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The reversible reference system propagator algorithm (r-RESPA), based on a Trotter factorization of 
the classical propagator, is tested in a molecular dynamics simulation of solid C6e. We show how, 
with an appropriate subdivision of the interaction potential and with a careful balancing of the 
integration parameters, one can adopt large time steps and impressively efficient r-RESPA 
integrators which yield the same dynamics obtained by means of the small time-step Verlet 
algorithm. The results presented here show that the use of r-RESPA integrators speeds up the 
simulation by a factor of between 20-40 with respect to the standard Verlet algorithms. 

I. INTRODUCTION 

Molecular dynamics (MD) simulations of molecular sys- 
tems based on the numerical integration of Newton’s equa- 
tions of motion are routinely used to elucidate the structural 
and dynamical behavior of condensed phases at the micro- 
scopic level. Molecular systems, however, are often charac- 
terized by having stiff intramolecular degrees of freedom 
(e.g., high-frequency intramolecular motions) evolving under 
the action of forces that can be decomposed into rapidly 
varying intramolecular forces and soft or slow intermolecular 
forces so that numerical stability in the stepwise integration 
of the equations of motion can be achieved only by imposing 
very short time steps. In standard methods, the intermolecu- 
lar forces are computed after each of the short time steps, and 
a very large number of time steps must be generated to fol- 
low the motion of the whole system. A case in point is that of 
a crystal of fullerene molecules, C,. The intramolecular vi- 
brations are very stiff (300-1600 cm-‘) compared to the 
intermolecular vibrations (20-50 cm-‘) and librations 
(lo-30 cm-‘). It is of considerable interest to simulate the 
lattice dynamics of this system including intramolecular mo- 
tion, but until recently such simulations have been impracti- 
cal. Using standard integrators it would take several CPU 
weeks on a fast IBM/Rise 6000-370 workstation to deter- 
mine the IR and Raman spectra of the crystal for a given 
thermodynamic state even for a crystal of only 32 flexible 
Cm molecules. 

Recently Tuckerman et al.’ have devised a reversible 
and symplectic integration scheme, the reversible reference 
system propagator algorithm (r-RESPA), which makes it 
possible to efficiently treat the separation of time scales in- 
herent in the motion of molecular assembles. The r-RESPA 
algorithm has been applied to a variety of systems2*3 where 
there is a clear separation between “fast” and “slow” dy- 
namics and to systems where the force can be further sub- 
vided into long- and short-range components.4 Application of 
the r-RESPA propagator to simulations of flexible molecules 
have already started to emerge.5.6 In a paper contemporane- 
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ous with this paper, Humphreys et aL6 have successfully ap- 
plied r-RESPA to the simulation of the small protein, 
Crambin, including in the model all atoms and all bond- 
stretching, bond-bending, and torsion-angle degrees of free- 
dom. The speedups reported are completely consistent with 
those reported here. The r-RESPA method has also been ap- 
plied to ab initio molecular dynamics using the Carr- 
Parrinello and generalized valence bond (GVB) scheme.7 

In the present paper we apply r-RESPA to the simulation 
of the solid phase of flexible C6a. Experimental studies of 
intramolecular dynamics in solid C6e using high-resolution 
Fourier transform infrared (FAIR) techniques,*-” reveal 
complex details of the absorption pattern showing strong 
solid state effects on the internal motions of the C, cage. 
Molecular dynamics simulations1’-‘3 of rigid C, molecules 
based on simple interaction potentials, have successfully pre- 
dicted the structural properties of the solid phase of C6O but, 
due to the assumed rigidity of C6O molecule, these simula- 
tions obviously cannot give information about crystal field 
effects on intramolecular dynamics. The new r-RESPA inte- 
grator enables us to simulate a crystal of flexible C6a mol- 
ecules using accurate intramolecular14-16 and intermolecular 
potent&l2 on a time scale of 12 CPU hours rather than the 
several CPU weeks required by the standard integrators. 

In previous applications of r-RESPA, the dynamical 
variables of interest were calculated only after each large 
time step. Autocorrelation functions and averages of these 
dynamical variables were thus determined using only the 
large time-step data. For the case of solid fullerene at low 
temperature we show here that r-RESPA allows to use time 
steps as large as 25 fs. The largest frequency resolvable cor- 
responding to the time step A r = 2 5 fs is approximately 800 
cm-‘. Given the frequency range of the intramolecular vi- 
brations (300-1600 cm-‘) in &a, this means that the record- 
ing of dynamical variables must be done much more often 
than each large time step. In this paper, we show that even 
the values of the dynamical properties determined after each 
small time step can be used to accurately determine the au- 
tocorrelation functions and energy records. In fact, compari- 
sons between r-RESPA using the small time-step data and 
pure velocity Verlet with a very small time step show that the 
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IR and raman spectra, as well as the intramolecular energy 
record, give almost identical results. 

The solid fullerene system is ideally suited to the appli- 
cation of r-RESPA. The time scale for the intramolecular 
motion is separated from the time scale of the librations and 
translations by a large gap. The highest intermolecular vibra- 
tional frequency is about eight times larger than the lowest 
intramolecular vibration. Moreover the long-range behavior 
of the intermolecular interaction potential allows a further 
separation of the slow intermolecular dynamics into short- 
and long-range forces. 

where {.xi -pi} denote the positions and conjugate momenta 
of the N particles and V(x), the interaction potential, depends 
only on the 3N-dimensional coordinate vector x. If the sys- 
tem contains stiff degrees of freedom driven by a short- 
ranged intramolecular potential, the potential function V(x) 
can be subdivided into 

In the present paper we demonstrate the power of the 
r-RESPA integrator scheme in the simulation of molecular 
systems comparing its performances with the standard single 
step integrators. Extensive numerical tests have been per- 
formed for the case of solid C60 at low and high temperature, 
and the resulting speedup for a triple time-step r-RESPA 
scheme with respect to a simple velocity Verlet integrator has 
been found to be of the order of 20-40. Our results show 
how the use of multiple time-step r-RESPA algorithms, 
based on an appropriate choice of the interaction potential 
subdivision, opens the way for computer simulations of sys- 
tems of great complexity, hitherto beyond the reach of single 
time-step standard molecular dynamics. In a subsequent pub- 
lication, the multiple time-step methodology discussed here 
is applied to study the effect of the crystal field on the in- 
tramolecular dynamics both in the low-temperature ordered 
phase and in the high-temperature orientationally disordered 
phase of solid C,. 

V(x) = V,(x) + Vdx), (2.3) 

where V,(x) and V,(x) are the inn-a- and intermolecular po- 
tentials, respectively. The intermolecular potential V, , in the 
present treatment, is assumed to be a superposition of spheri- 
cal atom-atom two-body interactions of the form V( rii), 
where rij denotes the distance between the two interacting 
atoms belonging to two different molecules. Each two-body 
atom-atom potential term, V(r), is further subdivided by 
arbitrarily subdividing the distance r into m subsegments of 
length rl, r2-r1 ,..., rk-rkel, such that 

V(r)=Sl(r)V(r)+[S2(r)-Sl(r)]V(r)+**.+[Sk(r) 

-Sk-,(r)]V(r)+*~*+[l-Ss,-l]V(r) 

= 5 [Sk(r)-Sk-I(r)lV(r). (2.4) 
k=l 

This article is organized as follows: In Sec. II we present 
a brief review of the r-RESPA integration method focusing 
on its application to the dynamics of flexible molecules. In 
Sec. III we discuss the application of the r-RESPA scheme 
specifically to the solid phase of flexible C6a molecules, il- 
lustrating the use of a triple time-step integrator, based on the 
subdivision of the interaction potential into intramolecular 
and short- and long-ranged intermolecular contributions. The 
potential breakup is compared to previous approaches using 
a force breakup. In Sec. IV we present numerical tests per- 
formed on a periodic sample of 32 molecules, aimed at as- 
sessing the numerical accuracy and computational efficiency 
of the r-RESPA integrator for different choices of integration 
parameters. 

The switching functions Sk(r) are defined as 

So(r)=O, S,(r)= 1, (2.5) 

and 

i 

1, ocr<rk-Ak 

Sk(r)= 1 +R2(2R-3), rk-kk6r<rk (2.6) 
0, rkcr 

with R=[r-(rk-Xk)]lX, ro=O, and r,=m. The analytical 
form of the switching function (in our case taken to be the 
Watanabe and Reinhardt function’*) is arbitrary, the only re- 
quirement is that it and its first derivative is continuous. The 
continuity of the first derivative implies that S; is zero at rk 
and rk-kk. Using Eqs. (2.3) and (2.4), the total potential 
function can be written as 

v(x)=v,(x)+$ vk(x), 
k=l 

(2.7) 

A detailed study of the solid state spectra from detailed 
simulations of completely flexible C, molecules in the solid 
state at different temperatures is presented in the accompa- 
nying paper. I7 

where in the kth intermolecular term, 

II. THEORY 

vk(x)=c [Sk(rij>-Sk-l(rij)lV(rij)r (2.8) 
i<j 

only the pairwise interactions with rk - , < r < rk yield a non- 
zero contribution. Given the subdivision, Eq. (2.7), we now 
write down the Liouville operator in the form 

iL=iG,-,+iL, (2.9) 

with 

The classical propagator is defined as 

U(t) = eiLf. (2.1) 

L is the Liouville operator for a system of N particles in 
Cartesian coordinates, and is defined as 

iL={.**,H}= C ii g-z& 9 I I (2.2) 
i= 1.n 1 I I and 
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N av a &c-C m-* 
i=l dxi aPi 

(2.11) 

According to the Trotter theorem,‘9*20 the associated propa- 
gator for this subdivision of the Liouvillian, Eq. (2.9), can be 
written as 

pt= le iL,At,lZeG,- IAtmeiL,At,12 P 1 m+ O(At;>, 
(2.12) 

where At, = tlP, is a discretization for exp( iL,t), the ex- 
ternal propagator, involving the slowly varying long-range 
pairwise interactions. The middle propagator generates the 
(faster) dynamics of the so-called “reference system” of or- 
der (m - 1). During the time At,, the (m - 1)th reference 
system evolves freely with respect to the L, propagator, i.e., 
without experiencing the force due to the interactions at in- 
teratomic distance within the outermost shell rmSm. The 
above procedure differs from previous applications of 
r-RESPA in that here the potential function rather than the 
force is subdivided into short- and long-range components, 
as shown in Eq. (2.4). 

It is important to note the similarities and differences of 
the potential breakup and the force breakup. 

(a) Both breakups give reversible and symplectic inte- 
grators. 
(b) Both breakups equally conserve the energy after 
each complete propagation step. 
(c) Each breakup has its own constant of the motion for 
the intermediate time steps At,. The energy KE+V, is 
conserved during the short time steps of the potential 
breakup whereas the energy KE + Vf is conserved dur- 
ing the short time steps of the force breakup where Vt is 
so defined that Fk = -V Vz . Thus to determine the 
latter constant of the motion one has to solve a differen- 
tial equation. 
Of course the the two breakups give equally accurate 

and stable integrators; nevertheless, if the conservation of the 
energy ICE+ V is used as a measure of the accuracy during 
the short time steps it might appear that the force breakup is 
less accurate than the potential breakup. This would be an 
erroneous conclusion. Anticipating the results of Sec. IV, nu- 
merical tests clearly demonstrate that equilibrium thermody- 
namic properties and dynamical properties, such as power 
spectra and correlation functions, do not depend appreciably 
on the switching method used. 

We now proceed with the expansion of the middle 
propagator of Eq. (2.12) depending on the “faster” Liouvil- 
lian G,-,: 

eiGm-lAtm=ei(L,-~+G,-~)At~ 
I 

where 

(2.13) 

N 
iGrne2=C 

m-2 av a 
&T-E!L-x L- 

aXi dXi api k=l axj api 
I 

(2.14) 
i= 1 

and 

av,-, a 
L,-,=- 2 -- 

i=l.n JXi api . 
(2.15) 
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Again applying the Trotter factorization to the right-hand 
side of Eq. (2.13) gives 

&,-,+G,,,-Wm 

= [e iL,-~Atm-,12eiG,-2At,,,-~eiL,,,-~At,,,-,t2 P,-, 1 
+O(At;-,). (2.16) 

This approximate propagator has the same structure as the 
one in Eq. (2.12) with the time step associated with the op- 
erator in Eq. (2.15), 

At--i=+ = 
t 

m 1 ~rnPm--1 * 
(2.17) 

Inserting Eq. (2.16) into Eq. (2.12) yields 

e iLt _ 
4.e 

iL,(At,l2) 

X[e 
iL,_,(At,-,/2)eiG,_2At~-,eiL,_,(hr,_,/2) I’,,,-, 1 

XeiL~(A’~‘2)]P~+O(At~)+O(At~~,). (2.18) 

It is clear that such a procedure can be repeatedly applied 
until one exhausts all of the m terms of the intermolecular 
potential in the summation of Eq. (2.7). In order to remove 
all the excess baggage from the formalism we now define the 
following propagators: 

fk=e iLkAtk/2 , gk-l~eiGk-lAfk, 

where the kth time step is given by 

(2.19) 

tI-&Pj 
Atk= I-qzopj . (2.20) 

Using the definitions [Eq. (2.19)] and repeatedly expanding 
the gk propagator as in Eq. (2.13) one obtains 

e”L’=Cf,~~,-~~...[...Lf~~af~lP1...lPm-k 

...f(m-l)]Pm-~fm]P~+ 5 O(At;) (2.21) 
k=l 

with 

g0=e 

N 
a av, a C ii --- - 

i=l 
axi axi api 

I 

. (2.22) 

The error in the above factorization is still of order O(At3) 
as in the Verlet integrator. The choice of the constants kk and 
rk in the switching functions, Eq. (2.6), together with the 
SekCtiOn of the integers Pk must be tuned such that all the 
temX in the error summation C,O(bt:) in Eq. (2.21) are 
approximately of the same order of magnitude. The go 
propagator [Eq. (2.22)] contains only the intramolecular po- 
tential and corresponds to the zeroth order reference system 
(the intramolecular reference system). Again using the Trot- 
ter formula, the intramolecular propagator go of Eq. (2.22) 
can be written as 
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xexp[ 2 2 2 -&]I P”+O(Ati), (2.23) 

where Ato=HIIim_,Pj [see Eq. (2.20)] is the shortest time 
step for the intramolecular dynamics. As shown in Ref. 1, the 
above factorization leads to the velocity Verlet integrator. 
Substitution of Eq. (2.23) into Eq. (2.20) yields the final 
propagator for an arbitrary subdivision of the intermolecular 
potential into m components. Of course, the intramolecular 
potential can be further subdivided into stretching, bending, 
and torsional components. Generally, however, the expensive 
task in the simulation of a molecular system is the force loop 
involving the intermolecular interactions (or nonbonded in- 
teractions for protein dynamics), so that a breakup of the 
intramolecular potential does not lead to an appreciable sav- 
ing of CPU time. The time-advancing recipes for the propa- 
gator [Eq. (2.21)], with go factorized as in Eq. (2.23), can be 
trivially obtained by using the property of the exponential 
operators, exp(~a/ax)f(x)=f(x+u), in Eq. (2.21) and by 
applying these to the initial state {x(O),p(O)} at t= 0.’ The 
implementation of the resulting integration algorithm on a 
computer is straightforward. In the Appendix we give an 
example of FORTRAN code for a four time-step integrator for 
a molecular system. The great advantage of the method lies 
in the fact that the most expensive force routines, involving 
the larger number of pairwise interactions in the external 
shells, are those which are called less often during the simu- 
lation. Moreover during the execution of, say, the kth force 
routine, at virtually no cost, a neighbor list for the next (k 
- l)th force routine can be constructed. As we shall see, for 
the specific case of solid fullerene, this method allows dra- 
matic savings in CPU time. 

III. APPLICATION OF r-RESPA TO SOLID Cso 

C 60, a cage-like molecule with icosahedral symmetry, 
has stimulated an impressive number of experimental and 
theoretical interest since its discovery2’ and synthesis.22 At 
least two crystalline phases are known from x-ray scattering: 
a low-temperature orientationally ordered phase with cubic 
symmetry and a high-temperature orientationally disordered 
plastic phase, also belonging to the cubic system.23-25 The 
intramolecular potential for Cm used in the present study is a 
slightly modified version of a previous force field.14 The 
force field has been refit to the experimental frequencies of 
the isolated molecule22 by excluding the three l-4 stretching 
constants as was done in the modeling of C,o.26 The result- 
ing intramolecular potential is a superposition of harmonic 
terms depending on a total of six parameters: two stretching 
force constants for the bonded atoms, two l-3 stretching 
force constants for the nonbonded atom (meta position), and 
two bending force constants. We adopt the intermolecular 
potential function of Sprik et al. l2 This potential consists of a 
superposition of Lennard-Jones interactions with atom-atom 
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centers placed on the carbon atoms and additional interaction 
sites placed midway along the “short bonds” (for a total of 
90 interaction centers per molecule), plus an electrostatic 
term modeled by point charges placed on the same centers. 
In the present study the electrostatic term has been omitted 
since, as will be exhaustively discussed in a forthcoming 
paper,17 its contribution to the dynamical and structural prop- 
erties is negligible. The potential subdivision adopted in the 
present study of solid CGo is therefore given by Eq. (2.3) in 
which the intermolecular potential VM is subdivided into 
only two parts [m=2 in Eq. (2.7)] such that 

V,(r)=S(r)V(r)+[l-S(r)]V(r)=Vl(r)+V2(r). 
(3.1) 

The optimum choice of intermolecular potential breakup in 
Eq. (2.4) (i.e., of the integer m), depends on the analytical 
form of the intermolecular potential itself and on the density 
and size of the sample.4 To the best of our knowledge, a 
multiple subdivision (m > 2) has not yet been implemented 
in computer simulations of a molecular system. For maxi- 
mum efficiency, this technique requires careful memory and 
data flow management when dealing with the neighbor lists 
and poses several subtle programming problems due to the 
extensive use of indirect addressing. 

For C, , we have adopted a simple short/long-range sub- 
division of the intermolecular potential (m = 2) because the 
size of the sample is relatively small (32 molecules) and the 
intermolecular potential decays quickly as r+w. Neverthe- 
less, such a simple subdivision enables us to obtain remark- 
able computational efficiency. The computer time required 
for evaluating the intramolecular contribution force field for 
C, is practically insignificant compared to the time needed 
for computing the intermolecular contribution. Therefore, in 
our r-RESPA implementation for C,, we choose not to break 
up the intramolecular potential. 

According to Eqs. (2.20) to (2.23), the r-RESPA propa- 
gator associated with the subdivision given in Eq. (3.1) is a 
triple time-step integrator with At, = t/P,, At, = tl( P,P [), 
and A to = tl( P2P 1 PO), satisfying the relations 

At2=P,At,; At,=POAto. (3.2) 
The best choice of At,, At,, and At, must be such that 

the resulting multiple time-step integrator fulfills both the 
requirements of computational efficiency and numerical sta- 
bility. Computational efficiency will be measured in CPU 
time per ps of simulation, whereas numerical stability will be 
quantified by R, the ratio of the standard deviation of the 
total energy to the standard deviation of the kinetic energy, 
i.e., 

(3.3) 

IV. NUMERICAL RESULTS 

All the tests reported in the tables and figures referred to 
in this section were performed at the temperature T = 10 K 
for a system containing 32 molecules with cubic periodic 

J. Chem. Phys., Vol. 101, No. 3, 1 August 1994 



P. Procacci and B. J. Berne: Simulation of solid C&,, 2425 

TABLE 1. Numerical tests for the r-RBSPA and Verlet integrators. The tests 
were carried out for 1 ps with a sample of 32 molecules at 10 K. At,, the 
time step for the intramolecular reference system, is expressed in fs, Pa, P, 
are integers [see Eq. (3.3)] (for the velocity Verlet Pa=P, = l), R is the 
dimensionless ratio defined in F.q. (3.4) r(CPU) is the CPU time in seconds 
per ps of simulation, measured on a RISC6000/370 workstation, (K) is the 
average kinetic energy in KJ/mol, and r, is the break-up distance (in units of 
0) for the intermolecular potential. 

Afo PO PI R t(CPU) W rl 

0.25 1 1 0.0012 7.47x 10s 8.568 
0.50 1 1 0.0047 3.70x 16 8.554 
I.00 1 1 0.0192 1.85X 10s 8.498 
2.00 1 1 0.0802 0.92X 10’ 8.275 
3.00 1 1 0.1710 0.62X lo5 7.904 
4.00 1 1 0.2645 0.46x lo5 7.380 
0.25 2 1 0.0012 3.73x lo5 8.568 
0.25 4 I 0.0012 1.88X lo5 8.568 
0.25 6 1 0.0015 1.26x lo5 8.568 
0.25 8 1 0.0022 0.95x 10” 8.568 
0.25 10 1 0.0032 0.75x 10s 8.568 
0.25 8 2 0.0027 0.54x IO5 8.568 
0.25 8 4 0.0047 0.31x105 8.568 
0.25 8 6 0.0065 0.25 X lo5 8.569 
0.25 8 8 0.0058 0.23 X lo5 8.569 
0.25 8 10 0.0052 0.23X lo5 8.569 
0.25 8 12 0.0089 0.24X lo5 8.572 
0.25 10 2 0.0036 0.43x 16 8.568 
0.25 10 4 O.&M2 0.25x lo5 8.567 
0.25 IO 6 0.0084 0.20x 10s 8.567 
0.25 10 8 0.0088 0.19x 105 8.565 
0.25 10 10 0.0082 0.19x 105 8.564 
0.25 10 12 0.0089 0.20x 10s 8.572 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 
1.80 
2.00 
2.20 
2.40 
2.55 
2.70 
1.80 
2.00 
2.20 
2.40 
2.55 
2.70 

boundary conditions using an IBM RISC/370 workstation. 
At this temperature, the Cm crystal is in the (orientationally) 
ordered cubic phase. The simulation was carried out in the 
microcanonical ensemble on a cubic primary cell of edge 
13.99 A, a size chosen to be equal to the average cell size 
found in a previous constant pressure MD simulation’* of a 
sample of the same size and temperature. Here, as in Sprik’s 
simulation,” no cutoff was imposed so that each molecule 
interacts with all of the minimum images. The distance ri at 
which the intermolecular potential breakup is performed was 
varied form 1.8~ to 2.55~ and the healing length Xi =O. 15a 
in all cases. As already pointed out in Ref. 4, the choice of 
the short-range cutoff rt is the result of a compromise: the 
greater the distance r, the larger the number of time steps P, 
needed to guarantee that there will be no degradation of the 
numerical accuracy of the time integration. This has the con- 
sequence that the expensive calculation of all interatomic 
distances in the simulation box need be performed less often. 
On the other hand, the choice of large rl requires the com- 
putation of a large number of “short-ranged” interactions for 
which the the forces must be frequently recomputed. 

FIG. 1. (a) Energy conservation ratio R vs overall time step for Verlet (solid 
line), double time-step r-RESPA (dotted line), and triple time-step r-RESPA 
(dashed lines) (see the text). The horizontal line at log(R) = - 2.30 denotes 
the threshold tolerance for the energy conservation ratio R. (b) Speedup ratio 
of r-RBSPA over the velocity Verlet integrator (see the text). 

tions and the corresponding algorithm uses only two time 
steps A.t, , PeAce (this is called the double time-step regime). 
Finally, when both P, # 1 and Pi # 1, the intermolecular po- 
tential is further subdivided into long- and short-range con- 
tributions and there are hence three time steps At,, P, Ar, , 
P,P,At, (this is called the triple time-step regime). 

It is of interest to compare the numerical stability R, 
defined in Eq. (3.3), for the different integrators. For 
r-RESPA, the ratio R was computed from the record of the 
total and kinetic energy at the end of each short time step 
At, . The pure velocity Verlet integrator (i.e., PO= P, = 1) 
gives a value R=0.005 for Ar=0.5 fs and a value of 
R=0.0192 for At=l.O fs, whereas all of the various pa- 
rametrizations of r-RESPA reported in Table I have low val- 
ues of R, even for large integer values of P, and P, . 

The detailed results of several numerical tests for various An overall comparison between the the r-RESPA and 
values of the integers P t and P, , the zerotb order reference velocity Verlet methods, based on the data of Table I, is 
system time step A to, and the intermolecular break-up dis- shown in Figs. l(a) and l(b), where the numerical accuracy 
tance ri are reported in Table I for a total simulation time of R, defined in Eq. (3.3), and the ratio of the computational 
1 ps. The pure velocity Verlet has only one time step that can efficiency in CPU ps of r-RESPA to velocity Verlet (At = 0.5 
be varied and hence Po=P,=l. When P,#l and Pi=1 fs) are, respectively, plotted as a function of the largest time 
the breakup of the potential is achieved by subdividing the step POP1 At,. The solid line in Fig. 1 (a) refers to the pure 
potential into intramolecular and intermolecular contribu- velocity Verlet integrator, as a function of time step At. The 

10 15 20 25 30 

Time Step (fs) 

a 
1 

(b) ___c- ---------_ _/-- 

IO 15 20 25 30 

Time Step (fs) 
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TABLE II. Intra- and intermolecular energy deviations in KJ/mol as defined 
by Eq. (4.2) for a sample of 32 molecules at 10 K for different integrators. 
For r-RESPA the time step (in units offs) refers to the full propagation time 
step At,= P,P, At,. For all integrators the deviations are computed by 
sampling the energies each 10 fs. 

Method Time step 

Verlet 0.5 
Verlet 1.0 
Verlet 2.0 

r-RESPA 8.0 
r-RESPA 16.0 
r-RESPA 20.0 
r-KESPA 25.0 

AVI AVM 

6.9165X lo-* 1.3821X lO-3 
0.311 63 6.8780X lO-3 
0.554 49 2.7925X 1O-2 

3.5551x 10-s 3.2312X 1O-3 
4.l98lXlO-3 4.0414x 10-s 
8.3417XlO-3 6.4604X 1O-3 
8.9287X lO-3 5.3767X lO-3 

dotted line, below 2.5 fs, corresponds to the double time-step 
regime for the r-RESPA integrator, where the potential has 
been subdivided into intra- and intermolecular contributions 
and only PO is varied with constant P t = 1. The dashed lines 
correspond to triple time-step r-RESPA integrators where the 
intermolecular potential has been further subdivided into 
short- and long-range contributions. The short-dashed line 
starts from the double time-step curve at At, = 2.0, whereas 
the long-dashed line starts at At i = 2.5. For these two 
curves, only the value of P, is increased while keeping the 
integers P, fixed at the values of 8 and 10, respectively. The 
horizontal dashed line corresponding to log(R) = - 2.30 and 
defines what is here called the threshold tolerance for energy 
conservation (R = 0.005) .27*28 The pure velocity Verlet inte- 
grator steadily looses numerical accuracy, as the time step 
increases. Although far less dramatically, the r-RESPA inte- 
grator also undergoes a fast degradation in the double time- 
step regime. In the triple time-step regime, increases in P, 
and, correspondingly, in the intermolecular break-up distance 
rl , have been tuned so that, for large time step, the integra- 
tors reach a plateau slightly above the threshold tolerance 
(R= 0.005). The stability of the triple time-step r-RESPA 
algorithms for large time steps is due to the increase of the 
break-up distance rl with increasing P, . 

As pointed out previously, to achieve computational ef- 
ficiency, a price must be paid to guarantee the stability of the 
integrators. Shifting to larger values of rl requires the calcu- 
lation of a larger number of pairwise interactions for each of 
the P, time steps. Such an effect is illustrated in Fig. l(b) 
where we report the speedup of r-RESPA over simple veloc- 
ity Verlet (At=0.5 fs and R-0.005). In the double time- 
step regime (dots) the speedup is practically linear in the 
integer P, . As the subdivision of the intermolecular potential 
is switched on (dashed curves), the speed-up rate decreases, 
and eventually the triple time-step r-RESPA curves reach a 
“saturation point.” Beyond the saturation point (i.e., for 
larger PI) the speed-up rate decreases and the r-RESPA al- 
gorithms become increasingly less efficient. At the saturation 
point the r-RESPA integrator with P,= 8, P, = 8 is almost 
16 times faster than the velocity Verlet integrator. The other 
r-RESPA integrator (PO= 10, P, = lo), although slightly 
less accurate, is approximately 20 times faster than the ve- 
locity Verlet. 

We now examine the dynamical evolution of several 

-I 

0 100 200 300 400 500 600 700 600 900 1000 

fs 

FIG. 2. Intramolecular potential energy records for r-ECESPA (squares; lower 
curve) with At,=25 (Pa=lO, P,=lO, Ata=0.25 fs) and for velocity 
Verlet (circles; upper curve) with At=0.5 fs. The superimposed solid 
curves refer to the exact trajectory obtained with velocity Verlet using a time 
step of 0.25 fs. 

properties generated using the r-RESPA algorithm. In par- 
ticular, we determine the time evolution of the intra- and 
intermolecular potential energy and we compute the IR and 
Raman spectra of the solid. For comparison it is is assumed 
that the “exact” trajectory is generated by a velocity Verlet 
algorithm with a time step of 0.25 fs. Let 

(4.1) 

(where tf= 1 .O ps) represent the deviation of either the in- 
tramolecular (I) or intermolecular (M) potential energy 
from the exact values fi”( t) and v’i’( t), respectively. In 
Table II we report these energy deviations, calculated record- 
ing the energies every 10 fs, for several integrators as a func- 
tion of the time step. (For r-RESPA by “time step” we mean 
the long propagation time step, At = P,P 1 A to .) 

From inspection of Table II, it is evident that the 
r-RESPA integrators reproduce the exact intramolecular en- 
ergy record accurately with a weak dependence on the time 
step. By contrast, the increasing step size for the velocity 
Verlet produces a dramatic increase of the calculated devia- 
tion. For At=0.5 fs (i.e., a time step only double that of the 
exact trajectory) the velocity Verlet gives a deviation which 
is about one order of magnitude larger than that calculated 
with r-RESPA using At, = 25 fs. The visual effect of these 
deviations is displayed in Fig. 2 where the intramolecular 
energy records of r-RESPA with A t2 = 25 fs and velocity 
Verlet integrator with At= 0.5 and R-O.005 (see Table I) 
are compared to the exact trajectory produced by the velocity 
Verlet algorithm with At = 0.25 fs. We see that, while 
r-RESPA is found to reproduce the reference trajectory with 
impressive accuracy, even though the energies are sampled at 
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), , , 1 , y-RESPA:t.2; , , 

I, jJ ~~“arlet;t~r, , 
-l 
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FIG. 3. Infrared spectrum of C, for triple r-RESPA using a full propagation 
time step At,=25 fs (PO= 10, PI= 10, Ata=0.25 fs) and for velocity 
Verlet using a time step of 0.25 fs. 

the end of the shorf time steps, the velocity Verlet gives a 
time evolution significantly different starting at t = 0.3 ps. As 
for the intermolecular energy, the deviations AV, obtained 
with r-RESPA are again extremely small (see Table II) for all 
time steps and even for the largest time step this integrator 

- I 
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PIG. 4. Details of the far-infrared spectrum (a) and mid-infrared regions (b). 
The squares refer to the IR intensities calculated with r-RESPA (lower 
curve) with At,= 25 fs and the circles to the IR intensities calculated with 
velocity Verlet with At = 0.5 fs (upper curve). The superimposed solid lines 
refer to the exact spectrum calculated with velocity Verlet using a time step 
of 0.25 fs. 

00 
1250 1300 1350 1400 1450 

Wavenumbers Icm‘ll 

PIG. 5. The blue shift in the high-frequency region of the infrared spectrum 
for the velocity Verlet algorithm with increasing time step. The solid lines 
refer to the exact trajectory computed using the velocity Verlet integrator 
with a time step of 0.25 fs. The circles refer to calculations with time steps 
(from bottom to top) of At=0.5, 1.0, and 2.0 fs. 

still produces a trajectory practically indistinguishable from 
the exact one. As expected, for both velocity Verlet integra- 
tors (At=0.25 fs and At=0.50 fs) the intermolecular en- 
ergy recors differ little in contrast to their intramolecular 
recors. The intermolecular energy record is rather insensitive 
to the time step At used in the velocity Verlet integrator and 
only when At = 2 .O fs does one start to see large deviations. 
The good accuracy of the Verlet algorithm for the intermo- 
lecular motions at large time step is expected since the cou- 
pling between intra- and intermolecular dynamics is low and 
the intermolecular energy changes are mostly driven by the 
slowly varying intermolecular forces. Comparison for longer 
simulation times is feasible only for a smaller sample be- 
cause the velocity Verlet integration with a time step of 0.25 
fs requires approximately 10 CPU days on a dedicated RISC/ 
370 workstation to generate 10 ps of trajectory for a sample 
of 32 molecules. Tests performed on a small sample of four 
molecules indicate that the intra- and intermolecular poten- 
tial energies records produced by r-RESPA with large time 
step (16-20 fs) and the velocity Verlet algorithm with At 
= 0.25 are practically identical for 10 ps. 

A further example of the accuracy of the multiple time- 
step integrator is given in Fig. 3 where the infrared spectrum 
is calculated using the velocity Verlet, with At = 0.25 and 
for the r-RJZSPA algorithm with PO= 10, P, = 10, 
At,= 0.25, and overall time step At,= 25 fs. The infrared 
spectrum has been obtained by computing the autocorrela- 
tion function of the cell dipole vector. Details of the meth- 
odology for calculating the infrared and Raman spectra of 
solid Cm will be given in a forthcoming paper.17 It should be 
noted (see Table I) that the cited r-RESPA algorithm is a 
factor of 40 times faster than velocity Verlet with At = 0.25 
fs. The two spectra are practically identical. The accuracy of 
the r-RESPA integrator can be appreciated by inspecting 
Figs. 4(a) and 4(b) where details of the far- and mid-infrared 
regions are shown. In Figs. 4(a) and 4(b), for comparison, we 
also report the infrared intensities calculated with the veloc- 
ity Verlet integrator using a time step of 0.5 fs (i.e., twice as 
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rithm gives systematically larger values of R at small time 
steps (and hence for short break-up distances rt). With in- 
creasing P, and, correspondingly larger values of r, , the two 

,______-___--_____ z methods appear to converge to a similar result, with no sig- 
: nificant differences in the energy ratio R. It should be noticed 

: 
x 

that the time step at which the two methods yield comparable 
values of R corresponds to the saturation point in Fig. l(b). 
The “apparent” inaccuracy of the force switching method for 

R short time step results from using KE+V, rather than KE 
+ Vz . When R is determined from the energies at the end of 

- 9 each full propagation time step, the two methods agree no 
matter how we choose rl and P, . For example, for P, = 2 

5 10 15 20 the value of log(R) for the force switching method drops 
Time Step (fs) from - 1.80 to -2.61, i.e., approximately the same value 

obtained with the potential switching technique (for the po- 
PIG. 6. Energy conservation ratio (left scale) R vs overall time step for the tential switching technique, the value of R remains approxi- 
force switching r-RELSPA algorithm (dashed line) and the potential switch- mately unchanged, irrespectively of how frequently the en- 
ing r-RESPA (dotted line). R is computed using KE+P,V, for both the 
force breakup and the potential breakup. The solid line refers to the break-up 

ergy is recorded). Hence, the advantage of the potential 

distance (units of a) in the intermolecular potential (right scale). 
switching over the force switching technique lies solely in 
the fact that the total energy KE+Z,V, can also be safely 
monitored at the intermediate time steps. At the intermediate 

big as that used to compute the exact spectrum) for which time steps the force switching method would require the 

R = 0.005 {the tolerance threshold for energy conservation knowledge of the potential Vz defined by the equation Fk 

[see Table I and Fig. l(a)]}. As one can see from Figs. 4(a) 
= - VV,* in order to compute the correct constant of the 

and 4(b), the r-RESPA algorithm yields an infrared spectrum motion. It is, however, very important to stress that the force 

which agrees, even with respect to minor details, to the exact switching technique, even for the intermediate time steps, 

one for the whole frequency range. Furthermore, the dou- generates trajectories as accurate as the potential switching 

bling of the time step for the pure velocity Verlet scheme method. For example, both breakups generate equally accu- 

produces appreciable differences, especially in the mid- rate spectra as we now show. 

infrared region where the band at about 1420 cm-’ under- The determination of spectral densities (power spectra) 

goes an intensity enhancement and a blue shift of one fre- of the high-frequency vibrational modes requires data acqui- 

quency channel. When the time step is further increased the sition of dynamical properties such as cell dipole or polariz- 

spectrum calculated for pure velocity Verlet becomes dra- ability tensors after small time steps in order to avoid alias- 

matically blue-shifted. This effect is illustrated in Fig. 5. ing of the high intramolecular frequencies. For C, the 

As discussed in Sec. II, we use a potential switching acquisition is performed each 6 fs, i.e., at every three inter- 

rather than the force switching method used in earlier mediate time steps Ar, . Because spectral densities are very 

r-RESPA implementations.1*4 It is of interest to compare the sensitive to the step size, as we have already seen for the 

accuracy of the two switching methods with respect to both case of the infrared spectrum (Fig. 5), it is important to test 

energy conservation and spectral properties. In Fig. 6, R [Eq. the accuracy of different integration schemes. 

(3.3)] is plotted vs the time step, for two r-RESPA integrators In order to quantitatively measure the spectral accuracy 

with different switching methods. It is important to recognize for different integrators, for an N-point spectrum 

that the numerical accuracy of r-RESPA, as measured by the S={s i , . . . ,sN} we calculate the quantity 

ratio R, strongly depends on the method of choice and on 
how the energy is recorded during the multiple time-step 
propagation. As was pointed out before, the two different zhs~” * 
switching methods have the same constant of motion (i.e., 

D=;iiccos( $q =Brccos[ (z~,s;Zf!*sp) )“2 j, 
the total energy KE+ V) if the time grid is taken to be that of (4.2) 
the full propagation step (i.e., if the energy is recorded at 
integers multiple of the time P,P, At,), but they have differ- where si’) are the intensities of the exact spectrum. (Here 
ent constants of motion associated with the corresponding again the exact spectrum is taken to be that calculated with 
reference system for the intermediate time step At, = PaAt,. the velocity Verlet algorithm using a time step of 0.25 fs.) 

Here we show what happens when the previous defini- The quantity D of Eq. (4.2) may be viewed as the 
tion of R is used and the total energy is recorded with a much angle between the vectors S={s, ,.. .,sN} and S(@ 
higher frequency than that corresponding to the inverse of = {$),...,S $‘}. Such a definition for the spectral accuracy 
the full propagation step. The full propagation time step has the advantage that the spectra need not be normalized 
PoPI At,, is changed, by varying only P, while keeping and scale factors will not affect the measure whose range, 
P,= 8 constant. The total energy is recorded each eight At, irrespective of the total intensity and of the spectral resolu- 
steps, which means each 2 fs, i.e., each intermediate time tion, varies between 0 (maximum accuracy) and rr/2 (for 
step At, (see Table I). The force switching r-RESPA algo- totally uncorrelated spectra). 
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TABLE III. Spectral deviations, as defined by Eq. (4.2), calculated for a sample of 32 molecules at 10 K for 
different integrators. The exact intensities sy’ are taken to be those calculated with the velocity Verlet method 
using a time step of 0.25 fs. The spectral deviations obtained using the force switching method are reported in 
parentheses. The values at At=0.5 refer to the deviations of the spectra obtained from the standard velocity 
Verlet algorithm but using a time step of 0.5 fs. The spectral deviations are evaluated for three qualitatively 
different kinds of spectra: (S,) the infrared spectrum with multiple bands in the entire frequency range O-1700 
cm-‘; (S,), the isotropic Raman spectrum with only two strong bands at about 500 and 1500 cm-‘; and S, , the 
power spectrum of the molecular orientation vector autocorrelation function with low-frequency bands (630 
cm-‘). 

At SIR SR SL 

0.5 6.76X IO-* 1.46X lo-’ 1.34x 10-4 
4.0 9.52X 1O-5(9.99X 10-5) 9.42x W5(1.30x 10-3) 1.86x1o-4(1.86x1o-4) 
8.0 1.03X 1O-4(9.98X 10-5) 1.10x10-3(3.34x10-3) 1.30x10-4(1.86x10-3 

12.0 1.67X 1O-4(9.76X IO-‘) 1.53x10-3(1.79x10-3) 1.85X1O-4(1.86X1O-4) 
16.0 l.36X1O-4(9.81X lo+) 4.02x 10-3(1.57x 10-3) 1.85X1O-4(1.86X1O-4) 
20.0 2.07X 1O-4(9.64X 10-5) 4.24X 1O-3(5.65x 10-4) 1.31 X 1O-4(1.86X1O-4) 

In Table III we report the spectral deviation, calculated 
according to Eq. (4.2), for three different spectral densities: 

SLR: the infrared spectrum, obtained by Fourier trans- 
forming the autocorrelation function of the cell dipole. 

SR: the isotropic component of the Raman spectrum, 
obtained by Fourier transforming the autocorrelation func- 
tion of the spherical part of the cell polarizability tensor 
a,, + ayy + aZL . 

SL : the “librational” power spectrum, obtained by Fou- 
rier transforming the autocorrelation function (Cjuj( t) 
. ZjUj( 0)), where Uj is the unit vector normal to the hexagon 
on (S,) symmetry site of the jth molecule. As can be seen in 
Table III, the spectral deviation [Eq. (4.2)] for the r-RESPA 
integrators is extremely small for all time steps, especially 
when compared to that calculated for the velocity Verlet in- 
tegrator with At = 0.5 fs, no matter which switching method 
is adopted. For some of the calculated spectra, the force 
switching technique is even slightly more accurate than the 
potential switching technique. Since acquisition was per- 
formed for both methods at the end of each short time step 
At,, the data of Table III are a clear demonstration of the 
accuracy of the force switching technique for the whole time 
span and not only at multiple integers of the full propagation 
time step At,. 

The velocity Verlet integrator with At= 0.50 fs differs 
significantly from the corresponding exact spectra. Only for 
the last spectrum S, , for which most of the intensity occurs 
at very low frequency, does the velocity Verlet with time step 
0.5 fs give a spectral deviation comparable to that obtained 
with r-RESPA. This is consistent with the results obtained 
for the intramolecular and intermolecular energy deviation of 
Eq. (4.1) (see Table II). 

It is evident from the calculations of the spectra that the 
large time-step r-RESPA integrators are equivalent in accu- 
racy to the velocity Verlet integrator with the shortest time 
step (At = 0.25 fs) and are far more accurate (see Table III) 
than the velocity Verlet integrator with a time step of 0.5 fs, 
despite the fact that, with respect to the latter, they have 
slightly worse energy conservation (measured by R). A simi- 
lar result was also found when we determined the accuracy 
of the intramolecular energy records (see Fig. 2 and Table 
II). Hence if we choose dynamical properties other than R, 
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such as the spectral deviation of Eq. (4.2) or the intramolecu- 
lar energy deviation (4.1), as the criterion for judging the 
accuracy of the integration algorithm, the CPU time ratio of 
velocity Verletlr-RESPA increases to approximately 40. 

Finally, numerical tests carried out for the orientationally 
disordered (plastic phase) at T= 300 K gave results not dif- 
fering significantly from those already shown here for the 
orientationally ordered phase at T= 10 K. For the sake of 
completeness, in Table IV we summarize the results of sev- 
eral numerical experiments for the velocity Verlet and 
r-RESPA integrators performed at 300 K. 

V. CONCLUSIONS 

We have shown how the r-RESPA algorithm can be 
straightforwardly implemented for the simulation of molecu- 
lar systems as complex as the solid phases of fullerene. Nu- 
merical tests on a periodic system with a primary cell con- 
taining 32 molecules of C,, were undertaken, in order to 
compare the performances of the r-RESPA multiple time- 
step integrators to the standard velocity Verlet integrator. The 
r-RESPA integrator, after a careful tuning of the integration 
parameters ( rl, At,, P, , P 1) results in considerable speedups 
of the simulation by a factor of 16-20 over the pure velocity 
Verlet integrator for the same accuracy when that accuracy is 

TABLE IV. Numerical tests of the r-RESPA and velocity Verlet integrators 
at 300 K for a sample of 32 molecules. The column labels have the same 
meaning as in Table I. 

PO PI R f (CPU) w rl 

0.20 1 1 o.ooo7 11.82XlOs 251.11 ... 
0.40 1 1 0.0029 5.47x lo” 250.86 .*. 
0.80 1 1 0.0115 2.95 X lo5 249.83 *** 
1.60 1 1 0.0467 1.49x 105 245.75 ... 
0.20 8 1 0.0007 1.51x105 251.12 ... 
0.20 8 2 0.0008 0.85 X 10” 251.12 1.80 
0.20 8 4 0.0009 0.48 X 1 O5 251.13 2.00 
0.20 8 6 0.0009 0.39x 105 251.12 2.20 
0.20 8 8 0.0009 0.37x 10s 251.12 2.40 
0.20 8 10 0.0010 0.37x 10s 251.13 2.55 
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measured by the energy conservation R and by a factor of 
35-40 when the accuracy is measured by the deviation of 
various spectral density functions from the exact spectral 
density. The analysis of the trajectories, both at low and high 
temperature, has shown that the r-RESPA method produces 
the same quality dynamics as generated by the velocity Ver- 
let algorithm with a much smaller time step. 

The effect of different breakups of the intermolecular 
Liovillian was also studied. It was found that the potential 
and force switching methods produce essentially the same 
dynamics for all time steps as expected. It has been shown 
that one must use different approximants to the energy to 
compare the accuracy of these two breakups, otherwise erro- 
neous conclusions will be drawn. Both breakups will give 
the same energy conservation if they are applied to the usual 
Hamiltonian only after the largest time step. 

The r-RESPA algorithm, by virtue of its simplicity and 
superior performance, can be extremely effective in the study 
of molecular system with low coupling between intra- and 
intermolecular dynamics. In a forthcoming paper we present 
results of an extensive molecular dynamics study based on 
r-RESPA of the lattice dynamics of solid Cm. 

CALL fouter(3,nmol,nato,x,y,z,fx3,fy3,fz3,nj2,jc2) 

CALL fshell(2,nj2,jc2,ntot,x,y,z,fx2,fy2,fz2,njl,jcl) 

CALL fsheZZ(l,njl,jcl,ntot,x,y,z,fxl,fyl,fzl,njO,jc0) 

CALL jintra(nmol,nato,x,y,z,fxO,fyO,fzO) 
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APPENDIX 
In this Appendix we show a sample code for the 

r-BESPA integrator, based on the general propagator of Eq. 
(2.19) with m =4. The routine “fouter” computes the inter- 
molecular forces in the fourth and outermost shell building 
up the neighbors list for the next inner shell. The routine 
“fshell” computes the forces in the kth shell (first argument), 
receiving as input the neighbors list of kth shell (arguments 
njk, jck) and building up the neighbors list for the next inner 
(k- 1) shell [arguments nj(k- l), jc(k- l)]. The routine 
“firma” computes the forces due to the intramolecular po- 
tential. The routine “correc” advances the velocities for half- 
time step, using the velocities and forces of the previous 
step. The routine “verlet” advances the positions of the par- 
ticles for one time step using the coordinates, velocities, and 
forces of the previous step: 

t3 = timetotalljloat(nstepmax) 

t2=t3/$oat(m2) 

tl =t2lfloat(ml) 

tO=tl/j?oat(mO) 

1000 nstep=nstep+ 1 

CALL correc(nmol,nato,vx,vy,vz,xml,fx3,fy3,fZ3,t3) 

DO i2=l,m2 

CALL correc(nmol,nato,vx,vy,vz,xml,fx2,fy2,fz2,t2) 

DO il=l,ml 

call correc(nm01,nato,vx,Vy,VZ,xml,fxl,fyl,fZl,tl) 

DO iO=l,mO 

CALL verlet(nmol,nato,x,y,z,vx,vy,vz,xm 1 ,fxO,fYO,fZO,tO) 

CALL fintra(nmol,nato,x,y,z,fxO,fyO,fZO) 

CALL correc(nmol,nato,vx,vy,vz,xm 1 ,fxO,fyO,fZO,t~) 

kO=kO+ 1 
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END DO 

CALL fshefl(l,njl,jcl,ntot,x,y,z,fxl,fyl,fzl,el,njO,jc0) 

call correc(nmol,nato,ux,uy,uz,xm1,fx1,fy1,fz1,tl) 

c COMPUTE AVERAGES AND STORE DATA HERE 

. . . 

. . . 

END DO 

CALL fshelZ(:!,nj2,jc2,ntot,x,y,z,fx2,fy2,fz2,e2,nj1,jc1) 

CALL correc(nmol,nato,vx,vy,Vz,xml ,fx2,fy2,fz2,t2) 

END DO 

CALL fouter(3,nmol,nato,x,y,z,fx3,fy3,fz3,e3,nj2,jc2) 

CALL correc(nm01,nato,vx,uy,vz,xml,fx3,fY3,fZ3,t3) 

. . . 

IF(nstep.Zt.nstepmax) GO To 1000 

. . . 
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