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We have implemented a semiclassical dynamics simulation method to investigate the effects of finite
barrier heights and nonlinear potentials on the rate of diffusion of a particle which is coupled to a
frictional bath and is traveling on a one-dimensional potential energy surface. The classical reactive
flux method has been modified to account for semiclassical tunneling and above-barrier reflection.
A novel perturbation theory treatment of the semiclassical dynamics is developed to simulate the
motion of the particle when the coupling to the frictional bath is small and the particle’s motion is
nearly conservative. Our simulation results support the theoretical prediction that the diffusion
constant increases as friction decreases. We also find supporting evidence for an inverse isotope
effect, as the diffusion constant for a classical particle can be larger than that of a corresponding
quantum mechanical particle. The escape rate and the average energy of escaping particles are also
found to be in good agreement with theoretical predictions.

I. INTRODUCTION relation. In the weak damping limit, they find that correlated
o ) hops are dominant, and lead to a divergence of the classical
The theory of surface diffusion has been extensively degjtfysion coefficient. Moro and PolimeAbrecently investi-
veloped during recent yeajr§2.The reactive flux formalism  gaeq correlated hopping in the presence of a periodic poten-
for activated rate_ process%sl, _deeper |n5|g_rl1§ into trans_|t|on tial with four wells. They were modeling thizans-gauche
state theory, efficient numerical methdds,” and detailed o merization ofn-butane and found that the ratio of two-

nume_rlcal simulations have conS|de_rany mcree_lsed undeBarrier to one-barrier crossings increases significantly as the
standing of the role of surface potential, phonon mteractlon%ampmg becomes weaker

and surface structure on diffusion. The diffusion process is Correlated hops in the underdamped limit are caused by
often considered as a random walk, limited by the rate itthe activation process. As shown by tBker, Harris, and

takes the atom or molecule to hop from one site to an adjal—_ 1 . .
andauef! the average classical energy of an escaping par-

cent one on the surface. The diffusion coefficient is propor-ticIe i proportional to the sauare root of the damping. As the
tional to this activated escape rate. Theoretical effort was brop q PIng.

primarily aimed at accurate estimates for the rate. When thga(rjt_lcle ttrav:?rT(_ats from onle bam?r to tlh e next ?_Iongl tthetg) &
particle is a chemically bound species with a relatively high”o Ic potential Its energy loss 1S linearly proportional to the

barrier separating adjacent sites, this may be a daunting tasﬂ‘timpmg' The consequence |s.that the escaping particle W',"
A different but important aspect is the fate of the particle 0SS Many barriers before losing enough energy to be again

once it has escaped from a well. The particle may executEetrapped. .
multiple hops before retrapping in a different wiliSuch We have recently shovif that the classical correlated

multiple hops will significantly enhance the diffusion coeffi- NOPPINg probability is of the order of unity in the classical
cient. In most simulation studies though, such correlatednderdamped limit. This finding was consistent with the ex-

hops were rarely found. Recent experimefftaand —Perimental observations of Gaet al. who measured a cor-
numerical’ studies have indicated that correlated hopsrelated hopping probability of at least 0.5. We also found that
should not be neglected and could strongly influence the difthe quantum correlated hopping probability is smaller than
fusion coefficient. The experimental work of Gaerall®  the classical. Quantum tunneling causes a lowering of the
using scanning tunneling microscof§TM) methods seems average energy of the escaping particle thus decreasing the
to demonstrate correlated hopping of Pb on a reconstructegPntribution of correlated hopping.
Ge(111) surface. In their numerical study of the diffusion of Mel'nikov®*?**has studied the classical motion of a par-
CO on a Ni111) surface, Dobbs and Dorérhave found that ticle on a tilted potential. His results were recently
correlated hops significantly affect the diffusion coefficient.extended to provide a semiclassical theory of surface dif-
Correlated hops over ten adjacent sites were observed.  fusion above the crossover temperattifé2’between quan-
One-dimensional surface diffusion has been studied retum tunneling and thermal activation. Explicit expressions
cently by Ferrandet al'®°In their model, the motion of a for the rate of escapel), the partial ratel’; for being re-
particle on a one-dimensional infinite periodic lattice is gov-trapped after moving a distangé, (I, is the distance be-
erned by a Langevin equation. The interaction of the particléween adjacent wellsthe mean squared path lengt) and
with the surface phonon modes is modeled as a random fordbe diffusion coefficientD were provided. In the under-
which is related to the friction by the fluctuation-dissipation damped limit, above-barrier reflection and below-barrier tun-

J. Chem. Phys. 102 (10), 8 March 1995 0021-9606/95/102(10)/4037/19/$6.00 © 1995 American Institute of Physics 4037



4038 Bader, Berne, and Pollak: Activated rate processes

-1/2
, (2.9

neling cause the quantum correlated hopping probability to ) *
be lower than the classical probability, and the quantum dif- ¥~
fusion constant is lower than the classical prediction.

We have attempted to verify and extend these theoreticakhere the hat denotes the Laplace transform of the time de-
developments using direct numerical integration of thependent friction. The ratio of quantum to classical partition
Langevin equation and found that especially in the underfunctions? at the barrier and the wellX) is expressed in
damped limit, it is rather difficult to obtain accurate statistics.terms of the Matsubara frequenciég=2mn/f 3 and the
We were also interested in providing a numerical technique-aplace transform of the time dependent friction
which would include the quantum effects. The central pur-
pose of the present paper is to extend the reactive flux ”
method to directly address these difficulties. In contrast to = H (2.9
the analytic studies, the methods we describe have the ad- n=1
vantage of being readily amenable to the study of surfacgy,q
diffusion in more than one dimension. We will use the nu-
merical method to verify and extend the analytic theory pre- ~ i
sented in Refs. 22, 25. P In 1_P(t_ 5”

A secondary purpose of this paper is to present the Y =€x a™t Sin(g)f ocdt r(Z“T) 5(

—co

y(\F)
+ )\f

[w5+ &2+ @y ¥(@n)]

it

v — .
[_wi +wﬁ+wn')’(wn)]

“depopulation factorY is

theory described only briefly in Ref. 22. The analytic theory cos
is reviewed in Section Il. The mathematical methods used in

Section Il to extract analytical expressions for escape rates

and correlated hopping probabilities are not essential for and the quantum parametes 27/#% B\ *.

physical understanding of the results we obtain. Readers not The magnitude of the depopulation factor is mainly de-
interested in the details of the analytical techniques mightermined by the probability kern&(E|E’) which expresses
wish to skip this section, noting only the analytical expres-the probability density that a particle with energy initially
sions we obtain for the escape rate and the diffusion conin the vicinity of a barrier will reach the next barrier with
stant. An extension of the reactive flux method which incor-energyE. The two sided Laplace transform of this kernel
porates semiclassical transmission and reflection is presentehich appears in the expression for the depopulation factor
in Section Ill, along with an efficient new algorithm for is defined as

propagating trajectories when friction is small. Section IV

serves to define the observables we compute, and in Section I5(is)E fw dee*5<f*5')P(e|e’). 2.7

V the simulation results are reported. We end with a sum- —

mary and a discussion of future directions and extensions. . e o . .
y In the classical limit the probability kernélising the dimen-

sionless energy variable= BE) is a Gaussian function,

1/2 ;{ (€+5_E’)2
exp ————

T
a

(2.6

Il. CORRELATED HOPPING AND SURFACE
DIFFUSION

P N=| —— . 2.8
A. The escape rate (ele) (4775 28

46

The model to be considered is that of a particle withThe reduced average energy los® (of the particle as it
massm trapped in the well of the potentia¥(q) (q is the traverses from one barrier to the next depends on the damp-
particle coordinate A Generalized Langevin Equation ing and the particular form of the periodic potential. In the
(GLE) governs the dynamics, weak to moderate damping limit the energy loss is well ap-

1dw(g) [t _ 1 proximated a&
+Ed—q+J’ dT’y(t—T)Q(T)—Ef(t). (2.1 Bm (= . o
. _ . 5= —J dtf dt’ y(t—t")g(na(t’). 2.9

The Gaussian random foréét) with zero mean is related to 2 ) )s
the time dependent friction functiom(t) through the fluc-

tuation dissipation relation: The trajectoryq(t) is the trajectory for the particle coordi-

nate at the barrier energy in the absence of coupling to the

m bath.
(E(D&t))= B y(t=t') (2.2) In the classical limit, the depopulation factor simplifies
considerably**
and B=1/kgT.
The quantum rate for hopping out of one of the wells at 1 (= dx 5%+ 1/4
temperatures above the crossover  temperature ol = €X ;jo X2+ 1/4 In(1—e™ 20 1) 1, (2.10

(AN¥ kg T=<2r) is®
X In the underdamped limit§<1), one finds tha¥ ;= §. This
= o e—ﬂv*‘_f =Y. (2.3 reflects the large reduction of the escape rate due to the very
™ ® slow energy diffusion process. The quantum depopulation
Here, A* is the Kramers—Grote—Hynes reactive factor islarger than its classical counterpart in the under-
frequency?®~3! damped limit, Y = 61~ ##\"27 2835 | the spatial diffusion
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limit (6>1), the energy relaxation rate is fast and the clas- One of the important new results presented in Ref. 22 is
sical and quantum depopulation factors are unity. This allowsin expression for the quantum average energy of particles
us to define the spatial diffusion ralg, as crossing the barrier. Here we provide a more detailed deriva-

r tion. The average energy is defined as
= ¥ (2.1) ()= [ . deeT(e)f(e) (2.19
= T deT(e)f(e) '

The quantum rate is found by solving a master equation
for the population per unit time of particlége) with (re-  Using the fact that
duced energye at the top of the barri¢f>3 For a periodic 275 BT(€)f(€)=e*N(e) (2.20
potential one must in principle write down a coupled set of
master equations for populations at each baffiét.How-
ever, both in the underdamped limit as well as in the over-
damped limit, backscattering from adjacent wells is
negligible!®!° To obtain the rate, or the average energy of d .
escaping particles, it is sufficient to consider the analogous 277 BI'(€)=— - N(is)[s- a- (2.21
single well case, ignoring any backscattering. The validity of
this simplifying assumption will be discussed in further de-Inserting the expression fax (cf Eq. 2.14 one finds the
tail in Section IV. The result is that one can consider the€Xplicit result
usual integral equatiéh

and resorting to the two sided Laplace transform one finds
(Ihat the average energy of transmitted particles may be ob-
tained by the relation

o ar |
f(e)=J de'P(ele')R(e')f(€"), 212 (9=7 cot( ) J dxIn/1- P(X—EH
whereR(e€) is the quantum reflection probability for a para-
bolic barrier: "(ZWX) 5(77
1-cos a co 2
R(e)=[1+expae)] . (2.13 X . (2.22
27X T
The transmission coefficienf(e)=1—R(€). The integral cosl'( a _COS(E

equation is subject to the boundary condition that deep in the
well the distributionf(e) is in thermal equilibrium. It is
solved using two sided Laplace transforms. The solution fo
the distribution i€®

which is the quantum generalization of the classical expres-
Islon for the average energy derived by Mel'nikov and

eshkov**
In the classical limit, Mel'nikov and Meshkd¢demon-

. (wCla) 1 (z+io . strated that e)zﬁl’z in qualitative agreement with the pre-
N(is)=— (st D] exl{ﬂj ~dy In[1-P(iy)] diction of Bittiker, Harris and Landauét. In the quantum
sin o case, the average energy in the underdamped limit as eluci-
a dated from Eq(2.22) is smaller,=In &, and is negative with
s—y y+1 respect to the barrier heigh¢ € 0), indicating that the quan-
X CO[(W a +CO[(7T a } (2149 tum particles in the underdamped limit tend to escape by
tunneling.
where we have used the notation
N(e)=2mhBR(e)f(€) (2.15

B. The correlated hopping probability

and the constartt is When a particle escapes from the well across a barrier

®o 5B\ . (denoted as )lit will continue towards the adjacent well and
C=2—sin )” —Bv (2.16  barrier (denoted as 2 It will then either get immediately
©b trapped in the wellthe typical case in the strong damping
The restriction on the real limits of the integration is limit), it might be reflected by barrier 2, or it might continue
directly across barrier 2. The correlated hopping probability
z>Res)>z—a, z>-1. (2.17 P, is definedas the probability that the particle will continue

across barrier 2 without being first trapped or reflected by the
The rate is given by summation over all particles transmﬂteo}Jarrler

per unit time:
5 _ffwdsfofxde’T(e)P(6|e’)T(e’)f(e')
:J deT(e)f(e), (2.189 v [7.de'T(e)f(e)

By using the Laplace transformed expressions andZg0
and this leads to Eq4$2.3—(2.6) given above as shown in one may rewrite the expression for the correlated hopping
Appendix A of Ref. 28. probability as

(2.23
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—ol4

2
Plclz We (231)

In the weak damping limit, the correlated hopping probabil-

The transform of the reflection coefficient is a standard inteity goes to a constant£0.7). The quantum correlated hop-

4040
1 (ptie ~ ~
hpI'P =— dsP(is)R[—i(a+s)IN[i(s—a)].
2i p—ix
(2.29
gral:
. ' 1 (= e(s/a)x T 1
R[_I(aJrS)]:EJ:de1+e*X:_§ [sm
sinl —

(2.25
which converges provided that R@&O.

An explicit expression for the correlated hopping prob-

ability is derived by choosing= — 1/2 when inserting Eq.
(2.14 in Eq. (2.29), introducing the change of variables

x=i(y—2)=i(y+ (2.26
wherex is pure real and
t=i(s—p), p=-—3+A, O0<A< 1, (2.27

wheret,A are also pure real. Taking the limAt— 0, , mak-
ing use of the known identity

] t—x—iA 1 ]
IImAH°+(t—x)2+A2:PP = —imd(t—x), (2.28

and noting that the quantum kerrfé(t— i/2) is symmetric
in the variablet gives the result

1l Al

1
P,===sin dt
2a — t
sinz(l +sinhz<1”
2a a
- i
1 (= 1 1—P{(t—w)—§}
xXcoy — dw — In -
4o ) _» w ~ i
1-pP (t+w)——}
2
o W ) W 92
a co a (2.29

The classical limit for the correlated hopping probability is

readily seen to be

w —8(t2+ LA 1 _ o= S(t2+ 1/4)71/2
P =Y’1’2iJ dt = e ]
i td o 2m) . t°+ 1/4
1 (= 1 1— e~ Aw-2+ 1/4]
X o —f dw — In > .
Am)_ W | 1— g AW+ 1/4]
(2.30

The classical correlated hopping probability is a function of a

single parameter, the energy la&sin the high friction limit

ping probability differs dramatically from the classical: it
goes to zero in the underdamped limit.

The diffusion coefficient is well defined when the mean
squared path length of a trajectory initiated in a well grows
linearly with time and is by definition the proportionality
constant. To compute the diffusion coefficient one assumes a
separation of time scales. The longest time scale is the es-
cape timer,,=I'"1. Once a particle has escaped from a
well it will take an additional amount of time—
Trap—0efore it is retrapped in any well. A particle that is
trapped will again escape after a time which is of the order of
Tn- ONE assumes that ;< 7,,. During the trapping time
the particle will traverse a mean squared distafiég. The
diffusion coefficient is

D= 3T{I?. (2.32
Within the time 7., before an activated particle is trapped,
its trajectory may be composed of several segments in which
the particle moves in a constant direction. The probability
that such a segment is longer than one lattice spacing, for
example, is what we have termed the correlated hopping
probability P,. The mean square jump length?®) is ob-
tained from the distribution of jump lengths between escape
and retrapping, not from the distribution of lengths of the
correlated segments.

'é’zr;e result for the quantum diffusion coefficient is found
to be:

D AW
— =Y "lexpg a? sm(—)J dt
Do all .

-
A

Here D4 is the diffusion coefficient in the spatial diffusion
limit:

Dso= % 1—‘sol(z)

In|1+ P

X

(2.33

(2.39

wherel, is the distance between adjacent wells of the peri-
odic potential. The mean squared path length may now be
extracted from Eq(2.32), since the diffusion coefficient and
the rate are known.

C. Ohmic friction and a periodic potential

At this point, any practical computation necessitates
knowledge of the quantum kernel whose details are deter-

(6>1) the classical correlated hopping probability becomesnined by the specific potential and friction. A useful model

exponentially small:

is that of the symmetric cosine potential
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subject of Section Il C is how the tunneling probability
: (235 T(E) is obtained. The reactive flux method for studying ac-
tivated escape of a classical particle must be modified when
for which the barrier frequency is identical to the well fre- nonclassical barrier transmission is allowed. We derive a re-

Vi
w(q)=— >

2
1+cos<—wq)
lo

quency: active flux method for semiclassical dynamics in Section Il
2 2772 D.
ot = e VE, (2.3 These techniques permit the use of simulations to probe
0 corrections to quantum mechanical transition state theory
For Ohmic friction, due to low barrier heights and nonlinear potentials. We can

_ also investigate diffusion at temperatures slightly below the
7(O=2y5(1) (237 crossover temperature, the temperature at which the rate ex-
(where §(t) is the Dirac “6” function and should not be pressions developed in Section Il cease to converge.
confused with the energy loss parame®y we show in the : . . : .
appendix that the quantum kemnel has the frm A. Semiclassical Langevin dynamics algorithm

For integrating the stochastic Langevin equation we

I5<t— ! =exg —r(t)], (2.38  have used an algorithm which reduces to the velocity Verlet
2 algorithm as the frictiony— 0. This algorithm is given as
where the exponent is obtained by a quadrature: Egs. (9.243 and (9.24h in Ref. 36. There are many other

Verlet-like algorithms(see Ref. 3 The velocity Verlet-like

algorithm steps from the position and velocity at one time to

cost’?( T ) the position and velocity at the next time, particularly suiting

20° it for reactive flux simulations. Velocity and position dis-
placements due to the random force are chosen from an ap-

XCOSK% fiN) —coqth BN) (2.39 propriate bivariate Gaussian distributiti.

sinh(% 7 8)) ' ' When performing a Langevin simulation, it is important
_ o ~ that the errors introduced by the integration scheme are much

The quantum depopulation factor and diffusion coefficientgmgajier than the size of typical variations in the trajectory

are obtained by a double integral, and the quantum correlateg,e to the stochastic force. One measure of the error of the
hopping probability is obtained by numerical integration of integration is the variation of the energy of the particle,

_ md = d\ 1
r(t)_4ﬁ,8w e N

triple integral. E=mcf/2+V(q), when there is no friction. We chose the
time step of the simulation so that this variation was at least
lll. SIMULATION METHODS an order of magnitude smaller than the expected energy loss

of the particle over one traversal of a well near the barrier
nergy. For the simulations we report, a time step/@00
as sufficient to conserve energy to better than?kQT; =
here is the period of oscillation of a particle with about
g+ yq+ (1/m)dV(q)/dg=R(t), (3.1  kgT of energy.
To account for tunneling in direct Langevin simulations,

and for including semiclassical tunneling and reflection in S . : .
the dynamics. The classical Langevin equation is equivalentpe velocity g(t) is compared with the velocity(t + ot)

) - after a single time ste@t. If the product is negative, if
t;)(t_ttr,];: 2%‘5’_ t’)E q‘i’he(zé:g’ussif;; rar%r;rr?ﬁorézr(lf)tlgonr, q(t) points in the direction of the closest barrier, if the en-

a classical bath has zero mean and second momeSt9Y of the particle at timé+ 6t is smaller than the barrier

1N\ — . . : energy, and if a random number uniform[dh1] is less than
<R(t).R(t ) (2_7/,8m) ot t ): In Section VI we discuss T[E(t+ 6t)], theng is assumed to have tunneled to the next
possible extensions of the simulation method to treat a quan-- *. T :
tum mechanical bath well in the directionq(t). It starts moving away from the
We have selectea a Langevin dynamics algorithm par:[urning point in the next well with energg(t+t). To ac-
ticularly suited for reactive flux simulations and describe thecount for reflection, ifq(t) and g(t+ ot) are on opposite

. : . ; X sides of a barrier top, and if a random number uniform on
algorithm in Section Il A. We also describe how semiclas- . L
, X . L [0,1] is greater thanf[E(t+ 6t)], then the particle is as-
sical barrier transmission is implemented for a one-

. . . . . ..~ sumed to have been reflected. It is returned togft® side
dimensional reaction coordinate in terms of a transmission

probability T(E). When the frictional damping and the ran- of the barrier and starts moving back with energy
. . . E(t+ 6t).

dom force are small, the stochastic motion of a particle under
Langevin dynamics is nearly identical to conservative mo-
tion in the potentiaM(q). In Section 11l B, we describe how

(for weak friction the effects of the frictional bath can be

incorporated as a perturbative correction to a conservative As is evident from the discussion above, when the fric-
reference trajectory. This method, which we term energytion is small most of the computational effort in a Langevin
space dynamics, is much more efficient than a straightfordynamics simulation involves integrating the nearly conser-
ward integration of the stochastic equations of motion. Thevative equations of motion. It is much more efficient to ob-

Here we describe the Langevin dynamics methods wi
have developed for simulating motion in a one-dimension
potential,

B. Semiclassical simulations in energy space
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tain the exact dynamics of the bare system coordinate, andto  T(E) ={1+exd 2K(E)/A]} L. (3.9

incorporate the effects of the friction and random force as a . . L
pertu?bation Assuming that the maximum of the barrier isciitand that

By — 3 ion i i
A perturbation theory for the change in the energy of aV(q )=V*, the action integrak(E) is

particle over the period of an oscillation is presented in Ap- ar +
pendix Il. The method for simulations in energy space is as fq dav2m[V(q)—E], E<V7%
follows. A particle starts with energi at q,, which is a K(E)= ' R
barrier to.p or a turmng pomt: Th_e actiai{E) to reach the | dqyV2mE—V(ge+ig*)], E>V*
next barrier top or turning poird,, is calculated for the con- ol
servative dynamicg= —(1/m)dV/dg. A new energyE’ is (3.5
chosen from the distribution For E<V*, g, andq, are the left and right turning points at

, exg —(E'—E—A)%/20%]®(E' —Eg) the ¢barrier, q<g*<q,, and V(g|)=Y(qr)=E- Ffr
P(E'|E)= 17 dE exd —(E' —E-1)%267] 3.2 E>V¥, the solutions toV(q)=E, q*+iq/" andq ;(Hqr ,

0 fall in the complex plane, with Rq(*)<0 and Re@")>0.

with 02=2vkgTJ(E) and A=—y[J(E)—J(kgT)]. The The JWKB formula forT(E) must be modified when the

Heaviside functior® (E’) restrictsE’ to values larger than coordinateq is coupled to a frictional bath. It has been
Eo, the energy at the bottom of the wéfThis kernel is not shown that frictional damping decreases the amount of
microscopically reversible since the parametkrands? are  tunneling®43~%8 The same result can also be derived in
not symmetric in their dependence &andE’. Although terms of the local normal modes of the Hamiltonian near the
the kernel violates detailed balance, the deviations are smaarrier top®® For the underdamped regime we study, how-
when the energy loss itself is small. As we discuss in Appenever, the frictional coupling is small anBi(E) for the un-

dix I, we have checked that the small deviations from de-stable normal mode is not much different frar(E) for the
tailed balance do not affect our simulation results. undamped bare reaction coordinate. We introduce a frictional
Given the new energi’, a random number uniform on correction to the undamped@(E) which we expect to be

[0,1] is compared to the transmission probabilitgE’). If accurate for weak to moderate friction.

the random number is less thaifE’), the particle crosses In order to correctl(E) for a general nonlinear barrier,
the barrier into the next well; if it is less tham(E’),  we first obtain an effective harmonic frequeney for the
the particle is reflected back into the well. Finally, a time barrier. The effective frequency for ener@yis chosen to
counter is incremented by the amOUf*fZZdQ(d“dQ) give the same actioK (E) as the nonlinear barrier,

=dJ(E)/dE. This is in essence an extreme form of a mul- 2 " 2K(E)

tiple time scale simulatio***°with an adaptive step size 7 VB =——.

equal to the energy-dependent period of motion. ) .
Further insight into this dynamics scheme can be gained "€ €ffective frequency’, which depends ok for a non-

by regarding it as providing the exact solution of the integral“”ear barrier, *ls useql to calculate the unstable normal mode

equation, Eq.(2.12), which gives the stationary-state flux freque_nc;;_gi\ : delflnedA t?rouigrlmthe_ Grote-Hynes

hitting the barrier of a metastable well, or, for diffusion on aequatiort? ! N = o [1+y(\)INT]75 Finally, T(E) is

periodic surface, the integral equation for the flux in each of@ken as the transmission probab|I|;cy for an unstable normal

the wells® Let (n,d,E) stand for the state of the dynamical Mode with energjE and frequency\*,

system at the start of a step. The energl ighe direction of -1

traveld is =1, and the particle is moving into wetl from T(E)= ]

the barrier between welh and well n—d. The state

(n’,d’,E’") at the start of the next time step is taken from the 2K(E)w']] 1

distribution 1+eXF{W ] : @7
{00 n+a0ar aT(E') + S8 0, —a[1-T(E")I}P(E'|E).  For a parabolic barrier, this formula foF(E) reduces to

(3.3 T(E) for the unstable barrier top normal motfe.

The first term is the transmission of the particle into the next

well; the second term is reflection back into the initial well
and & here is the Kronecker delta function.

(3.6

2m(VFI—E)
1+ ex W—

' D. Semiclassical reactive flux

For large barriers, first passage time simulations are in-
efficient: the mean waiting time for a particle to escape a
well grows exponentially with the barrier height. Reactive
flux methods circumvent the waiting time by starting par-

The quantum barrier crossing effects of transmission andicles from the top of a barrier and averaging certain time
reflection have been included in the semiclassical dynamicsorrelation functions over the resulting trajectorie® Here
algorithms in Sections Il A and 11l B through(E). Thisis  we generalize the reactive flux technique to include semiclas-
the probability that a particle impinging on a barrié(q) sical tunneling. We will see that tunneling softens a classical
with energyE will be transmitted through the barrier. Ac- step function to the semiclassical transmission probability
cording to the semiclassical JWKB approximatfti? T(E).

C. Semiclassical barrier transmission
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The average of an observat which depends on the

trajectory{q(t),p(t)} is

(6)=(2wﬁQ)‘1f dqf dpe PE@P(O)p, (3.8

with E(q,p)=p?%2m+V(q) and Q=(2=%) fdqfdp

X exd — BE]. The observable is then averaged over ran
dom force historiedR(t) which generate semiclassical dy-

namics trajectories{q(t),p(t)} starting from the initial
(q,p). We eliminate the variablp in favor of E. The Jaco-
bian of the transformation fromq(p) to (q,E) is m/p, and

©

<6>:(2wﬁQ)*lf dq| dEe #E
- V()

m hod ~
X Sq.E) KO@P)RT(O(G,=P)r}. (39

The momentunp(q,E) is now a function ofy andE, and is
defined as the positive branch @2m[E—V(q)]. Two types
of trajectories contribute t¢O) for each value of ¢,E).
Trajectories contributing t®(q,p) start atg with positive
momentump; those counted irD(q,—p), start atq with

OA(0,E)=0[ga,(E)—q]-0O[g—ga,(E)]. (3.13

ForE=V(ax,), dar(E)=ax,. FOrE<V(ay,), da,(E) is
the location of the right turning point for motion in state
V[aa,(E)]=E. On the left side of staté, g, (E) is de-
fined asgy, for energies abovi/(qy ), and as the left turn-
ing point otherwise. IE is smaller than the minimum of the
potential in stateA, thenE is not allowed classically and
OA(g,E)=0. .

The definition ofk,_,g(t) is inserted into Eq. 3.9 to give

kA—»B(t)E(l;A—»B(t»
=<2thA>*1f:dEqu6A(q,E>

X(Op(t|q,pg)— Op(t|q,pa))r- (3.19

negative momentum. These two sets of trajectories must alsbhe energy integral has been restricted to values larger than

be averaged over histories of the random force.
We specialize to the reactive flux operakgr g(t) for a
generic bistable system with statdsand B,

R d
Ka_g(t)=— Qg ( gt ®A[qiE]}®B[Q(t)’E(t)]- (3.10
A
The ratio of partition function®,/Q is (®,). The charac-
teristic function® 4(q,E) is 1 when coordinate is in the
classically allowed region defined as stAtand O otherwise.
In general, one can defin®A(q,E) =0[SA(q,E)], where
the surface functios,(q,E) is positive for @@,E) in a clas-
sically allowed region of statd, negative for ¢|,E) outside

EA, the minimum classically allowed energy in stéteThe
absolute value of the velocity, normal to the dividing sur-
face has been identified witp(g,E)/m. The momentum
pg points into statéB; the momentunp,= — pg points into
state A; and pg and p, are both equal in magnitude to
p(qg,E). The characteristic functio®g(t|q,p) is 1 for those
trajectories with initial position and momenturg, ) which
are in stateB at time t, and O otherwise. The function
oa(9,E) places the initialy at either a barrier top or a turn-
ing point of stateA. If g is at a turning point then we con-
sider pg the outward momentum instantaneously before the
turning point, and, the inward momentum just after reflec-

of stateA, and zero on the border. The characteristic functiorfion from the turning point ag.

®3(q,E) is defined analogously. Sinag must be in either

When the initial velocity points out of state, the prob-

state A or state B for C|assica||y allowed energieS, ablllty that a partide will be transmitted to stat® is

O®A(9,E)+05(q,E)=0O[E—V(q)]. The unsubscripte®
is the Heaviside function.
The time derivative of , is

90, dq 90, dE

d
at OMAaB)= 7 G T IR ar (.19

The time derivativedE/dt is of ( \/;); since we are con-
cerned with the weak damping limit of smallwe can safely
neglect the second term in E(.11). Using the notation of
Ref. 9, the first term may be written

OA(0,E)=8[Sa(0,E) 1V Sa8=— 6a(Q,E)va.  (3.12

T(q,E). The trajectories contributing t@®g(t|q,pg) bifur-
cate,

Og(t|q,ps)=T(E)O5(t|gs.ps)
+[1-T(E)]1Og(t|qa,Pa)- (3.19

The trajectories in the first set, with weigh(E), have have
been transmitted into stat®. The initial position is now
termedgg . If E>V(q), thengg=q. If E<V(Qq), the par-

The velocityv 5 is normal to the dividing surface and posi- ticle has tunneled through the barrier betwéeandB. The

tive when exiting stateA, va=-q-VSa/|V,Sa|, and
Sa(d,E) = 8 Sa(Q,E) 1|V ¢Sal-

original q is a turning point of energf on theA side of the
barrier; the particle is removed fromand placed atjg, the

For a one-dimensional potential, one can define shate turning point of energye on the stateB side of the barrier.
as the classically allowed region between left and rightTrajectories in the second set, with weight T(E), have

boundariesq}{‘,I and q,’:,. Assuming thatE=V(q) at most

been reflected back into state pg is reversed t@,, andq

twice in the region so that left and right turning points areis renamedq,. Combining Eq.(3.14) with ®g from Eg.

unambiguous,

(3.15, we have
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ka B<t>=<2wﬁQA>*lfdequ 1
- Ea ka-s(t)= 17 2 [Os(t|ag.ps)—Og(tlax.pa)]-

u=1
xexf — BE]oa(d,E)T(a.E) (3.2)
X{(Og(t|ds,ps))r—(O&(t|da,Pa))r} If ka_g(t) decays slowly for large enough the plateau
© value kp_.g is defined, and the escape rate predicted by the
=(27-thA)*1f dE exd — BE]T(E) semiclassical reactive flux method is
Ea
ka_g=Ka gAEKTE. (3.22

X(Og(t|gs, —(27h *1fwdE
(@s(tlds Pe))r— (274 Qn En The classical reactive flux method has been generalized

to multistate systemsThe same generalizations follow for
xexi — BE]T(E)(Og(t|da.Pa))r- (316 the semiclassical reactive flux method outlined here for
bistable systems. The classical step function at the dividing
g%’urface,@)(E—V*), is simply replaced by the quantum
T(E).

To simplify the equation, we have assumed that each ener
E corresponds to a single pair of initial conditiorgsg( pg)
and @a,pa) on theB andA sides of the barrier. For energies
larger than the barrier height*=V(q%), gg=g,=q"; oth-
erwise,gqg andq, are turning points. This formula reduces to
the standard reactive flux sampling scheme for classical dyv. TURNING TRAJECTORIES INTO OBSERVABLES

namics as T(E) goes to the classical form ) ) ) . )
T(E)=0O[E—V*]. Armed with the semiclassical simulation methods of

Section Ill, we have computed the escape tatef particles
out of a well, the average energy of escaping parti¢ckes
the probability of a correlated hdp,, the diffusion constant

The initial rate fromA to B is the transition state theory
estimatek,>'5 . At time t=0, ©5(0|qa,pa) =0, and

o D, the mean square length per juig), and various other

ka>lg= lim kA_>B(t)=(27TﬁQA)7lf dE quantities. When the barrier heigtit is small, barrier cross-
=0 B ings can be frequent, permitting direct sampling of these ob-
xex —BE]T(E). (3.1 servables from equilibrium simulations. First passage simu-

This th | SF(E b d to obtai lations are described in Section IV A. For large barrier
is thermal average df(E) can be used to obtain a cor- heights, reactive flux methods increase the sampling effi-

i i ] 31
rec_t|on faCtO.rA for the_harmo_mc barrieg from Eq.(2.9. ciency. The semiclassical reactive flux correlation functions
This correction factor is obtained from the Grote—Hynes bar-

. . which we used are presented in Section IV B.
rier frequency\* and the ratio of the quantum TST rate to P

the classical TST rat&,>'s'. The classical rate is obtained A. First passage simulations

using T(E)=O®(E—V*) in Eq. 3.17. The correction factor

A First passage time simulations were used to obtain dis-
is

tributions of energies of escaping particles and distributions
of jump lengths. These simulations were performed by start-

sin( BHNY/2) r . . ) S e
— dE exd — B(E—VH]T(E). ing each trajectory with the particle in well O of the periodic
BhiN*I2 A Ea iL=Al e cosine potential. Each trajectory was continued until the par-

(3.18 ticle escaped from well 0, either by passing over the barrier
. or by tunneling through the barrier. At this point, the energy

The productA = is well-behaved even below crossover tem- o the particle was stored to accumuldig), the distribu-
perature becausa corrects for the nonlinearity of the po- yion of energies of particles crossing the barrier. Each trajec-

tential and for the finite height of the barrier. In parti(_:ular, tory was continued from this point until the particle experi-
A cancels the divergence due to the term 18W0(12) in  enced its first turning point after escape. A turning point over

=

= , , . , . well n defines the length of the first correlated segment of the
. In S|m.lJI.at|ons, it is convenient to galculate the transm|s—jump as|n|. Averaging over many trajectories given),
sion coefficientxa g rather tharka g itself, the distribution of lengths for the correlated segments which
-~ TST compose a jump.
Ka—(1)=Ka_g(t)/ka 5. (3.19 At first, we selected the initial energy of each particle

from a Boltzmann distribution in well 0. When the friction
was small, however, we found that the small Boltzmann tail
extending above the barrier skewed the distributidts)
~ ] (3.20 and P(n). Furthermore, these energetic trajectories do not
Je, dEexp(— BE)T(E) correspond to reactive flux out of well 0: when integrated
backwards in time they usually leave well 0 immediately.
ChoosingM initial values for the energy results M pairs  The presence of these trajectories is essentially a finite bar-
of trajectories, theuth pair starting with ¢4 ,p%) and rier height effect, since their numbers decrease exponentially
(9 ,pE). The transmission coefficient is evaluated as with increasing barrier height. When friction was small,

The initial energy is chosen from the distribution

o(E)= exp(—BE)T(E)O(E—E,)
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8<1, we removed these energetic trajectories from our samthe average energy of escaping particles is defined through
pling by giving each trajectory an initial energy ofk,T  the time-dependent quantify(t)),
above the minimum in well 0.

1 M
(e(V))=[ro-()] 37 2 {O2[a,(H)]= O, (1]}

B. Reactive flux correlation functions u=1

Due to the symmetry of the periodic potential, all the X(EM—Vi)/kBT. (4.9
required reactive flux correlation functions can be expresse
in terms of trajectories which are transmitted from well 0 to
well 1 at timet=0. The initial distribution of energies and
positions, termeg, (q,E), is

ﬁihe energy being averageIElM—Vi, is the initial energy of

the uth particle(rather than the energy at tintg relative to

the barrier energy. As the particles dissipate energy and be-
come trapped(e(t)) approaches the plateau val(:.

exp(— BE)T(E) 8p(q,E)O(E) The diffusion constant is defined as

I5dE 2,00 exp(— BE) T(E) 8o(q,E) |

po (0,E)= ) )
.1 D=5T(1%)=52 ko_n(nlo)®. @7

The symbol “+” is a reminder that the initial direction of
motion is into well 1; i.e., the initial momentum is the non-
negative rooty2m[E—V(q)]. The minimum of the poten-
tial is at 0 and the barrier energy ¥*. For E<V?, Drst=3T1s1l5, (4.9

80(0,E) placesq at the left turning point at enerdy in well ) . , »
1. ForE=V*, 8,(q,E) placesq at the barrier top between € particles escape with the transition state rate and hop

well 0 and well 1,g=1,/2. The transmission probability only a single Iatticg spacing. I.n. ter~m§ of the state-to-state
T(E) is calculated for the cosine barrier and corrected forr€agtive flux transmission coefficienB,is the plateau value

It is convenient to redefin® asD:f)DTST. The transition
state value for the diffusion constant is

friction according to Eq(3.7). of D(t),
The escape rate from well 0 to wellcan be written as - )
D(t)=2 Kon(t)N* 4.9
Ko—n= Ko—nl'1sT" (4.2 -

where I'rgy is the transition state theory value |, terms of theM trajectories
(wl/ m)exp(=BVHAE. The well frequency iso; the nonlin-

ear, finite barrier height correction is defined by Eq. . 1 M
(3.18. Now we selecM initial values forE and the corre- D(t)= ME > (2n=1)0,[q,(1)]. (4.10
spondingM values forq from the distributiorpg (g,E). The u=1 n

initial energy of theuth trajectory isg,. The stochastic Finally, comparing expressions for and«_ , it is evident
semiclassical dynamics generabddrajectories; the position 4t

of the particle at time for the uth trajectory isq,(t). The

transmission coefficient, ., is given by the plateau value ((1119)%=Dlxq._.. (4.11
of xo_.n(t), Reactive flux methods require the existence of a plateau
LM time with slow exponential decay. We have verified that we
Koﬁn(t)Z—E On[0,(1)]— O s 1[0, (D] have reached such a regime for the simulation results we
2M 1 report.
+0 5[0, ()]=0_ni[a,)]. (43 V. RESULTS
In order to maintain the symmetry betweerand —n while We have performed Langevin dynamics simulations for

using the distributiom, , we have replaced the ratg ., by  the motion of a particle of mass on the cosine surface

the equivalentK,_,,+ko_,—,)/2 before averaging over tra-
joctories. Kot ko n) ane V(q)=(V}2)[ 1 - cog 27/l o). (5.1

The total escape rafe is X..0ko_.,, which can be re- The nth well is defined asr{—1/2)l,<q<(n+1/2)l,. The
written asl" = xo_.I'rs7. The transmission coefficiert_. is  frequencyw=(27/l,) V¥ /2m. In the classical limit, the re-

the plateau value of a time correlation function, duced frequencys w— 0. The crossover transition from ac-
tivated escape to deep tunneling is approximately
Ko ()= 2 Ko_n(t). (4.4 Bhw=2m. Unless noted otherwise, we used a barrier height
n#0 of 5 kgT for Bhw=0 and 0.2r, and a barrier height of 25

kgT for Bhiw=, 1.8m, and 3r. We compare simulation
results with theoretical results except for the largest fre-
quency,Bfiw= 3, where the theory does not converge.

Noting thatX,,.,0®,(q)=1—-04(q), we have in terms of
the M trajectories

1 M The value of the static frictiory was defined through the
Ko_(t)= ME 04[0,(1)]=0¢[q,D)]. (4.5 energy loss parametérfrom Eq.(A17), y=6w/4BV*. The
u=1 Langevin equation was integrated directly {8 1; the en-
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FIG. 1. The correction factoA for the parabolic barrier quantum factor
E is shown as a function of the energy loss paraméter® : Bhw=0,
BVI=5: +: Bho=0.2r, BVi=5; 0: Bhow=m, BVI=5; X: Bho=rr,
BV¥=25; A: Bhw=1.8mr, BVI=25.

ergy space method was used f&<1. As shown below, re-
sults from the two methods agree well &t 1.

A A

As discussed in Section Il D\ is the ratio of the ther-

mally weighted semiclassical transmission probability for the

Bader, Berne, and Pollak: Activated rate processes
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FIG. 2. The transmission coefficiert from is shown as a function of the
energy loss parameté: Points are reactive flux simulations; linasd are
theory. ¢ anda: Bhw=0,8V*=5; + andb: Bhw=0.27,BV*=5; X and
c. Bho=mBVF=25 A and d: PBho=18rBVI=25 *:
Bhw=3m,BV =25 The theoretical estimate is= Y \*/w. Simulation er-
ror bars are smaller than the size of the points.

tential are now below the energies important for escaping
particles.
When Bfiw is increased to 18 with BV*=25, just

cosine potential to the transmission probability for a har-above the crossover temperature and plotted with the

monic barrier with frequency given by the unstable barriercorrection factorA is roughly 0.65 for underdamped escape,
top normal mode. This ratio is unity when a harmonic ap-indicating that a harmonic approximation again overesti-
proximation suffices for the quantum effects of tunneling andnates the tunneling enhancement to the rate at low friction.

reflection. The values we obtain far are presented in Fig.

Just as withBhw=1, the deviation ofA from unity for

1. In the strong damping region, when the barrier height is3% «=1.87 and large damping are likely due to the failure
large enough, the steepest descent, parabolic barrier estimatethe correctedl (E) to adequately describe the effects of

is good. One finds thak is almost unity in this region. For

friction. For weak friction, howeverA has attained a plateau

finite barrier heights and weaker damping, the true rate wilvalue and the frictional correction t6(E) is very minor.

be smaller than the rate estimated from a parabolic barriegince we are concerned here with weak friction, not strong
because the nonlinear nature of the cosine potential impliesfaiction, we do not address hoW(E) can be improved in the
larger imaginary action through the barrier and hence darge friction regime.

smaller transmission coefficient. The fact thatgoes sub-

stantially below unity in the strong damping region is quali-

tatively correct, though our results are not quantitative be-" K

cause the barrier is after all not separable.
For the classical frequencg#zw=0, plotted with the

The transmission coefficient for escape from well 0,
k=kKqg_ , is shown in Fig 2. The simulation results were

¢ symbol, A=1 by definition. The steepest descent esti-obtained using the reactive flux method; the theoretical esti-

mate is accurate for the next larger frequengg.w=0.27.
As shown with thet+ symbol, A deviates very little from 1
throughout the entire range of damping.

When the bare frequencgfiw is increased tomr, the

mate is k=Y /w. For the reduced frequencghw=0
(classical dynamigsthe theory and simulation agree per-
fectly.

The simulation results foBAa w=0.27 are also in good

harmonic approximation predicts a larger tunneling factoragreement with the theoretical prediction far A small dis-

than we estimate for the nonlinear cosine barrier. The symbatrepancy is noticeable only at the largest value of the fric-
O represents results foBiw=m and the barrier height tion, §=100. At this large friction, the simulation results are
V#=5kgT. For weak dampingA drops below 1 due to the probably in error. The semiclassical dynamics method allows
finite height of the nonlinear barrier. At moderate to strongtunneling each time the particle reaches a turning point,
damping, tunneling is less important and we would expectather than only when the unstable barrier top normal mode
A to approach 1. Instead, it decreases further, indicating thagxperiences a turning point. Tunneling serves to increase the
our method for obtaining (E) which assumes separability chance that a particle in well 1 will return to well 0, ard

of effective barrier modes is not valid for strong friction. The from the simulation is smaller than the correct result.

finite barrier height effects for weak friction are reduced For the next larger frequenc@gh w= 7, the agreement
when V* is increased to 2%gT, with Bhw still equal to  between theory and simulation is quite good, although the
7. For this larger barrier heightA as shown with thex theoretical prediction forx consistently overestimates the
symbol is again close to 1. Nonlinearities in the cosine posimulation results. The theory we use also predicts too large
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logg 8

FIG. 4. The distribution of energi€g e) of escaping particles is shown as a
function of the difference from the barrier energy in units &§;T. Results
FIG. 3. The average energy of escaping particles relative to the barriesre from mean first passage simulations with=5kgT and 8% w=0. The
energy in units okgT, (€)= B(E—V(l¢/2)), is shown as a function of the  four lines correspond to four choices for the energy loss paransetar
energy loss parameté: Points are reactive flux simulations; linasb are 5=10;b, 6=1;c¢c, §=0.1;d, 5=0.01.
theory. ¢ anda: Bhw=0,8V*=5; + andb: Bhw=0.27,BVi=5.

energy in the reaction coordinate. One can show, however,

a value fork at 8% w=1.8w. The difference between theory that in the moderate to large damping limi6>$1 and
and simulation is especially noticeable for small friction, Y~1),
where our semiclassical dynamics method should be accu- 1 YT
rate. We ascribe the difference to the finite height and the <e>=l+§ —_—, (5.2
nonlinearity of the barrier in the simulations. First, the en- @
ergy lossé at the barrier top energy is larger thanat the  where e refers to the reaction coordinate ener@yVhen
energies important for tunneling. Since the escape rate scaléiction becomes large) ¥~ w2/ y(\ %), and(e)— (3/2)kgT.
asé$ in the underdamped regime, the escape rate from theofithin simulation error bars, roughly the size of the points in
is too large. Second, sindgE) decreases faster for the co- Fig. 3, the average energy of classical escaping particles in
sine potential than for a parabolic barrier, escape at a lowehe large friction regime is indeed (3KJT.
energy is more classical-like in the simulation than in the  The shift to smaller escape energies for the classical par-
theory. Again, this causesto be smaller than the theoretical ticle leads to a narrowing of the distribution of escape ener-
prediction based on a parabolic barrier. gies, f(€). This distribution is peaked very strongly at the

The qualitative prediction of the theoryg~ 51—Bﬁw*/2w barrier top energy as the friction becomes smaller. The dis-
for low friction, is correct, but can only be used to predict tribution of escape energidge) from first passage simula-
escape rates for barriers withhw=<2m, i.e. above the tions, normalized to 1, is shown in Fig. 4 as a function of
crossover temperature. According to this expression,1 e for escape of classical particles from one well of the cosine
as Bhw approaches 2 from below. Simulations with surface. Results are shown for four values of the energy loss
Bhiw=3m indicate thatx is essentially 1 below the cross- parameters. When =1, the form off(e) is

over temperature. fle)~k L exp(— e)erfeN (N ). (5.3
In the underdamped regimé=1,
C. (€) and f(e) f(€)~(0.825)" Y2 exd — €/0.825%2]. (5.4

One measure of the importance of frictional forces andThe distributionf(€) clearly collapses toward 0 as friction is
tunneling ise=(E—V*)/kgT, the energy of an escaping par- decreased in the simulations. Furthermore, the decay of
ticle relative to the barrier top energy. The average energy of(¢) is very close to exponential in all cases. The agreement
escaping particlege) is displayed in Fig. 3 for the two of the moment €) given by theory and simulation indicates
smallest frequencie@f =0 and 0.27. At small damping, that the decay constants as given by theory and simulation
6=1, the simulation and theory agree. As predicted byalso agree.
theory, the energy of a classical particle escaping from a well  Results for escape energies for all barrier frequencies are
scales as 0.825. The escape energies at low friction also shown in Fig. 5. For the smallest two frequencies the barrier
agree for the nearly classical barrier frequencyheight was S5gT; for the remaining frequencies, it was 25
Bhw=0.27. kgT. Since the results foBZiw=0 and 0.2r have been dis-

At moderate to large damping, however, there is a cleacussed above, we concentrate now o=, 1.87, and
difference between the simulation result and the theoretica87w. When BAw= 1, the agreement between theory and
prediction that(e)— 1. The difference stems from the fact simulation is quite good. As friction is decreased, tunneling
that the energy in the theory is that of the unstable normabecomes more important and occurs at lower and lower en-
mode, whereas the energy in the simulation refers to thergies. In Fig. 6 we show the distribution of energfég)
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FIG. 5. The average energy of escaping particles relative to the barrie'r:
energy in units okgT, (€)= B(E—V(ly/2)), is shown as a function of the
energy loss parameté: Points are reactive flux simulations; linesd are
theory. ¢ anda: Bw=0,8V*=5; + andb: Bhw=0.27,8V*=5; X and

c. Bhow=mpBVF=25 A and d: Bhew=18m,BVi=25 *k:
Bho=3m,BV =25, Simulation error bars are smaller than the size of the
points.

IG. 7. The correlated hop probabilify, is shown as a function of the
energy loss paramete$ for various values of the quantum parameter
Bhw. Lines are theory; points are results from first passage simulations with
BV¥=5.¢ anda: Bhw=0; + andb: Bhw=0.27; O andc: Bhw=7;

*: Bhow=31.

For the largest frequencg#s w = 37, corresponding to a
temperature below crossover, it is clear that escape is due to

barrier height of 5ksT. For the largest frictions=100, tunneling from deep in the well for all but the strongest

most of the particles are activated and escape at energi(\-.@Iues c_;f the fric_tion. A thorough investigation of escape _in
above the barrier energy. As the friction is decreased, thg!'> F€9Ime requires a more complete quantum mechanical

distribution shifts to lower energies and tunneling domina’teéree_ltment than is provided by the semiclassical dynamics al-
the escape. gorithm. Although we have not included the effects of quan-

Results for%iw= 1.8 in Fig. 5 show a discrepancy in tization of energy levels in the simulation, we expect the

(&) from theory and simulation. The theory predicts escapdudlitative picture presented here is valid.
energies about kgT lower than those seen in simulation.
This difference is due to nonlinearities in the cosine poten—D p
tial. SinceT(E) decreases faster for the cosine potential than™™ " *
for a harmonic potential, tunneling occurs at a higher energy  The correlated hop probabilitieB; as measured from
than predicted by theory. When friction is large, tunnelingfirst passage simulations are shown in Fig. 7. This is the
particles escape near the top of the barrier, nonlinearity of thprobability that a particle escaping from a well will traverse
barrier is not important, and the theoretical results and simuat least one other well before suffering a reversal in its ve-
lation results agree. locity. It characterizes the probability that a segment of the
trajectory of an activated particle will include a correlated
hop over several lattice spacings. The barrier height used in
these simulations was kT, except forBriw=37 where

the barrier height was 18zT. As in all the figures, two
05+ ] points are plotted fo6=1, one from the energy space simu-
lation and one from the Langevin simulation. A small differ-
ence is noticeable between the values Fgrfrom the two
simulations; this difference is roughly the size of the simu-
ln[f(e)] -1F c b . lation uncertainty.

When friction is large, the probability of a correlated hop

obtained from first passage simulations withw= 7 and a

.
o
ot
T
.

o is small. As the friction decreaseB; rises for classical es-
2r 1 cape, saturating at a value of almost 0.7. A plateau is reached
25 . because the root mean square energy fluctuation in going
) . . . . , . from barrier to barrier is on the order of the energy of the
50 40 30 20 <10 00 10 20 escaping particle: both are proportional\{@.

When tunneling is allowed, howevd?; eventually falls
with decreasing friction. The reason is that a greater number
FIG. 6. The distribution of energiege) of escaping particles is shown as a f particles escape by tunneling when friction becomes
function of the difference from the barrier energy in units éiT. Results . .
are from mean first passage simulations Wifh=5kg T and 8% w==. The smaller, the tunneling ene_rgy decreases, and the probability
three lines correspond to three choices for the energy loss parateter  tO tunnel across two barriers decreases. The agreement be-

6=100;b, 6=1;c, 6=0.01. tween theory and simulation is quite good; effects due to
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FIG. 8. The probabilityP(n) that a particle escaping from well O suffers its

first reversal of velocity while over wefl is depicted for three values of the FIG. 10. Same as Fig. 8, but with=0.1.

parameterBhw: ¢ ,Bho=0; +,Bhw=0.2r;, O,Bho=m. For all cases '

V#=5kgT and §=10. : . 1
8 and the geometric serig®(n)=(1—P;)(P;)" ! is a good

approximation td?(n). Next, in Fig. 9, results are shown for
finite barrier heights do not seem to affdf for the param- 6= 1. The jump distributions fopfiw=0 and 0.2r are simi-
eters we consider. lar and generally larger thaR(n) for Bhw=. Further-
The simulations foiB% w =3 indicate the behavior in More, the decay d?(n) is now slower than exponential. The
the deep tunneling regime below the crossover temperatur8onexponential decay d?(n) is even more evident in Fig.
In this regime, the theory faP; no longer converges. Simu- 10, with 6=0.1. The distribution P(n) is similar for

lations demonstrate thaP;~0 when escape is due to Bfiw=0 and 0.Zr. Tunneling has become important for
ground-state dominated tunneling. Bhw=m, andP(n) decays more quickly than for the lower

two frequencies. Results for the smallest valué,00.01, are
shown in Fig. 11. Classical dynamics produc®@) with
E. P(n) . : .
an extremely long tail. Tunneling becomes important for es-
The distribution of jump lengthB(n) is another indica- cape withBAw=0.2, andP(n) is smaller than for classical
tion of the probability of a long correlated hop. Calculated inescape. Furthermore, f@% w= 7, P(n) decays much more
first passage simulation®,(n) is the probability that a par- quickly for §=0.01 than it did with stronger friction,
ticle escaping from well 0 will suffer its first reversal of §=0.1. As tunneling becomes more important, the distribu-
velocity while traveling over welh. The normalization con- tion of jump lengths shifts to smaller values and becomes
dition is £;_,P(n)=1, and the probability of a correlated exponential once again.
hop P, is 1-P(1). Results forP(n) from first passage
simulations withV*=5kgT and BAw=0, 0.2, and 7 are
shown in Figs. 8—11. For these simulations, the initial energy '
of the particle was kgT above the bottom of the well. The ratioD/Dfsr of the diffusion constant to the classi-
In Fig. 8 the energy loss parametée=10. All of the cal  transition  state  theory  estimate, D%g;
hops were 3 lattice spacings or less, and the difference be= (/)15 exp(~BV¥), is displayed in Fig. 12. These results
tween P(n) for the three values of3%iw is insignificant. ~are from reactive flux calculations. For moderate to large
Furthermore P(n) decays exponentially with increasimg damping, the diffusion constant increases with the quantum

0 T T T T T T 0= T T T T T T
g T
-0.5 1>
05k 1 0.5 .
2 e
tr $ 1 %
L5F +%, i
(m} gP o + (9
logg [P(n)] -15F 1 logig [P(n)] -2} ++%% 1
D + (0
+_H_ 0%%
i o ¢ | 25+ h S S o
2 ++ W &
¢ O + O
@ 3t F,
r 4 +_H-+ ++
25 Tt +
35F H e
Y - : . : . . . . 4l 0O . . .
1 2 3 4 n 5 6 7 8 5 10 15 20 25 30 35 40 45
n
FIG. 9. Same as Fig. 8, but with=1. FIG. 11. Same as Fig. 8, but witf= 0.01.
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FIG. 13. The mean square lattice spacings per j(hfio)2), are shown as
FIG. 12. The diffusion constarid, normalized by the classical transition a function of the energy loss parametefor various values of the quantum
state theory valu® = (w/7)exp(—BV¥), is shown as a function of the parameteBfiw. Points are results from reactive flux simulations, lines are
energy loss parametes for various values of the quantum parameter theory. & anda: Bhw=0; + andb: Bhw=0.27; X andc: Bho=r;
Bhw. Points are results from reactive flux simulations, lines are theory.A andd: Bhw=1.8m; % Bhw=37. For Bhw=0 and 0.2r, the simula-
¢ anda: Bhw=0; + andb: Bhw=0.27; X andc: fhw=m; A andd: tions usedv¥=5kgT; for Bhw=, 1.8, and 3m, V¥ =25gT.
Bho=1.8m; %: pho=3m. For Bhw=0 and 0.2r, the simulations used
V =5kgT; for Bhw=m, 1.8, and 3, V¥ =25kgT.

dent that for a fixed value of and a large enough value of
Bhw, quantum tunneling can overcome the effects of low

portant and the diffusion constant depends strongly on thfnctlon, making the quantum diffusion constant larger than

. . . e classical diffusion constant. One also expects that for an
escape rate. Quantum mechanical particles are more likely {0 : . X
. . . even smaller value o, the classical diffusion constant will
tunnel, increasing the escape rate, &nds larger than for a

. . : once again be larger than the quantum diffusion constant.
corresponding classical particle.

Correlated hops become important in the underdamped,
low friction regime. The increase in the jump length due to 2
correlated hops more than compensates for the reduction % (10"
the escape rate, resulting in an increase in the diffusion con- Results for the mean square number of lattice spacings
stant. As seen in the previous section, correlated hops ager jump,{(I/15)?), are shown in Fig. 13. This number is
much more likely and also longer for classical particles tharobtained from the results fdd and « from reactive flux
for quantum particles. The classical diffusion constant consimulations aD/«. The corresponding theoretical quantity
sequently increases more quickly than the diffusion constaris D/(DY). At moderate to large damping(l/1o)?)=1
for a quantum particle. and each escaping particle only jumps one lattice spacing.
A theoretical analysis predicts that the diffusion constantror smaller values of the friction, longer jumps become im-
above the crossover temperature scaled ds ##“?7 inthe  portant. We see again that # o increases, the escape is
weak damping regim& Simulations indicate that this ex- due more and more to tunneling, and the jump length de-
pression is valid for6<1. Finally, these simulation results creases.
reinforce the theoretical prediction of an inverse isotope ef-  Nonlinear, finite barrier height effects are evident in the
fect: the classical diffusion constant is larger than the quansimulation results for the frequen@# w=1.87. The simu-
tum diffusion constant when friction is small. lations show a larger mean square length per jump than pre-
We note that the agreement between theory and simuladicted by theory. The theoretical estimate is based on the
tion for D is better than that fok for the strongly quantum value of § for an escaping particle at the barrier top energy.
frequencypBfiw=1.8w. The reason for the agreement hereTunneling particles travel below the barrier top energy, have
stems from a cancellation of errors in the theory. The value smaller action per traversal of a well than particles near the
of & used in the theory is larger than the effecti§en the  barrier energy, and therefore have a smaller effective energy
simulation. In the low friction, smalb regime, this results in loss than particles escaping over the barrier. Since the jump
a larger escape rate in the theory than the simulation, but aldength increases a8 decreases, the actual jump length is
a smaller probability of a correlated hop. The errors are irslightly larger than predicted by theory.
opposite directions, giving a small net error in the predicted  The mean square jump length increase$as for clas-
diffusion constant. sical escape, and the theoretical prediction that
The theoretical results fob are only valid above the ((I/1)?)~ & 2"#%“/7 is borne out by the simulation results.
crossover temperaturg8iiw=<2s. Our simulation results The theoretical scaling law is valid for moderate to weak
slightly below crossover3? w =3, indicate that the diffu- friction, § <1. At crossoverBfiw=21, the theory predicts
sion constant is independent of friction in the low friction no dependence of the jump length on friction; for larger fre-
regime. This is because tunneling from deep in the well is th@uencies the theory does not converge. The simulation re-
dominant escape mechanism for diffusing particles. It is evisults we present for8Zw=3# indicate that the mean

parameterBfi w. In this region, correlated hops are not im-
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square jump length remains independent of the frictional The simulation results support the prediction that reduc-
damping below the crossover temperatyé,w> 2, with ing friction increases the diffusion constant. Furthermore, for
(12y=13. sufficiently small friction, the classical diffusion constant is
larger than the quantum. Although quantum particles have a
larger escape rate due to tunneling through the barrier be-
VI. DISCUSSION tween wells, above-barrier reflection reduces the length of

We have investigated surface diffusion with a One_correlated hops for quantum particles relative to classical

dimensional model which allows for the quantum mechaniparticles. Therefore, while this reduction to the diffusion
cal tunneling and reflection of the diffusing particle. At eachconstant due to above-barrier reflection is reminiscent of the

turning point or barrier crossing, a semiclassical transmissiof©SSiPility of quantum reflection reducing _tg:.escape rate
probability determines whether the particle is transmitted off®M @ well relative to a classical prediction,it occurs
reflected. We have used a stochastic Langevin equation f§rough a different mechanism.

model the fluctuations and dissipation of the energy of the 1he model described here is one-dimensional. This is a
diffusing particle. reasonable first approximation since many studies indicate

We have developed a reactive flux method to efficientlythat adsorbates can have a p_referential axis for_ diffusion.
investigate surface diffusion when the barrier between welld WO récent examples are the direct STM observations of Pb
is large. The standard reactive flux method for classical sysdiffusion on Gé111) angl simulation studies of H atoms on
tems is no longer valid when particles can tunnel. Classithe S{100-2x1 su_rfacé_s. Furthermore, when long hops are
cally, each reactive flux trajectory starts at the top of theMportant, simulations indicate that the jumps are along a
barrier with energy greater than the barrier energy. Semiclagersistent directioh!*3*~>*Simulations also indicate that an
sical tunneling serves to broaden the initial distribution of the€ffective one-dimensional reaction path potential surface can
reactive flux trajectories. The modification to the classicalPe @ good approximation for the motion of H on a rigid Cu
reactive flux algorithm can be described as replacing th@urfaces.4 Fully three-dimensional treatments of adsorbate
classical transmission probaibility, 1 if the energy is above théhotion have shown a substantial fraction of long hops,
barrier and O otherwise, with the semiclassical transmissiof?1=0-45 for H on N{100,* and that correlated hops can
probability T(E). enhance the diffusion constant by a factor of 2 {5 @e are

Reactive flux methods require that trajectories be continextending our one-dimensional treatment to diffusion on a
ued up to a plateau time, the time for a reactive partidetwo—dimensional surface to determine to what extent cou-
starting near a barrier to be thermalized in a well. When thedling between Cartesian dimensions can quench long jumps.
frictional damping of the particle is small, the regime empha- ~ The bath in the simulations is strictly classical. We have
sized here, the plateau time can be quite long. We have vastghecked that the theoretical predictions are not sensitive to
increased the efficiency of our sampling of trajectories bythe treatment of the bath; a classical bath and a quantum bath
developing a new multiple time step method. Each time stegive the same results for the diffusion constant, the escape
in this method corresponds to the time for a particle torate, etc. This is because the most important quantity charac-
traverse a well at constant energy. Coupling to the frictionaf€rizing the bath isj, the average energy loss of the particle
bath is incorporated as a stochastic perturbation to the corio the bath per period, and is the same for a classical or
servative reference trajectory. This method can increase conguantum bath. Thus, for the Ohmic friction we consider, a
putational speed by a factor of 100. quantum treatment of the bath modes would not be likely to

Our simulation results are compared to theoretical preproduce a substantial change in the simulation results. Re-
dictions for the escape rate, escape energy, and diffusion coplacing the classical bath with a quantum bath would require
stant. We find that the theoretical predictions are almost althat the Langevin equation be replaced by a generalized
ways in perfect agreement with the simulation results. Thd-angevin equation, and that the stochastic random force be
simulation and theory disagree only near the crossover beeplaced by a stochastic operator satisfying a nonclassical
tween activated tunneling and deep tunneling, when the reluctuation—dissipation theorei-®*It would be a challenge
duced barrier frequencg# o approaches #. The simula- to simulate this type of quantum generalized Langevin equa-
tions demonstrate that near crossover, the finite height ariion. It would not be too difficult, however, to include the
nonlinearity of the barrier between wells become importantquantum aspects of the bath in an energy space simulation by
The theory presented here is based on a parabolic extrapolasing a quantunP(E|E’) kernel rather than the kernel for a
tion from the top of the barrier, and predicts an escape ratelassical bath.
that is too large. Theory also predicts a jump length that is The dynamical simulations we have described do not
too large, however, and the cancellation of errors results in nclude quantization of energy levels of the particle. The
diffusion constant which is quite accurate. number of bound states per well is given approximately by

The simulations also provide results where the theory naction/27%], or 48V* 7B%e for the cosine potential. For
longer converges, i.e. below the crossover temperature. Wihe larger frequencies we consider hegé,o= 7, the num-
find that the limiting behavior of the diffusion constant pre- ber of energy levels is not large, indicating that quantization
dicted by theory at crossover continues below crossover asf energy levels might be important. The dynamical simula-
well. It is possible to develop theoretical approaches whichions are only used to obtain correction factors to transition
converge at and below the crossover temperature; thestate rates, however, and the transition state rates do include
methods will be described elsewhere. quantization of system levels in the well and bath levels both
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in the well and at the barrier through the fac®r This ratio  from the mass-weighted original system and bath coordinates

of quantum to classical partition functions includes the re{q,x;;j=1,...) to thenormal modes 4,y;;j=1,...). The

duction in the activation energy due to the zero-point energynatrix element {q) projecting the mass-weighted system

of the escaping particle, which should be the dominant effectoordinate onto the unstable normal mgdassociated with

arising from quantization of energy levels. In the deep tunthe barrier frequency* [cf. Eq. (2.4)], is given in terms of

neling regime below crossover, it is likely that an exact de-the Laplace transform of the time dependent friction as

scription of the escape rate requires quantization of the ad- At -

sorbate motion in energy levels in each well. A tight-binding uz.= E( YY) + 9v(s)

00 F

model involving coupled sites might be a more appropriate AR Js

starting point than the semiclassical dynamics describedhe spectral density of the normal modég)),?® may be

here. The approximation here of incoherent hops betweegypressed similarly:

sites might break down, and it might be necessary to describe 1

the diffusion in terms of coherent motion in bandlike e

stated26? 1(A) =+ REK(IN], (A3)
A number of other approaches have been used to inveT:—/

1+

—-1
| #2)

s=a%

here[k(i)\)] is the transform of the friction function of the

tigate diffusion on a multidimensional surface. Semiclassica ormal modes and is related to the time dependent friction:

transition state theory calculations estimate a quantum me-
chanical diffusion rate by performing a thermal average of
the multidimensional tunneling probabili(E).%* Centroid
methods can also be used to estimate a quantum mechanical

transition state theory rate constdmt®® Although both of  TO determine the quantum kernel it is necessary to solve the
these approaches can provide accurate values for ragduation of motion for the trajectory which at times is
constant$? neither includes a direct estimate of the dynami-initiated at barrier 1 and as time goestdt goes asymptoti-

cal effects which lead to long correlated hops. Dynamicacally to the adjacent barrier. This trajectory obeys the zero
effects have been estimated by running classical trajectoried’der equation of motion for the unstable normal méce

on effective potential energy surfaces and with initial condi-Ed- (3.19 of Ref. 33 or Section 2 of Ref. 38

tions chosen from semiclassical distributidfs’> These
methods do not accurately describe quantum tunneling or b—)\*zpz—uo =F(t), (A5)
reflection beyond the initial barrier crossing. A fully quantum q=Ugep

_mechanical description of a diffusing particle is possible US\yherew,(q) is the nonlinear part of the potential,

ing basis set methods to evaluate a flux—flux autocorrelation

function®*56.73 put so far has been limited to a rigid sub-  Wi(@)=w(q)—[w(q¥)— 3 @*(q—q¥)?], (A6)

strate. Real-time path_lntegral methods m'.ght _allow fgr 4and g* denotes the location of the barrier. The power spec-
fully qguantum mechanical treatment of a diffusing particle

and the substrate, with the substrate modes treated as gHm of the forcer(t) along the critical trajectory is defined

effective bath of harmonic oscillatof4-7¢ It might be diffi-
cult, however, to extend real-time path integration to times  ~ o .

- F(N)= dte™F(t)
sufficiently long to encompass a correlated hop. _m

As a practical manner, escape rates and diffusion con- _
stants can be quite sensitive to quantitative details of thé\s shown in Ref. 28, the exponent of the quantum kernel has
adsorbate/surface interactions. These include the relaxatidhe general form:
of surface atoms around an impurity, the coupling of the . ~ 1 B
adsorbate to phonon modes, and the effects of nonadiabatigt) = _f d |(MF(\M)Lcostz 2 M) cos{tﬁﬁ)\).
ar

~ 1 S
K(s)=

— = - . A4
U3, S2+s¥(s)—w? g2 )\¥ A4)

2
. (A7)

excitations of electron-hole pairs in the sotrP®68 27h ) o sinh(3 7. B\)
(A8)
The numerical work in this paper is based on Ohmic friction
ACKNOWLEDGMENT [Eq. (2.33]. Using the notation
This work has been supported by a grant from the Min- ¥
erva foundation. a=5- (A9)

one has the well known Kramers result for the reactive fre-
APPENDIX A: THE QUANTUM KERNEL quency[Eq. (2.4)]:

The quantum extension of PGH the?)"fyelies heavily )\—i=(1+a2)1/2—a (A10)

on the normal mode transformatiBraround the barrier top 1)
of the Hamiltonian equivalent of the GLE,

2
_ Pq 1
H=2 +w(q)+$ 5

We denote the second solution of the Kramers equation as:

2

C]q

p§j+(“’JXi_ w,-> } (A1) M (1?2, (A11)
w
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The spectral density of the normal modes is now easily obAPPENDIX B: PERTURBATION THEORY FOR

tained: ENERGY FLUCTUATIONS
1 1 When frictional damping is weak, the fluctuations in the
|()\):W NN E - )\24_)\2; : (A12) energy of a particle can be described by a perturbation

theory. The rate of change of the energy of a particle obeying
To proceed further one must use the specific form of theeq. (3.1) is

potential, which in our case is the cosine potential of Eq.
(2.395. The exp!|C|t t|mi iependencg for thg trajectory that dE dvdg md(g?)
starts asymptotically at= —« at the first barrier and ends at — = — 4+ —
t=cc at the second barrier is needed for the effective force 9t da dt 2 dt
(A5). To obtain this trajectory we will use the weak damping =mg — yq+R(1)]. (B1)
limit of the equation of motion, which means effectively set-
ting N =% ugp=1,p=q in Eq. (A5). This trajectory is at
the barrier top energfE=0 so that an analytic solution is
readily obtained by integratinglt/(dqg)=[—2w(q)]~ ¥'2.
The result is

o

@™

=mg (L/m)dV/dg+4]

To obtain the average rate of change, the random fB¢e
must be averaged,

(dE/dtyg=—my(q?)r+M(q()R(t))r. (B2)

sin =tanh w't). (A13)

The subscripR indicates an average over the history of the
In this weak damping limit, the forcg(t) is also determined random forceR(t). Now we assume thay(t) can be ex-
by the unperturbed system trajectory: pressed as a power series\ry (note thatR(t) is (1/y)):

dw
F(O)=q + 0" (a-a", (A1) A(t) = dot) + V() + (). (83

where the time dependence dfis given in Eq.(A13). ) . .
ObtainingF () [cf. Eq. (A7)] is not too difficult. The inte- At time t=0, 01()=0qy(t)=---=0. Writing F(q)
grals are tabular integrals, the only trick is that the integra— — ™ d\//dq, Fo(t)=F[ao(t)], Fl(t)=.dF0(t)/dq0(t).,
tion of the linear term inq should be done by parts, the @nd collecting terms of’(1) and of ?(\y) in the Langevin
surface term vanishes, the second term involyeshich is ~ €guation, one finds the equations of motion

easily expressed through energy conservation. The result is

rather simple: Qo(t)=Fo(t); (B4)
. 272V (0 +2\2)2 1
FV= =2~z ™ (A19) Vrba(t) = Vyax(OF () +R(1). (B5)
cosﬁ(m)

Clearly q, satisfies the conservative equation of motion with
v=0. Thus to lowest order iry, the first term in Eq(B2) is
— ymop(t)2. To lowest order iny the second term is

Finally, one does not need the exd¢h) for the Ohmic
friction as in Eq.(A12) but only the leading order term in the
dampingy. This is easily seen to be

= — a1 MA(DRM)r+M(VYa:(DR(D)r
(A\%+ 0*)? .
At this point we obtain the following explicit expression for =m< fodt’ \/;ql(t,)R(t)> R‘ (B6)

the exponential factor(t) that appears in the quantum ker-

nel given in Eq.(2.39. Finally, we note that the energy loss o
for the cosine potential is just: sincego(t) is independent oR(t), andR has zero mean.

The remaining term can be expanded by noting that

lg/2

5= yf " d[—2w(q)]2=88V*a. (A17)
“lof2 Vryaa()=R() + yau(HFy(t)

Although we have used only the weak damping limit of the ¢

PGH formalism, for Ohmic friction, previous experience has =R(t)+ Fl(t)f dt’ \/;ql(t’)

shown that differences are small. In the underdamped limit, 0

the results used here are anyway exact: as the damping in- t ¢

creases both the PGH formalism as well as its ‘weak damp- =R(t)+ Fl(t)f dt'f dt’R(t")+--- (B7)

ing’ limit as used here lead to large energy losses and so 0 0

almost identical results. This may be seen explicitly for ex-

ample in Ref. 77. Finally, performing the average ov&,
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! A ’ — ! ’ ’ { ’ ’ v " t " m
m< fodt Vyda(t )R(t)>R—m< fodt R(t )R(t)>R+m< fodt Fa(t )fo dt fo dt”R(t )R(t)>R+

t ’ ”
= I8+ mf dt’Fl(t’)jt olt"ft At (291 BM) (1" —t)+ -
0 0 0

t t t
=yl B+ 27/,8f dt”’J dt”J dt'F(t")é(t"—t)+---=vIB. (B8)
0 t!H t”
|
The average energy changeis obtained by integration: a?=([E(t)—(E+A)]*)g
t ! ! t t . .
A= | av(derdr), - | at [ dvmane mae )RR,
0 0
! ’ y AY: ! ! ’ t
=—7f0dt MGp(t’)qo(t )+f0dt vIB zzkaTfomqo(t)qo(t)
do(t) ao(t)
=- dap(a)+ /B, (B9) —2ykgT f dap(q). (B11)
dp(0) do(0)

The momentunp(q) is v2[E—V(q)]/m.

In the weak damping limit, the first term in EB9) is  Furthermore, sinceR is a Gaussian random variable,

exactly the average energy lo8svhich appears in Eq2.9), dE/dt—'(dE/dt>R is a Gaussian random variable, anq the

derived from considerations of the energy loss of the unfluctuations of E(t) aboutE+A must also be Gaussian.

stable normal mode. The first termanmust therefore be the Therefore, in the limit of weak damping, the probability dis-

asymptotic limit for the average change in energy for a tra_t_nbunon of E(t) is a Gaussian uniquely determined by the

jectory traveling at the barrier top energy as the barriefirSt momentA and second momemtzl..

height increases. This Gaussian form of the transition kerrfeldoes not
The second term in the perturbation theory will only be 0bey detailed balance,

valid for short times,yt<1, and will induce finite barrier

corrections to the standard estimates for the escape rate. This P(EIE")exd —BE']# P(E'|E)exd — BE]. (B12)

term describes the flow of energy back into the system from ) . ] )

the bath. For a physical picture of this term, imagine ¥at The kernel is not microscopically reversible because the pa-

a harmonic potential (1/2)w2q?, thatgo(0) andgy(t) are rametersA ando? are not symmetric in their dependence on
the left and right tuming points for energy, and that E andE’. The error made at each step can be estimated as

t=ml/w. DefiningJ(E) as the action for the trajectory which , ,
goes from the left turning point to the right turning point in rror= P(E|E")exp(—BE") .
time 7/ w, P(E'|E)exp(— BE)

A(B)==yI(B)+ ¥(kgT), (B10) whereE is the energy at the start of the step d@adis the
since J for a harmonic oscillator is simpltE. When new energy chosen from the distributi®{E’|E). One can
E<kgT the harmonic oscillator gains energy on average, andhow that{errof) « (E’'—E) « &, where § is the energy
whenE>kgT the oscillator loses energy on average. loss at the barrier top energy. The cumulative systematic er-

As seen explicitly in the example of the harmonic oscil-ror after N steps scales adé. The number of stephl re-
lator, the function of the second term in E&9) is to main-  quired to follow an activated trajectory until it is trapped in a
tain the proper distribution of energies deep in the well. Furwell scales like 18. Thus, to lowest order i@, the cumula-
thermore, deep in the well, the period is finite, motion istive error over the length of a trajectory from activation until
quasi-harmonic, andyt/B8=~yJ(kgT), where the action thermalization should be independent 6f even though
J(kgT) is for a period of motion in the full nonlinear poten- more steps are needed for a smalferthe error per step is
tial for a particle energy of kgT. Therefore we adopt Eq. smaller, and theS-dependence cancels out.

(B10) as our expression fak, with the action evaluated at We have tested the importance of deviations from de-
the indicated energies for undamped motion in the potentiailed balance by performing simulations using both Lange-
V(q). vin dynamics and energy space dynamics at an intermediate

Higher moments of the change in energy for a trajectoryalue of the frictiony corresponding to the reduced energy
can also be calculated from the Langevin equation. First, tboss §=1. We found agreement in the results of these
lowest order iny, dE/dt—(dE/dt)g=mgy(t)R(t). The sec- two simulation methods, indicating that the energy space
ond momento? of the distribution of energyE(t) given  dynamics simulations should also be accurate for smaller
energyE at time 0O is then values ofy.

1, (B13)
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