more probable than the triangular transition stateqOconÐguration Note that eqn. (50) is twice eqn. (6) since weq
T

.
have two equivalent saddle points. In the di†usion controlled
regime, we Ðnd that

kdiff \
uB
c

kTST (53)

where the barrier frequency which was introduced inuB \ u0eqn. (51). In the low friction region we employ the harmonic
approximation, thus

klow B
c
2

(bQ)3
2

e~bQ (54)

and neglect the rotational e†ects for simplicity. The results are
plotted in Fig. 3 for two cases : C\ 25 [Fig. 3(a)] which is a
potential surface with low frequencies and a lower barrier
(bQ\ 10), and C\ 100 [Fig. 3(b)] which corresponds to a
potential surface with higher frequencies and a higher barrier
(bQ\ 40). Note the excellent agreement between theory and
simulation in the high friction, di†usion controlled regime. In
the low friction regime the data do not follow the statistical
three degrees of freedom theory at all. Rather, for the low
barrier [low frequency surface (C\ 25)] they follow the
dashed line which is the one degree of freedom theory [klow B

exp([bQ)] instead of eqn. (54). For the high barrier(c/2)bQ
[high frequency surface (C\ 100)] the simulation data seem
to lie in between the one and three degree of freedom theories.
Unfortunately, it is computationally too expensive to extend
the simulations to lower frictions. All this means that the
kinetic energy coupling is not e†ective enough to assure rapid
energy partitioning on the energy shell. In this model we have

severe non-RRKM e†ects which reduce the rate constant
compared to the prediction of a statistical theory at low fric-
tions.
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