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We have implemented a semiclassical dynamics simulation method to investigate the effects of finite
barrier heights and nonlinear potentials on the rate of diffusion of a particle which is coupled to a
frictional bath and is traveling on a one-dimensional potential energy surface. The classical reactive
flux method has been modified to account for semiclassical tunneling and above-barrier reflection.
A novel perturbation theory treatment of the semiclassical dynamics is developed to simulate the
motion of the particle when the coupling to the frictional bath is small and the particle’s motion is
nearly conservative. Our simulation results support the theoretical prediction that the diffusion
constant increases as friction decreases. We also find supporting evidence for an inverse isotope
effect, as the diffusion constant for a classical particle can be larger than that of a corresponding
quantum mechanical particle. The escape rate and the average energy of escaping particles are also
found to be in good agreement with theoretical predictions.
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I. INTRODUCTION

The theory of surface diffusion has been extensively d
veloped during recent years.1,2 The reactive flux formalism
for activated rate processes,3–12deeper insight into transition
state theory, efficient numerical methods,13–15 and detailed
numerical simulations have considerably increased und
standing of the role of surface potential, phonon interactio
and surface structure on diffusion. The diffusion process
often considered as a random walk, limited by the rate
takes the atom or molecule to hop from one site to an ad
cent one on the surface. The diffusion coefficient is propo
tional to this activated escape rate. Theoretical effort w
primarily aimed at accurate estimates for the rate. When t
particle is a chemically bound species with a relatively hig
barrier separating adjacent sites, this may be a daunting ta

A different but important aspect is the fate of the particl
once it has escaped from a well. The particle may execu
multiple hops before retrapping in a different well.10 Such
multiple hops will significantly enhance the diffusion coeffi
cient. In most simulation studies though, such correlat
hops were rarely found. Recent experimental16 and
numerical17 studies have indicated that correlated hop
should not be neglected and could strongly influence the d
fusion coefficient. The experimental work of Ganzet al.16

using scanning tunneling microscopy~STM! methods seems
to demonstrate correlated hopping of Pb on a reconstruc
Ge~111! surface. In their numerical study of the diffusion o
CO on a Ni~111! surface, Dobbs and Doren17 have found that
correlated hops significantly affect the diffusion coefficien
Correlated hops over ten adjacent sites were observed.

One-dimensional surface diffusion has been studied
cently by Ferrandoet al.18,19 In their model, the motion of a
particle on a one-dimensional infinite periodic lattice is gov
erned by a Langevin equation. The interaction of the partic
with the surface phonon modes is modeled as a random fo
which is related to the friction by the fluctuation-dissipatio
J. Chem. Phys. 102 (10), 8 March 1995 0021-9606/95/102(10)/4
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relation. In the weak damping limit, they find that correlated
hops are dominant, and lead to a divergence of the classic
diffusion coefficient. Moro and Polimeno20 recently investi-
gated correlated hopping in the presence of a periodic pote
tial with four wells. They were modeling thetrans-gauche
isomerization ofn-butane and found that the ratio of two-
barrier to one-barrier crossings increases significantly as th
damping becomes weaker.

Correlated hops in the underdamped limit are caused b
the activation process. As shown by Bu¨ttiker, Harris, and
Landauer,21 the average classical energy of an escaping pa
ticle is proportional to the square root of the damping. As th
particle traverses from one barrier to the next along the pe
riodic potential its energy loss is linearly proportional to the
damping. The consequence is that the escaping particle w
cross many barriers before losing enough energy to be aga
retrapped.

We have recently shown22 that the classical correlated
hopping probability is of the order of unity in the classical
underdamped limit. This finding was consistent with the ex
perimental observations of Ganzet al.who measured a cor-
related hopping probability of at least 0.5. We also found tha
the quantum correlated hopping probability is smaller tha
the classical. Quantum tunneling causes a lowering of th
average energy of the escaping particle thus decreasing
contribution of correlated hopping.

Mel’nikov23,24 has studied the classical motion of a par-
ticle on a tilted potential. His results were recently
extended25 to provide a semiclassical theory of surface dif-
fusion above the crossover temperature11,26,27between quan-
tum tunneling and thermal activation. Explicit expression
for the rate of escape (G), the partial rateG j for being re-
trapped after moving a distancej l 0 ( l 0 is the distance be-
tween adjacent wells!, the mean squared path length^ l 2& and
the diffusion coefficientD were provided. In the under-
damped limit, above-barrier reflection and below-barrier tun
4037037/19/$6.00 © 1995 American Institute of Physics
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4038 Bader, Berne, and Pollak: Activated rate processes
neling cause the quantum correlated hopping probability
be lower than the classical probability, and the quantum d
fusion constant is lower than the classical prediction.

We have attempted to verify and extend these theoreti
developments using direct numerical integration of th
Langevin equation and found that especially in the unde
damped limit, it is rather difficult to obtain accurate statistic
We were also interested in providing a numerical techniq
which would include the quantum effects. The central pu
pose of the present paper is to extend the reactive fl
method to directly address these difficulties. In contrast
the analytic studies, the methods we describe have the
vantage of being readily amenable to the study of surfa
diffusion in more than one dimension. We will use the nu
merical method to verify and extend the analytic theory pr
sented in Refs. 22, 25.

A secondary purpose of this paper is to present t
theory described only briefly in Ref. 22. The analytic theor
is reviewed in Section II. The mathematical methods used
Section II to extract analytical expressions for escape ra
and correlated hopping probabilities are not essential for
physical understanding of the results we obtain. Readers
interested in the details of the analytical techniques mig
wish to skip this section, noting only the analytical expres
sions we obtain for the escape rate and the diffusion co
stant. An extension of the reactive flux method which inco
porates semiclassical transmission and reflection is presen
in Section III, along with an efficient new algorithm for
propagating trajectories when friction is small. Section I
serves to define the observables we compute, and in Sec
V the simulation results are reported. We end with a sum
mary and a discussion of future directions and extensions

II. CORRELATED HOPPING AND SURFACE
DIFFUSION

A. The escape rate

The model to be considered is that of a particle wit
massm trapped in the well of the potentialw(q) (q is the
particle coordinate!. A Generalized Langevin Equation
~GLE! governs the dynamics,

q̈1
1

m

dw~q!

dq
1E t

dtg~ t2t!q̇~t!5
1

m
j~ t !. ~2.1!

The Gaussian random forcej(t) with zero mean is related to
the time dependent friction functiong(t) through the fluc-
tuation dissipation relation:

^j~ t !j~ t8!&5
m

b
g~ t2t8! ~2.2!

andb[1/kBT.
The quantum rate for hopping out of one of the wells a

temperatures above the crossover temperatu
(\l‡/kBT<2p) is28

G5
v0

p
e2bV‡

l‡

v‡ JY. ~2.3!

Here, l‡ is the Kramers–Grote–Hynes reactive
frequency,29–31
J. Chem. Phys., Vol. 102,
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l‡

v‡ 5F11
ĝ~l‡!

l‡ G2 1/2

, ~2.4!

where the hat denotes the Laplace transform of the time de
pendent friction. The ratio of quantum to classical partition
functions32 at the barrier and the well (J) is expressed in
terms of the Matsubara frequenciesṽn[2pn/\b and the
Laplace transform of the time dependent friction

J[ )
n51

`
@v0

21ṽn
21ṽnĝ~ ṽn!#

@2v‡21ṽn
21ṽnĝ~ ṽn!#

. ~2.5!

The ‘‘depopulation factor’’Y is

Y5expF a21 sinS p

a D E
2`

`

dt

lnF12 P̃S t2 i

2D G
coshS 2tpa D2cosS p

a D G
~2.6!

and the quantum parametera[2p/\bl‡.
The magnitude of the depopulation factor is mainly de-

termined by the probability kernelP(EuE8) which expresses
the probability density that a particle with energyE8 initially
in the vicinity of a barrier will reach the next barrier with
energyE. The two sided Laplace transform of this kernel
which appears in the expression for the depopulation facto
is defined as

P̃~ is![E
2`

`

dee2s~e2e8!P~eue8!. ~2.7!

In the classical limit the probability kernel~using the dimen-
sionless energy variablee[bE) is a Gaussian function,

P~eue8!5S 1

4pd D 1/2 expF2
~e1d2e8!2

4d G . ~2.8!

The reduced average energy loss (d) of the particle as it
traverses from one barrier to the next depends on the dam
ing and the particular form of the periodic potential. In the
weak to moderate damping limit the energy loss is well ap
proximated as33

d5
bm

2 E
2`

`

dtE
2`

`

dt8g~ t2t8!q̇~ t !q̇~ t8!. ~2.9!

The trajectoryq(t) is the trajectory for the particle coordi-
nate at the barrier energy in the absence of coupling to th
bath.

In the classical limit, the depopulation factor simplifies
considerably:34

Ycl5expF 1pE0` dx

x21 1/4
ln~12e2d~x21 1/4!!G . ~2.10!

In the underdamped limit (d!1), one finds thatYcl.d. This
reflects the large reduction of the escape rate due to the ve
slow energy diffusion process. The quantum depopulatio
factor is larger than its classical counterpart in the under-
damped limit,Y.d12\bl‡/2p.28,35 In the spatial diffusion
No. 10, 8 March 1995



s
-

-

-

i-

r

4039Bader, Berne, and Pollak: Activated rate processes
limit ( d.1), the energy relaxation rate is fast and the cla
sical and quantum depopulation factors are unity. This allow
us to define the spatial diffusion rateGsd as

Gsd[
G

Y
. ~2.11!

The quantum rate is found by solving a master equati
for the population per unit time of particlesf (e) with ~re-
duced! energye at the top of the barrier.28,33 For a periodic
potential one must in principle write down a coupled set o
master equations for populations at each barrier.23,25 How-
ever, both in the underdamped limit as well as in the ove
damped limit, backscattering from adjacent wells i
negligible.18,19 To obtain the rate, or the average energy o
escaping particles, it is sufficient to consider the analogo
single well case, ignoring any backscattering. The validity
this simplifying assumption will be discussed in further de
tail in Section IV. The result is that one can consider th
usual integral equation28

f ~e!5E
2`

`

de8P~eue8!R~e8! f ~e8!, ~2.12!

whereR(e) is the quantum reflection probability for a para
bolic barrier:

R~e!5@11exp~ae!#21. ~2.13!

The transmission coefficientT(e)512R(e). The integral
equation is subject to the boundary condition that deep in t
well the distribution f (e) is in thermal equilibrium. It is
solved using two sided Laplace transforms. The solution f
the distribution is28

Ñ~ is!52
~pC/a!

sinFp~s11!

a G expF
1

2iaEz2 i`

z1 i`

dy ln@12 P̃~ iy !#

3FcotS p
s2y

a D 1cotS p
y11

a D G G , ~2.14!

where we have used the notation

N~e![2p\bR~e! f ~e! ~2.15!

and the constantC is

C[2
v0

vb
sinS \bl‡

2 DJe2bV‡. ~2.16!

The restriction on the real limits of the integration is

z.Re~s!.z2a, z.21. ~2.17!

The rate is given by summation over all particles transmitte
per unit time:

G5E
2`

`

deT~e! f ~e!, ~2.18!

and this leads to Eqs.~2.3!–~2.6! given above as shown in
Appendix A of Ref. 28.
J. Chem. Phys., Vol. 102
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One of the important new results presented in Ref. 22 is
an expression for the quantum average energy of particle
crossing the barrier. Here we provide a more detailed deriva
tion. The average energy is defined as

^e&[
*2`

` deeT~e! f ~e!

*2`
` deT~e! f ~e!

. ~2.19!

Using the fact that

2p\bT~e! f ~e!5eaeN~e! ~2.20!

and resorting to the two sided Laplace transform one finds
that the average energy of transmitted particles may be ob
tained by the relation

2p\bG^e&52
d

ds
Ñ~ is!us52a . ~2.21!

Inserting the expression forÑ ~cf Eq. 2.14! one finds the
explicit result

^e&5
p

a S cotS p

a D1
1

aE2`

`

dx lnF12 P̃S x2
i

2D G

3

12coshS 2px

a D cosS p

a D
FcoshS 2px

a D2cosS p

a D G2D ~2.22!

which is the quantum generalization of the classical expres
sion for the average energy derived by Mel’nikov and
Meshkov.34

In the classical limit, Mel’nikov and Meshkov34 demon-
strated that̂ e&.d1/2 in qualitative agreement with the pre-
diction of Büttiker, Harris and Landauer.21 In the quantum
case, the average energy in the underdamped limit as eluc
dated from Eq.~2.22! is smaller,. ln d, and is negative with
respect to the barrier height (e50), indicating that the quan-
tum particles in the underdamped limit tend to escape by
tunneling.

B. The correlated hopping probability

When a particle escapes from the well across a barrie
~denoted as 1! it will continue towards the adjacent well and
barrier ~denoted as 2!. It will then either get immediately
trapped in the well~the typical case in the strong damping
limit !, it might be reflected by barrier 2, or it might continue
directly across barrier 2. The correlated hopping probability
P1 is definedas the probability that the particle will continue
across barrier 2 without being first trapped or reflected by the
barrier:

P15
*2`

` de*2`
` de8T~e!P~eue8!T~e8! f ~e8!

*2`
` de8T~e8! f ~e!

. ~2.23!

By using the Laplace transformed expressions and Eq.~2.20!
one may rewrite the expression for the correlated hopping
probability as
, No. 10, 8 March 1995
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4040 Bader, Berne, and Pollak: Activated rate processes
hbGP15
1

2p i Ep2 i`

p1 i`

dsP̃~ is!R̃@2 i ~a1s!#Ñ@ i ~s2a!#.

~2.24!

The transform of the reflection coefficient is a standard in
gral:

R̃@2 i ~a1s!#5
1

aE2`

`

dx
e~s/a!x

11e2x 52
p

a

1

sinS spa D
~2.25!

which converges provided that Re(s),0.
An explicit expression for the correlated hopping pro

ability is derived by choosingz52 1/2 when inserting Eq.
~2.14! in Eq. ~2.24!, introducing the change of variables

x[ i ~y2z![ i ~y1 1
2! ~2.26!

wherex is pure real and

t[ i ~s2p!, p52 1
2 1A, 0,A, 1

2 , ~2.27!

wheret,A are also pure real. Taking the limitA→01 , mak-
ing use of the known identity

limA→01

t2x2 iA

~ t2x!21A2 5PPS 1

t2xD2 ipd~ t2x!, ~2.28!

and noting that the quantum kernelP̃(t2 i /2) is symmetric
in the variablet gives the result

P15
1

2a
sinS p

a D 1

Y1/2E
2`

`

dt

P̃S t2 i

2D F12 P̃S t2 i

2D G
1/2

Fsin2S p

2aD1sinh2S pt

a D G

3cosS 1

4pE2`

`

dw
1

w
lnS 12 P̃F ~ t2w!2

i

2G
12 P̃F ~ t1w!2

i

2G D
3Fpwa cothS pw

a D G D . ~2.29!

The classical limit for the correlated hopping probability
readily seen to be

P1cl
5Ycl

2 1/2 1

2pE2`

`

dt
e2d~ t21 1/4!@12e2d~ t21 1/4!#1/2

t21 1/4

3cosF 1

4pE2`

`

dw
1

w
lnS 12e2d@~w2t !21 1/4#

12e2d@~w1t !21 1/4#D G .
~2.30!

The classical correlated hopping probability is a function o
single parameter, the energy lossd. In the high friction limit
(d@1) the classical correlated hopping probability becom
exponentially small:
J. Chem. Phys., Vol. 102,
-

-

a

s

P1cl
.

2

~dp!1/2
e2d/4. ~2.31!

In the weak damping limit, the correlated hopping probabil
ity goes to a constant (.0.7). The quantum correlated hop-
ping probability differs dramatically from the classical: it
goes to zero in the underdamped limit.

The diffusion coefficient is well defined when the mean
squared path length of a trajectory initiated in a well grows
linearly with time and is by definition the proportionality
constant. To compute the diffusion coefficient one assumes
separation of time scales. The longest time scale is the e
cape timet rxn[G21. Once a particle has escaped from a
well it will take an additional amount of time—
t trap—before it is retrapped in any well. A particle that is
trapped will again escape after a time which is of the order o
t rxn . One assumes thatt trap!t rxn . During the trapping time
the particle will traverse a mean squared distance^ l 2&. The
diffusion coefficient is

D5 1
2 G^ l 2&. ~2.32!

Within the timet trap before an activated particle is trapped,
its trajectory may be composed of several segments in whic
the particle moves in a constant direction. The probabilit
that such a segment is longer than one lattice spacing, f
example, is what we have termed the correlated hoppin
probability P1 . The mean square jump length^ l 2& is ob-
tained from the distribution of jump lengths between escap
and retrapping, not from the distribution of lengths of the
correlated segments.

The result for the quantum diffusion coefficient is found
to be25:

D

Dsd
5Y21 expF a21 sinS p

a D E
2`

`

dt

3

lnF11 P̃S t2 i

2D G
coshS 2tpa D2cosS p

a D G . ~2.33!

HereDsd is the diffusion coefficient in the spatial diffusion
limit:

Dsd5
1
2 Gsdl 0

2 ~2.34!

where l 0 is the distance between adjacent wells of the per
odic potential. The mean squared path length may now b
extracted from Eq.~2.32!, since the diffusion coefficient and
the rate are known.

C. Ohmic friction and a periodic potential

At this point, any practical computation necessitate
knowledge of the quantum kernel whose details are dete
mined by the specific potential and friction. A useful mode
is that of the symmetric cosine potential
No. 10, 8 March 1995
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4041Activated rate processes
w~q!52
V‡

2 F11cosS 2pq

l 0
D G , ~2.35!

for which the barrier frequency is identical to the well fre
quency:

v‡25
2p2

ml0
2 V

‡. ~2.36!

For Ohmic friction,

g~ t !52gd~ t ! ~2.37!

~where d(t) is the Dirac ‘‘d ’’ function and should not be
confused with the energy loss parameterd), we show in the
appendix that the quantum kernel has the form28

P̃S t2 i

2D[exp@2r ~ t !#, ~2.38!

where the exponent is obtained by a quadrature:

r ~ t !5
pd

4\bv‡E
2`

` dl

l

1

cosh2S pl

2v‡D
3
cosh~ 1

2 \bl!2cos~ t\bl!

sinh~ 1
2 \bl!

. ~2.39!

The quantum depopulation factor and diffusion coefficie
are obtained by a double integral, and the quantum correla
hopping probability is obtained by numerical integration of
triple integral.

III. SIMULATION METHODS

Here we describe the Langevin dynamics methods w
have developed for simulating motion in a one-dimension
potential,

q̈1gq̇1~1/m!dV~q!/dq5R~ t !, ~3.1!

and for including semiclassical tunneling and reflection
the dynamics. The classical Langevin equation is equivale
to the GLE, Eq. ~2.1!, for Ohmic friction,
g(t2t8)52gd(t2t8). The Gaussian random forceR(t) for
a classical bath has zero mean and second mom
^R(t)R(t8)&5(2g/bm)d(t2t8). In Section VI we discuss
possible extensions of the simulation method to treat a qua
tum mechanical bath.

We have selected a Langevin dynamics algorithm pa
ticularly suited for reactive flux simulations and describe th
algorithm in Section III A. We also describe how semiclas
sical barrier transmission is implemented for a one
dimensional reaction coordinate in terms of a transmissi
probabilityT(E). When the frictional damping and the ran
dom force are small, the stochastic motion of a particle und
Langevin dynamics is nearly identical to conservative m
tion in the potentialV(q). In Section III B, we describe how
~for weak friction! the effects of the frictional bath can be
incorporated as a perturbative correction to a conservat
reference trajectory. This method, which we term energ
space dynamics, is much more efficient than a straightfo
ward integration of the stochastic equations of motion. Th

Bader, Berne, and Pollak:
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subject of Section III C is how the tunneling probability
T(E) is obtained. The reactive flux method for studying ac
tivated escape of a classical particle must be modified whe
nonclassical barrier transmission is allowed. We derive a re
active flux method for semiclassical dynamics in Section II
D.

These techniques permit the use of simulations to prob
corrections to quantum mechanical transition state theo
due to low barrier heights and nonlinear potentials. We ca
also investigate diffusion at temperatures slightly below th
crossover temperature, the temperature at which the rate e
pressions developed in Section II cease to converge.

A. Semiclassical Langevin dynamics algorithm

For integrating the stochastic Langevin equation we
have used an algorithm which reduces to the velocity Verle
algorithm as the frictiong→0. This algorithm is given as
Eqs. ~9.24a! and ~9.24b! in Ref. 36. There are many other
Verlet-like algorithms~see Ref. 36!. The velocity Verlet-like
algorithm steps from the position and velocity at one time to
the position and velocity at the next time, particularly suiting
it for reactive flux simulations. Velocity and position dis-
placements due to the random force are chosen from an a
propriate bivariate Gaussian distribution.37

When performing a Langevin simulation, it is important
that the errors introduced by the integration scheme are mu
smaller than the size of typical variations in the trajectory
due to the stochastic force. One measure of the error of th
integration is the variation of the energy of the particle
E5mq̇2/21V(q), when there is no friction. We chose the
time step of the simulation so that this variation was at leas
an order of magnitude smaller than the expected energy lo
of the particle over one traversal of a well near the barrie
energy. For the simulations we report, a time step oft/200
was sufficient to conserve energy to better than 1022kBT; t
here is the period of oscillation of a particle with about
kBT of energy.

To account for tunneling in direct Langevin simulations,
the velocity q̇(t) is compared with the velocityq̇(t1dt)
after a single time stepdt. If the product is negative, if
q̇(t) points in the direction of the closest barrier, if the en-
ergy of the particle at timet1dt is smaller than the barrier
energy, and if a random number uniform on@0,1# is less than
T@E(t1dt)#, thenq is assumed to have tunneled to the nex
well in the directionq̇(t). It starts moving away from the
turning point in the next well with energyE(t1dt). To ac-
count for reflection, ifq(t) and q(t1dt) are on opposite
sides of a barrier top, and if a random number uniform o
@0,1# is greater thanT@E(t1dt)#, then the particle is as-
sumed to have been reflected. It is returned to theq(t) side
of the barrier and starts moving back with energy
E(t1dt).

B. Semiclassical simulations in energy space

As is evident from the discussion above, when the fric
tion is small most of the computational effort in a Langevin
dynamics simulation involves integrating the nearly conse
vative equations of motion. It is much more efficient to ob-
No. 10, 8 March 1995
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4042 Bader, Berne, and Pollak: Activated rate processes
tain the exact dynamics of the bare system coordinate, an
incorporate the effects of the friction and random force a
perturbation.

A perturbation theory for the change in the energy of
particle over the period of an oscillation is presented in A
pendix II. The method for simulations in energy space is
follows. A particle starts with energyE at qa , which is a
barrier top or a turning point. The actionJ(E) to reach the
next barrier top or turning pointqb is calculated for the con-
servative dynamicsq̈52(1/m)dV/dq. A new energyE8 is
chosen from the distribution

P~E8uE!5
exp@2~E82E2D!2/2s2#Q~E82E0!

*E0
` dE8 exp@2~E82E2D!2/2s2#

~3.2!

with s252gkBTJ(E) and D52g@J(E)2J(kBT)#. The
Heaviside functionQ(E8) restrictsE8 to values larger than
E0 , the energy at the bottom of the well.38 This kernel is not
microscopically reversible since the parametersD ands2 are
not symmetric in their dependence onE andE8. Although
the kernel violates detailed balance, the deviations are sm
when the energy loss itself is small. As we discuss in Appe
dix II, we have checked that the small deviations from d
tailed balance do not affect our simulation results.

Given the new energyE8, a random number uniform on
@0,1# is compared to the transmission probabilityT(E8). If
the random number is less thanT(E8), the particle crosses
the barrier into the next well; if it is less thanT(E8),
the particle is reflected back into the well. Finally, a tim
counter is incremented by the amountt5*qa

qbdq(dt/dq)

5dJ(E)/dE. This is in essence an extreme form of a mu
tiple time scale simulation15,39,40with an adaptive step size
equal to the energy-dependent period of motion.

Further insight into this dynamics scheme can be gain
by regarding it as providing the exact solution of the integ
equation, Eq.~2.12!, which gives the stationary-state flu
hitting the barrier of a metastable well, or, for diffusion on
periodic surface, the integral equation for the flux in each
the wells.25 Let (n,d,E) stand for the state of the dynamica
system at the start of a step. The energy isE, the direction of
travel d is 61, and the particle is moving into welln from
the barrier between welln and well n2d. The state
(n8,d8,E8) at the start of the next time step is taken from th
distribution

$dn8,n1ddd8,dT~E8!1dn8,ndd8,2d@12T~E8!#%P~E8uE!.
~3.3!

The first term is the transmission of the particle into the ne
well; the second term is reflection back into the initial we
andd here is the Kronecker delta function.

C. Semiclassical barrier transmission

The quantum barrier crossing effects of transmission a
reflection have been included in the semiclassical dynam
algorithms in Sections III A and III B throughT(E). This is
the probability that a particle impinging on a barrierV(q)
with energyE will be transmitted through the barrier. Ac
cording to the semiclassical JWKB approximation,41,42
J. Chem. Phys., Vol. 10
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T~E!5$11exp@2K~E!/\#%21. ~3.4!

Assuming that the maximum of the barrier is atq‡ and that
V(q‡)5V‡, the action integralK(E) is

K~E!55 Eql
qr
dqA2m@V~q!2E#, E<V‡;

2E
ql

.

qr
.

dqA2m@E2V~qb1 iq.!#, E.V‡.

~3.5!

For E<V‡, ql andqr are the left and right turning points at
the barrier, ql,q‡,qr , and V(ql)5V(qr)5E. For
E.V‡, the solutions toV(q)5E, q‡1 iql

. and q‡1 iqr
. ,

fall in the complex plane, with Re(ql
.),0 and Re(qr

.).0.
The JWKB formula forT(E) must be modified when the

coordinateq is coupled to a frictional bath. It has been
shown that frictional damping decreases the amount o
tunneling.32,43–48 The same result can also be derived in
terms of the local normal modes of the Hamiltonian near the
barrier top.49 For the underdamped regime we study, how-
ever, the frictional coupling is small andT(E) for the un-
stable normal mode is not much different fromT(E) for the
undamped bare reaction coordinate. We introduce a frictiona
correction to the undampedT(E) which we expect to be
accurate for weak to moderate friction.

In order to correctT(E) for a general nonlinear barrier,
we first obtain an effective harmonic frequencyv8 for the
barrier. The effective frequency for energyE is chosen to
give the same actionK(E) as the nonlinear barrier,

2p

\v8
~V‡2E!5

2K~E!

\
. ~3.6!

The effective frequencyv8, which depends onE for a non-
linear barrier, is used to calculate the unstable normal mod
frequency l‡ defined through the Grote–Hynes
equation,29–31 l‡5v8@11ĝ(l‡)/l‡#21/2. Finally, T(E) is
taken as the transmission probability for an unstable norma
mode with energyE and frequencyl‡,

T~E!5H 11expF2p~V‡2E!

\l‡ G J 21

5H 11expF2K~E!v8

\l‡ G J 21

. ~3.7!

For a parabolic barrier, this formula forT(E) reduces to
T(E) for the unstable barrier top normal mode.49

D. Semiclassical reactive flux

For large barriers, first passage time simulations are in
efficient: the mean waiting time for a particle to escape a
well grows exponentially with the barrier height. Reactive
flux methods circumvent the waiting time by starting par-
ticles from the top of a barrier and averaging certain time
correlation functions over the resulting trajectories.3–8 Here
we generalize the reactive flux technique to include semiclas
sical tunneling. We will see that tunneling softens a classica
step function to the semiclassical transmission probability
T(E).
2, No. 10, 8 March 1995
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The average of an observableÔ which depends on the
trajectory$q(t),p(t)% is

^Ô&5~2p\Q!21E dqE dpe2bE~q,p!^Ô&R , ~3.8!

with E(q,p)5p2/2m1V(q) and Q5(2p\)21*dq*dp
3 exp@ 2 bE#. The observable is then averaged over ra
dom force historiesR(t) which generate semiclassical dy
namics trajectories$q(t),p(t)% starting from the initial
(q,p). We eliminate the variablep in favor ofE. The Jaco-
bian of the transformation from (q,p) to (q,E) is m/p, and

^Ô&5~2p\Q!21E
2`

`

dqE
V~q!

`

dEe2bE

3
m

p~q,E!
$^Ô~q,p!&R1^Ô~q,2p!&R%. ~3.9!

The momentump(q,E) is now a function ofq andE, and is
defined as the positive branch ofA2m@E2V(q)#. Two types
of trajectories contribute tôÔ& for each value of (q,E).
Trajectories contributing toÔ(q,p) start atq with positive
momentump; those counted inÔ(q,2p), start atq with
negative momentum. These two sets of trajectories must
be averaged over histories of the random force.

We specialize to the reactive flux operatork̂A→B(t) for a
generic bistable system with statesA andB,

k̂A→B~ t !52
Q

QA
H d

dt
QA@q,E#J QB@q~ t !,E~ t !#. ~3.10!

The ratio of partition functionsQA /Q is ^QA&. The charac-
teristic functionQA(q,E) is 1 when coordinateq is in the
classically allowed region defined as stateA and 0 otherwise.
In general, one can defineQA(q,E)5Q@SA(q,E)#, where
the surface functionSA(q,E) is positive for (q,E) in a clas-
sically allowed region of stateA, negative for (q,E) outside
of stateA, and zero on the border. The characteristic functi
QB(q,E) is defined analogously. Sinceq must be in either
state A or state B for classically allowed energies
QA(q,E)1QB(q,E)5Q@E2V(q)#. The unsubscriptedQ
is the Heaviside function.

The time derivative ofQA is

d

dt
QA~q,E!5

]QA

]q

dq

dt
1

]QA

]E

dE

dt
. ~3.11!

The time derivativedE/dt is of O (Ag); since we are con-
cerned with the weak damping limit of smallg we can safely
neglect the second term in Eq.~3.11!. Using the notation of
Ref. 9, the first term may be written

Q̇A~q,E!5d@SA~q,E!#¹qSAq̇52dA~q,E!vA . ~3.12!

The velocityvA is normal to the dividing surface and pos
tive when exiting stateA, vA52q̇•¹qSA /u¹qSAu, and
dA(q,E)5d@SA(q,E)#u¹qSAu.

For a one-dimensional potential, one can define stateA
as the classically allowed region between left and rig
boundariesqA,l

. and qA,r
. . Assuming thatE5V(q) at most

twice in the region so that left and right turning points a
unambiguous,
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QA~q,E!5Q@qA,r~E!2q#2Q@q2qA,l~E!#. ~3.13!

ForE>V(qA,r
. ), qA,r(E)5qA,r

. . ForE,V(qA,r
. ), qA,r(E) is

the location of the right turning point for motion in stateA:
V@qA,r(E)#5E. On the left side of stateA, qA,l(E) is de-
fined asqA,l

. for energies aboveV(qA,l
. ), and as the left turn-

ing point otherwise. IfE is smaller than the minimum of the
potential in stateA, thenE is not allowed classically and
QA(q,E)50.

The definition ofk̂A→B(t) is inserted into Eq. 3.9 to give

kA→B~ t ![^k̂A→B~ t !&

5~2p\QA!21E
EA

`

dEE dqdA~q,E!

3^QB~ tuq,pB!2QB~ tuq,pA!&R . ~3.14!

The energy integral has been restricted to values larger tha
EA , the minimum classically allowed energy in stateA. The
absolute value of the velocityvA normal to the dividing sur-
face has been identified withp(q,E)/m. The momentum
pB points into stateB; the momentumpA52pB points into
stateA; and pB and pA are both equal in magnitude to
p(q,E). The characteristic functionQB(tuq,p) is 1 for those
trajectories with initial position and momentum (q,p) which
are in stateB at time t, and 0 otherwise. The function
dA(q,E) places the initialq at either a barrier top or a turn-
ing point of stateA. If q is at a turning point then we con-
siderpB the outward momentum instantaneously before the
turning point, andpA the inward momentum just after reflec-
tion from the turning point atq.

When the initial velocity points out of stateA, the prob-
ability that a particle will be transmitted to stateB is
T(q,E). The trajectories contributing toQB(tuq,pB) bifur-
cate,

QB~ tuq,pB!5T~E!QB~ tuqB ,pB!

1@12T~E!#QB~ tuqA ,pA!. ~3.15!

The trajectories in the first set, with weightT(E), have have
been transmitted into stateB. The initial position is now
termedqB . If E.V(q), thenqB5q. If E,V(q), the par-
ticle has tunneled through the barrier betweenA andB. The
original q is a turning point of energyE on theA side of the
barrier; the particle is removed fromq and placed atqB , the
turning point of energyE on the stateB side of the barrier.
Trajectories in the second set, with weight 12T(E), have
been reflected back into stateA, pB is reversed topA , andq
is renamedqA . Combining Eq.~3.14! with QB from Eq.
~3.15!, we have
2, No. 10, 8 March 1995
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4044 Bader, Berne, and Pollak: Activated rate processes
kA→B~ t !5~2p\QA!21E
EA

`

dEE dq

3exp@2bE#dA~q,E!T~q,E!

3$^QB~ tuqB ,pB!&R2^QB~ tuqA ,pA!&R%

5~2p\QA!21E
EA

`

dE exp@2bE#T~E!

3^QB~ tuqB ,pB!&R2~2p\QA!21E
EA

`

dE

3exp@2bE#T~E!^QB~ tuqA ,pA!&R . ~3.16!

To simplify the equation, we have assumed that each ene
E corresponds to a single pair of initial conditions (qB ,pB)
and (qA ,pA) on theB andA sides of the barrier. For energies
larger than the barrier heightV‡5V(q‡), qB5qA5q‡; oth-
erwise,qB andqA are turning points. This formula reduces to
the standard reactive flux sampling scheme for classical d
namics as T(E) goes to the classical form
T(E)5Q@E2V‡#.

The initial rate fromA to B is the transition state theory
estimate,kA→B

TST . At time t50, QB(0uqA ,pA)50, and

kA→B
TST [ lim

t→01
kA→B~ t !5~2p\QA!21E

EA

`

dE

3exp@2bE#T~E!. ~3.17!

This thermal average ofT(E) can be used to obtain a cor-
rection factorL for the harmonic barrierJ from Eq.~2.5!.31

This correction factor is obtained from the Grote–Hynes ba
rier frequencyl‡ and the ratio of the quantum TST rate to
the classical TST rate,kA→B

TST,cl. The classical rate is obtained
using T(E)5Q(E2V‡) in Eq. 3.17. The correction factor
L is

L5
sin~b\l‡/2!

b\l‡/2
bE

EA

`

dE exp@2b~E2V‡!#T~E!.

~3.18!

The productLJ is well-behaved even below crossover tem
perature becauseL corrects for the nonlinearity of the po-
tential and for the finite height of the barrier. In particula
L cancels the divergence due to the term 1/sin(b\l‡/2) in
J.

In simulations, it is convenient to calculate the transmi
sion coefficientkA→B rather thankA→B itself,

kA→B~ t ![kA→B~ t !/kA→B
TST . ~3.19!

The initial energy is chosen from the distribution

r~E!5
exp~2bE!T~E!Q~E2EA!

*EA
` dEexp~2bE!T~E!

. ~3.20!

ChoosingM initial values for the energy results inM pairs
of trajectories, themth pair starting with (qA

m ,pA
m) and

(qB
m ,pB

m). The transmission coefficient is evaluated as
J. Chem. Phys., Vol. 102,
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kA→B~ t !5
1

M (
m51

M

@QB~ tuqB
m ,pB

m!2QB~ tuqA
m ,pA

m!#.

~3.21!

If kA→B(t) decays slowly for large enought, the plateau
valuekA→B is defined, and the escape rate predicted by th
semiclassical reactive flux method is

kA→B5kA→BLJkA→B
TST,cl. ~3.22!

The classical reactive flux method has been generalize
to multistate systems.9 The same generalizations follow for
the semiclassical reactive flux method outlined here fo
bistable systems. The classical step function at the dividin
surface,Q(E2V‡), is simply replaced by the quantum
T(E).

IV. TURNING TRAJECTORIES INTO OBSERVABLES

Armed with the semiclassical simulation methods of
Section III, we have computed the escape rateG of particles
out of a well, the average energy of escaping particles^e&,
the probability of a correlated hopP1 , the diffusion constant
D, the mean square length per jump^ l 2&, and various other
quantities. When the barrier heightV‡ is small, barrier cross-
ings can be frequent, permitting direct sampling of these ob
servables from equilibrium simulations. First passage simu
lations are described in Section IV A. For large barrier
heights, reactive flux methods increase the sampling effi
ciency. The semiclassical reactive flux correlation functions
which we used are presented in Section IV B.

A. First passage simulations

First passage time simulations were used to obtain dis
tributions of energies of escaping particles and distribution
of jump lengths. These simulations were performed by start
ing each trajectory with the particle in well 0 of the periodic
cosine potential. Each trajectory was continued until the par
ticle escaped from well 0, either by passing over the barrie
or by tunneling through the barrier. At this point, the energy
of the particle was stored to accumulatef (e), the distribu-
tion of energies of particles crossing the barrier. Each trajec
tory was continued from this point until the particle experi-
enced its first turning point after escape. A turning point ove
well n defines the length of the first correlated segment of th
jump asunu. Averaging over many trajectories givesP(n),
the distribution of lengths for the correlated segments which
compose a jump.

At first, we selected the initial energy of each particle
from a Boltzmann distribution in well 0. When the friction
was small, however, we found that the small Boltzmann tai
extending above the barrier skewed the distributionsf (e)
and P(n). Furthermore, these energetic trajectories do no
correspond to reactive flux out of well 0: when integrated
backwards in time they usually leave well 0 immediately.
The presence of these trajectories is essentially a finite ba
rier height effect, since their numbers decrease exponential
with increasing barrier height. When friction was small,
No. 10, 8 March 1995
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4045Bader, Berne, and Pollak: Activated rate processes
d<1, we removed these energetic trajectories from our sa
pling by giving each trajectory an initial energy of 1kBT
above the minimum in well 0.

B. Reactive flux correlation functions

Due to the symmetry of the periodic potential, all th
required reactive flux correlation functions can be express
in terms of trajectories which are transmitted from well 0 t
well 1 at time t50. The initial distribution of energies and
positions, termedr0

1(q,E), is

r0
1~q,E!5

exp~2bE!T~E!d0~q,E!Q~E!

*0
`dE* l0/2

l0 dq exp~2bE!T~E!d0~q,E!
.

~4.1!

The symbol ‘‘1 ’’ is a reminder that the initial direction of
motion is into well 1; i.e., the initial momentum is the non
negative rootA2m@E2V(q)#. The minimum of the poten-
tial is at 0 and the barrier energy isV‡. For E,V‡,
d0(q,E) placesq at the left turning point at energyE in well
1. ForE>V‡, d0(q,E) placesq at the barrier top between
well 0 and well 1,q5 l 0/2. The transmission probability
T(E) is calculated for the cosine barrier and corrected f
friction according to Eq.~3.7!.

The escape rate from well 0 to welln can be written as

k0→n5k0→nGTST, ~4.2!

where GTST is the transition state theory value
(v/p)exp(2bV‡)LJ. The well frequency isv; the nonlin-
ear, finite barrier height correctionL is defined by Eq.
~3.18!. Now we selectM initial values forE and the corre-
spondingM values forq from the distributionr0

1(q,E). The
initial energy of themth trajectory isEm . The stochastic
semiclassical dynamics generatesM trajectories; the position
of the particle at timet for themth trajectory isqm(t). The
transmission coefficientk0→n is given by the plateau value
of k0→n(t),

k0→n~ t !5
1

2M (
m51

M

Qn@qm~ t !#2Qn11@qm~ t !#

1Q2n@qm~ t !#2Q2n11@qm~ t !#. ~4.3!

In order to maintain the symmetry betweenn and2n while
using the distributionr0

1 , we have replaced the ratek0→n by
the equivalent (k0→n1k0→2n)/2 before averaging over tra-
jectories.

The total escape rateG is (nÞ0k0→n , which can be re-
written asG5k0→GTST. The transmission coefficientk0→ is
the plateau value of a time correlation function,

k0→~ t !5 (
nÞ0

k0→n~ t !. ~4.4!

Noting that(nÞ0Qn(q)512Q0(q), we have in terms of
theM trajectories

k0→~ t !5
1

M (
m51

M

Q1@qm~ t !#2Q0@qm~ t !#. ~4.5!
J. Chem. Phys., Vol. 102
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The average energy of escaping particles is defined throu
the time-dependent quantity^e(t)&,

^e~ t !&5@k0→~ t !#21
1

M (
m51

M

$Q1@qm~ t !#2Q0@qm~ t !#%

3~Em2V‡!/kBT. ~4.6!

The energy being averaged,Em2V‡, is the initial energy of
themth particle~rather than the energy at timet! relative to
the barrier energy. As the particles dissipate energy and b
come trapped,̂e(t)& approaches the plateau value^e&.

The diffusion constant is defined as

D5
1

2
G^ l 2&5

1

2(
n

k0→n~nl0!
2. ~4.7!

It is convenient to redefineD asD5D̃DTST. The transition
state value for the diffusion constant is

DTST5
1
2GTSTl 0

2 , ~4.8!

i.e. particles escape with the transition state rate and h
only a single lattice spacing. In terms of the state-to-sta
reactive flux transmission coefficients,D̃ is the plateau value
of D̃(t),

D̃~ t !5(
n

k0→n~ t !n
2. ~4.9!

In terms of theM trajectories,

D̃~ t !5
1

M (
m51

M

(
n

~2n21!Qn@qm~ t !#. ~4.10!

Finally, comparing expressions forD andk0→ , it is evident
that

^~ l / l 0!
2&5D̃/k0→ . ~4.11!

Reactive flux methods require the existence of a plate
time with slow exponential decay. We have verified that w
have reached such a regime for the simulation results w
report.

V. RESULTS

We have performed Langevin dynamics simulations fo
the motion of a particle of massm on the cosine surface

V~q!5~V‡/2!@12cos~2pq/ l 0!#. ~5.1!

The nth well is defined as (n21/2)l 0,q,(n11/2)l 0 . The
frequencyv5(2p/ l 0)AV‡/2m. In the classical limit, the re-
duced frequencyb\v→0. The crossover transition from ac-
tivated escape to deep tunneling is approximate
b\v52p. Unless noted otherwise, we used a barrier heig
of 5 kBT for b\v50 and 0.2p, and a barrier height of 25
kBT for b\v5p, 1.8p, and 3p. We compare simulation
results with theoretical results except for the largest fre
quency,b\v53p, where the theory does not converge.

The value of the static frictiong was defined through the
energy loss parameterd from Eq.~A17!, g[dv/4bV‡. The
Langevin equation was integrated directly ford>1; the en-
, No. 10, 8 March 1995
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4046 Bader, Berne, and Pollak: Activated rate processes
ergy space method was used ford<1. As shown below, re-
sults from the two methods agree well atd51.

A. L

As discussed in Section III D,L is the ratio of the ther-
mally weighted semiclassical transmission probability for th
cosine potential to the transmission probability for a ha
monic barrier with frequency given by the unstable barrie
top normal mode. This ratio is unity when a harmonic ap
proximation suffices for the quantum effects of tunneling an
reflection. The values we obtain forL are presented in Fig.
1. In the strong damping region, when the barrier height
large enough, the steepest descent, parabolic barrier estim
is good. One finds thatL is almost unity in this region. For
finite barrier heights and weaker damping, the true rate w
be smaller than the rate estimated from a parabolic barr
because the nonlinear nature of the cosine potential implie
larger imaginary action through the barrier and hence
smaller transmission coefficient. The fact thatL goes sub-
stantially below unity in the strong damping region is qual
tatively correct, though our results are not quantitative b
cause the barrier is after all not separable.

For the classical frequencyb\v50, plotted with the
L symbol,L51 by definition. The steepest descent est
mate is accurate for the next larger frequency,b\v50.2p.
As shown with the1 symbol,L deviates very little from 1
throughout the entire range of damping.

When the bare frequencyb\v is increased top, the
harmonic approximation predicts a larger tunneling fact
than we estimate for the nonlinear cosine barrier. The symb
h represents results forb\v5p and the barrier height
V‡55kBT. For weak damping,L drops below 1 due to the
finite height of the nonlinear barrier. At moderate to stron
damping, tunneling is less important and we would expe
L to approach 1. Instead, it decreases further, indicating th
our method for obtainingT(E) which assumes separability
of effective barrier modes is not valid for strong friction. The
finite barrier height effects for weak friction are reduce
when V‡ is increased to 25kBT, with b\v still equal to
p. For this larger barrier height,L as shown with the3
symbol is again close to 1. Nonlinearities in the cosine p

FIG. 1. The correction factorL for the parabolic barrier quantum factor
J is shown as a function of the energy loss parameterd. L: b\v50,
bV‡55; 1: b\v50.2p, bV‡55; h: b\v5p, bV‡55; 3: b\v5p,
bV‡525; n: b\v51.8p, bV‡525.
J. Chem. Phys., Vol. 102,
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tential are now below the energies important for escap
particles.

When b\v is increased to 1.8p with bV‡525, just
above the crossover temperature and plotted withn, the
correction factorL is roughly 0.65 for underdamped escap
indicating that a harmonic approximation again overes
mates the tunneling enhancement to the rate at low fricti
Just as withb\v5p, the deviation ofL from unity for
b\v51.8p and large damping are likely due to the failur
of the correctedT(E) to adequately describe the effects o
friction. For weak friction, however,L has attained a plateau
value and the frictional correction toT(E) is very minor.
Since we are concerned here with weak friction, not stro
friction, we do not address howT(E) can be improved in the
large friction regime.

B. k

The transmission coefficient for escape from well
k[k0→ , is shown in Fig 2. The simulation results wer
obtained using the reactive flux method; the theoretical e
mate is k5Yl‡/v. For the reduced frequencyb\v50
~classical dynamics! the theory and simulation agree pe
fectly.

The simulation results forb\v50.2p are also in good
agreement with the theoretical prediction fork. A small dis-
crepancy is noticeable only at the largest value of the fr
tion, d5100. At this large friction, the simulation results ar
probably in error. The semiclassical dynamics method allo
tunneling each time the particle reaches a turning po
rather than only when the unstable barrier top normal mo
experiences a turning point. Tunneling serves to increase
chance that a particle in well 1 will return to well 0, andk
from the simulation is smaller than the correct result.

For the next larger frequency,b\v5p, the agreement
between theory and simulation is quite good, although
theoretical prediction fork consistently overestimates th
simulation results. The theory we use also predicts too la

FIG. 2. The transmission coefficientk from is shown as a function of the
energy loss parameterd. Points are reactive flux simulations; linesa–d are
theory.L anda: b\v50,bV‡55; 1 andb: b\v50.2p,bV‡55; 3 and
c: b\v5p,bV‡525; n and d: b\v51.8p,bV‡525; .:
b\v53p,bV‡525. The theoretical estimate isk5Yl‡/v. Simulation er-
ror bars are smaller than the size of the points.
No. 10, 8 March 1995
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4047Bader, Berne, and Pollak: Activated rate processes
a value fork at b\v51.8p. The difference between theory
and simulation is especially noticeable for small friction
where our semiclassical dynamics method should be ac
rate. We ascribe the difference to the finite height and t
nonlinearity of the barrier in the simulations. First, the en
ergy lossd at the barrier top energy is larger thand at the
energies important for tunneling. Since the escape rate sca
asd in the underdamped regime, the escape rate from the
is too large. Second, sinceT(E) decreases faster for the co
sine potential than for a parabolic barrier, escape at a low
energy is more classical-like in the simulation than in th
theory. Again, this causesk to be smaller than the theoretica
prediction based on a parabolic barrier.

The qualitative prediction of the theory,k'd12b\v‡/2p

for low friction, is correct, but can only be used to predic
escape rates for barriers withb\v<2p, i.e. above the
crossover temperature. According to this expression,k→1
as b\v approaches 2p from below. Simulations with
b\v53p indicate thatk is essentially 1 below the cross-
over temperature.

C. ^e& and f (e)

One measure of the importance of frictional forces an
tunneling ise[(E2V‡)/kBT, the energy of an escaping par
ticle relative to the barrier top energy. The average energy
escaping particleŝe& is displayed in Fig. 3 for the two
smallest frequencies,b\v50 and 0.2p. At small damping,
d &1, the simulation and theory agree. As predicted b
theory, the energy of a classical particle escaping from a w
scales as 0.82Ad. The escape energies at low friction als
agree for the nearly classical barrier frequenc
b\v50.2p.

At moderate to large damping, however, there is a cle
difference between the simulation result and the theoretic
prediction that^e&→1. The difference stems from the fac
that the energy in the theory is that of the unstable norm
mode, whereas the energy in the simulation refers to t

FIG. 3. The average energy of escaping particles relative to the bar
energy in units ofkBT, ^e&5b^E2V( l 0/2)&, is shown as a function of the
energy loss parameterd. Points are reactive flux simulations; linesa–b are
theory.L anda: b\v50,bV‡55; 1 andb: b\v50.2p,bV‡55.
J. Chem. Phys., Vol. 102,
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energy in the reaction coordinate. One can show, howeve
that in the moderate to large damping limit (d.1 and
Y'1),

^e&511
1

2

ĝ~l‡!l‡

v2 , ~5.2!

where e refers to the reaction coordinate energy.50 When
friction becomes large,l‡'v2/ĝ(l‡), and^e&→(3/2)kBT.
Within simulation error bars, roughly the size of the points in
Fig. 3, the average energy of classical escaping particles
the large friction regime is indeed (3/2)kBT.

The shift to smaller escape energies for the classical pa
ticle leads to a narrowing of the distribution of escape ener
gies, f (e). This distribution is peaked very strongly at the
barrier top energy as the friction becomes smaller. The dis
tribution of escape energiesf (e) from first passage simula-
tions, normalized to 1, is shown in Fig. 4 as a function of
e for escape of classical particles from one well of the cosine
surface. Results are shown for four values of the energy los
parameterd. Whend*1, the form of f (e) is

f ~e!'k21 exp~2e!erfAel‡/ĝ~l‡!. ~5.3!

In the underdamped regime,d&1,

f ~e!'~0.82d!21/2 exp@2e/0.82d1/2#. ~5.4!

The distributionf (e) clearly collapses toward 0 as friction is
decreased in the simulations. Furthermore, the decay o
f (e) is very close to exponential in all cases. The agreemen
of the moment̂ e& given by theory and simulation indicates
that the decay constants as given by theory and simulatio
also agree.

Results for escape energies for all barrier frequencies a
shown in Fig. 5. For the smallest two frequencies the barrie
height was 5kBT; for the remaining frequencies, it was 25
kBT. Since the results forb\v50 and 0.2p have been dis-
cussed above, we concentrate now onb\v5p, 1.8p, and
3p. When b\v5p, the agreement between theory and
simulation is quite good. As friction is decreased, tunneling
becomes more important and occurs at lower and lower en
ergies. In Fig. 6 we show the distribution of energiesf (e)

ier

FIG. 4. The distribution of energiesf (e) of escaping particles is shown as a
function of the differencee from the barrier energy in units ofkBT. Results
are from mean first passage simulations withV‡55kBT andb\v50. The
four lines correspond to four choices for the energy loss parameterd: a,
d510; b, d51; c, d50.1; d, d50.01.
No. 10, 8 March 1995
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4048 Bader, Berne, and Pollak: Activated rate processes
obtained from first passage simulations withb\v5p and a
barrier height of 5kBT. For the largest friction,d5100,
most of the particles are activated and escape at energ
above the barrier energy. As the friction is decreased, t
distribution shifts to lower energies and tunneling dominat
the escape.

Results forb\v51.8p in Fig. 5 show a discrepancy in
^e& from theory and simulation. The theory predicts escap
energies about 5kBT lower than those seen in simulation
This difference is due to nonlinearities in the cosine pote
tial. SinceT(E) decreases faster for the cosine potential tha
for a harmonic potential, tunneling occurs at a higher ener
than predicted by theory. When friction is large, tunnelin
particles escape near the top of the barrier, nonlinearity of t
barrier is not important, and the theoretical results and sim
lation results agree.

FIG. 5. The average energy of escaping particles relative to the bar
energy in units ofkBT, ^e&5b^E2V( l 0/2)&, is shown as a function of the
energy loss parameterd. Points are reactive flux simulations; linesa–d are
theory.L anda: b\v50,bV‡55; 1 andb: b\v50.2p,bV‡55; 3 and
c: b\v5p,bV‡525; n and d: b\v51.8p,bV‡525; .:
b\v53p,bV‡525. Simulation error bars are smaller than the size of th
points.

FIG. 6. The distribution of energiesf (e) of escaping particles is shown as a
function of the differencee from the barrier energy in units ofkBT. Results
are from mean first passage simulations withV‡55kBT andb\v5p. The
three lines correspond to three choices for the energy loss parameterd: a,
d5100;b, d51; c, d50.01.
J. Chem. Phys., Vol. 102,
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For the largest frequency,b\v53p, corresponding to a
temperature below crossover, it is clear that escape is due
tunneling from deep in the well for all but the strongest
values of the friction. A thorough investigation of escape in
this regime requires a more complete quantum mechanic
treatment than is provided by the semiclassical dynamics a
gorithm. Although we have not included the effects of quan
tization of energy levels in the simulation, we expect the
qualitative picture presented here is valid.

D. P1

The correlated hop probabilitiesP1 as measured from
first passage simulations are shown in Fig. 7. This is th
probability that a particle escaping from a well will traverse
at least one other well before suffering a reversal in its ve
locity. It characterizes the probability that a segment of th
trajectory of an activated particle will include a correlated
hop over several lattice spacings. The barrier height used
these simulations was 5kBT, except forb\v53p where
the barrier height was 10kBT. As in all the figures, two
points are plotted ford51, one from the energy space simu-
lation and one from the Langevin simulation. A small differ-
ence is noticeable between the values forP1 from the two
simulations; this difference is roughly the size of the simu
lation uncertainty.

When friction is large, the probability of a correlated hop
is small. As the friction decreases,P1 rises for classical es-
cape, saturating at a value of almost 0.7. A plateau is reach
because the root mean square energy fluctuation in goin
from barrier to barrier is on the order of the energy of the
escaping particle: both are proportional toAd.

When tunneling is allowed, however,P1 eventually falls
with decreasing friction. The reason is that a greater numb
of particles escape by tunneling when friction become
smaller, the tunneling energy decreases, and the probabil
to tunnel across two barriers decreases. The agreement
tween theory and simulation is quite good; effects due t

ier

e

FIG. 7. The correlated hop probabilityP1 is shown as a function of the
energy loss parameterd for various values of the quantum parameter
b\v. Lines are theory; points are results from first passage simulations wi
bV‡55. L anda: b\v50; 1 andb: b\v50.2p; h andc: b\v5p;
.: b\v53p.
No. 10, 8 March 1995
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4049Bader, Berne, and Pollak: Activated rate processes
finite barrier heights do not seem to affectP1 for the param-
eters we consider.

The simulations forb\v53p indicate the behavior in
the deep tunneling regime below the crossover temperatu
In this regime, the theory forP1 no longer converges. Simu-
lations demonstrate thatP1'0 when escape is due to
ground-state dominated tunneling.

E. P(n )

The distribution of jump lengthsP(n) is another indica-
tion of the probability of a long correlated hop. Calculated i
first passage simulations,P(n) is the probability that a par-
ticle escaping from well 0 will suffer its first reversal of
velocity while traveling over welln. The normalization con-
dition is (n51

` P(n)51, and the probability of a correlated
hop P1 is 12P(1). Results forP(n) from first passage
simulations withV‡55kBT andb\v50, 0.2p, andp are
shown in Figs. 8–11. For these simulations, the initial ener
of the particle was 1kBT above the bottom of the well.

In Fig. 8 the energy loss parameterd510. All of the
hops were 3 lattice spacings or less, and the difference
tween P(n) for the three values ofb\v is insignificant.
Furthermore,P(n) decays exponentially with increasingn,

FIG. 8. The probabilityP(n) that a particle escaping from well 0 suffers its
first reversal of velocity while over welln is depicted for three values of the
parameterb\v: L,b\v50; 1,b\v50.2p; h,b\v5p. For all cases
V‡55kBT andd510.

FIG. 9. Same as Fig. 8, but withd51.
J. Chem. Phys., Vol. 102,
re.
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and the geometric seriesP(n)5(12P1)(P1)
n21 is a good

approximation toP(n). Next, in Fig. 9, results are shown for
d51. The jump distributions forb\v50 and 0.2p are simi-
lar and generally larger thanP(n) for b\v5p. Further-
more, the decay ofP(n) is now slower than exponential. The
nonexponential decay ofP(n) is even more evident in Fig.
10, with d50.1. The distributionP(n) is similar for
b\v50 and 0.2p. Tunneling has become important for
b\v5p, andP(n) decays more quickly than for the lower
two frequencies. Results for the smallest value ofd, 0.01, are
shown in Fig. 11. Classical dynamics produce aP(n) with
an extremely long tail. Tunneling becomes important for e
cape withb\v50.2, andP(n) is smaller than for classical
escape. Furthermore, forb\v5p, P(n) decays much more
quickly for d50.01 than it did with stronger friction,
d50.1. As tunneling becomes more important, the distribu
tion of jump lengths shifts to smaller values and become
exponential once again.

F. D

The ratioD/DTST
cl of the diffusion constant to the classi-

cal transition state theory estimate, DTST
cl

5(v/p) l 0
2 exp(2bV‡), is displayed in Fig. 12. These results

are from reactive flux calculations. For moderate to larg
damping, the diffusion constant increases with the quantu

FIG. 10. Same as Fig. 8, but withd50.1.

FIG. 11. Same as Fig. 8, but withd50.01.
No. 10, 8 March 1995
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4050 Bader, Berne, and Pollak: Activated rate processes
parameterb\v. In this region, correlated hops are not im
portant and the diffusion constant depends strongly on t
escape rate. Quantum mechanical particles are more likely
tunnel, increasing the escape rate, andD is larger than for a
corresponding classical particle.

Correlated hops become important in the underdampe
low friction regime. The increase in the jump length due t
correlated hops more than compensates for the reduction
the escape rate, resulting in an increase in the diffusion co
stant. As seen in the previous section, correlated hops
much more likely and also longer for classical particles tha
for quantum particles. The classical diffusion constant co
sequently increases more quickly than the diffusion consta
for a quantum particle.

A theoretical analysis predicts that the diffusion consta
above the crossover temperature scales asd211b\v/2p in the
weak damping regime.25 Simulations indicate that this ex-
pression is valid ford&1. Finally, these simulation results
reinforce the theoretical prediction of an inverse isotope e
fect: the classical diffusion constant is larger than the qua
tum diffusion constant when friction is small.

We note that the agreement between theory and simu
tion for D is better than that fork for the strongly quantum
frequencyb\v51.8p. The reason for the agreement her
stems from a cancellation of errors in the theory. The valu
of d used in the theory is larger than the effectived in the
simulation. In the low friction, smalld regime, this results in
a larger escape rate in the theory than the simulation, but a
a smaller probability of a correlated hop. The errors are
opposite directions, giving a small net error in the predicte
diffusion constant.

The theoretical results forD are only valid above the
crossover temperature,b\v<2p. Our simulation results
slightly below crossover,b\v53p, indicate that the diffu-
sion constant is independent of friction in the low friction
regime. This is because tunneling from deep in the well is t
dominant escape mechanism for diffusing particles. It is ev

FIG. 12. The diffusion constantD, normalized by the classical transition
state theory valueDTST5(v/p)exp(2bV‡), is shown as a function of the
energy loss parameterd for various values of the quantum paramete
b\v. Points are results from reactive flux simulations, lines are theo
L anda: b\v50; 1 andb: b\v50.2p; 3 andc: b\v5p; n andd:
b\v51.8p; .: b\v53p. For b\v50 and 0.2p, the simulations used
V‡55kBT; for b\v5p, 1.8p, and 3p, V‡525kBT.
J. Chem. Phys., Vol. 102,
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dent that for a fixed value ofd and a large enough value of
b\v, quantum tunneling can overcome the effects of lo
friction, making the quantum diffusion constant larger tha
the classical diffusion constant. One also expects that for
even smaller value ofd, the classical diffusion constant will
once again be larger than the quantum diffusion constant

G. Š(l /l 0)
2
‹

Results for the mean square number of lattice spacin
per jump, ^( l / l 0)

2&, are shown in Fig. 13. This number is
obtained from the results forD and k from reactive flux
simulations asD̃/k. The corresponding theoretical quantity
is D/(DsdY). At moderate to large damping,^( l / l 0)

2&51
and each escaping particle only jumps one lattice spaci
For smaller values of the friction, longer jumps become im
portant. We see again that asb\v increases, the escape is
due more and more to tunneling, and the jump length d
creases.

Nonlinear, finite barrier height effects are evident in th
simulation results for the frequencyb\v51.8p. The simu-
lations show a larger mean square length per jump than p
dicted by theory. The theoretical estimate is based on t
value ofd for an escaping particle at the barrier top energ
Tunneling particles travel below the barrier top energy, ha
a smaller action per traversal of a well than particles near t
barrier energy, and therefore have a smaller effective ene
loss than particles escaping over the barrier. Since the ju
length increases asd decreases, the actual jump length i
slightly larger than predicted by theory.

The mean square jump length increases asd22 for clas-
sical escape, and the theoretical prediction th
^( l / l 0)

2&;d221b\v/p is borne out by the simulation results
The theoretical scaling law is valid for moderate to wea
friction, d &1. At crossover,b\v52p, the theory predicts
no dependence of the jump length on friction; for larger fre
quencies the theory does not converge. The simulation
sults we present forb\v53p indicate that the mean

y.

FIG. 13. The mean square lattice spacings per jump^( l / l 0)
2&, are shown as

a function of the energy loss parameterd for various values of the quantum
parameterb\v. Points are results from reactive flux simulations, lines ar
theory.L and a: b\v50; 1 and b: b\v50.2p; 3 and c: b\v5p;
n andd: b\v51.8p; .: b\v53p. Forb\v50 and 0.2p, the simula-
tions usedV‡55kBT; for b\v5p, 1.8p, and 3p, V‡525kBT.
No. 10, 8 March 1995
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4051Bader, Berne, and Pollak: Activated rate processes
square jump length remains independent of the friction
damping below the crossover temperature,b\v.2p, with
^ l 2&' l 0

2 .

VI. DISCUSSION

We have investigated surface diffusion with a on
dimensional model which allows for the quantum mecha
cal tunneling and reflection of the diffusing particle. At eac
turning point or barrier crossing, a semiclassical transmiss
probability determines whether the particle is transmitted
reflected. We have used a stochastic Langevin equation
model the fluctuations and dissipation of the energy of t
diffusing particle.

We have developed a reactive flux method to efficien
investigate surface diffusion when the barrier between we
is large. The standard reactive flux method for classical s
tems is no longer valid when particles can tunnel. Clas
cally, each reactive flux trajectory starts at the top of t
barrier with energy greater than the barrier energy. Semic
sical tunneling serves to broaden the initial distribution of t
reactive flux trajectories. The modification to the classic
reactive flux algorithm can be described as replacing
classical transmission probability, 1 if the energy is above
barrier and 0 otherwise, with the semiclassical transmiss
probabilityT(E).

Reactive flux methods require that trajectories be cont
ued up to a plateau time, the time for a reactive parti
starting near a barrier to be thermalized in a well. When
frictional damping of the particle is small, the regime emph
sized here, the plateau time can be quite long. We have va
increased the efficiency of our sampling of trajectories
developing a new multiple time step method. Each time s
in this method corresponds to the time for a particle
traverse a well at constant energy. Coupling to the friction
bath is incorporated as a stochastic perturbation to the c
servative reference trajectory. This method can increase c
putational speed by a factor of 100.

Our simulation results are compared to theoretical p
dictions for the escape rate, escape energy, and diffusion c
stant. We find that the theoretical predictions are almost
ways in perfect agreement with the simulation results. T
simulation and theory disagree only near the crossover
tween activated tunneling and deep tunneling, when the
duced barrier frequencyb\v approaches 2p. The simula-
tions demonstrate that near crossover, the finite height
nonlinearity of the barrier between wells become importa
The theory presented here is based on a parabolic extrap
tion from the top of the barrier, and predicts an escape r
that is too large. Theory also predicts a jump length that
too large, however, and the cancellation of errors results i
diffusion constant which is quite accurate.

The simulations also provide results where the theory
longer converges, i.e. below the crossover temperature.
find that the limiting behavior of the diffusion constant pre
dicted by theory at crossover continues below crossover
well. It is possible to develop theoretical approaches wh
converge at and below the crossover temperature; th
methods will be described elsewhere.
J. Chem. Phys., Vol. 102
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The simulation results support the prediction that reduc
ing friction increases the diffusion constant. Furthermore, fo
sufficiently small friction, the classical diffusion constant is
larger than the quantum. Although quantum particles have
larger escape rate due to tunneling through the barrier b
tween wells, above-barrier reflection reduces the length o
correlated hops for quantum particles relative to classica
particles. Therefore, while this reduction to the diffusion
constant due to above-barrier reflection is reminiscent of th
possibility of quantum reflection reducing the escape rat
from a well relative to a classical prediction,51 it occurs
through a different mechanism.

The model described here is one-dimensional. This is
reasonable first approximation since many studies indica
that adsorbates can have a preferential axis for diffusio
Two recent examples are the direct STM observations of P
diffusion on Ge~111!16 and simulation studies of H atoms on
the Si~100!-231 surface.52 Furthermore, when long hops are
important, simulations indicate that the jumps are along
persistent direction.17,53–55Simulations also indicate that an
effective one-dimensional reaction path potential surface ca
be a good approximation for the motion of H on a rigid Cu
surface.54 Fully three-dimensional treatments of adsorbate
motion have shown a substantial fraction of long hops
P1'0.45 for H on Ni~100!,56 and that correlated hops can
enhance the diffusion constant by a factor of 2 to 3.57We are
extending our one-dimensional treatment to diffusion on
two-dimensional surface to determine to what extent cou
pling between Cartesian dimensions can quench long jump

The bath in the simulations is strictly classical. We have
checked that the theoretical predictions are not sensitive
the treatment of the bath; a classical bath and a quantum ba
give the same results for the diffusion constant, the esca
rate, etc. This is because the most important quantity chara
terizing the bath isd, the average energy loss of the particle
to the bath per period, andd is the same for a classical or
quantum bath. Thus, for the Ohmic friction we consider, a
quantum treatment of the bath modes would not be likely t
produce a substantial change in the simulation results. R
placing the classical bath with a quantum bath would requir
that the Langevin equation be replaced by a generalize
Langevin equation, and that the stochastic random force b
replaced by a stochastic operator satisfying a nonclassic
fluctuation–dissipation theorem.58–61It would be a challenge
to simulate this type of quantum generalized Langevin equa
tion. It would not be too difficult, however, to include the
quantum aspects of the bath in an energy space simulation
using a quantumP(EuE8) kernel rather than the kernel for a
classical bath.

The dynamical simulations we have described do no
include quantization of energy levels of the particle. The
number of bound states per well is given approximately b
@action/2p\#, or 4bV‡/pb\v for the cosine potential. For
the larger frequencies we consider here,b\v*p, the num-
ber of energy levels is not large, indicating that quantizatio
of energy levels might be important. The dynamical simula
tions are only used to obtain correction factors to transitio
state rates, however, and the transition state rates do inclu
quantization of system levels in the well and bath levels bot
, No. 10, 8 March 1995
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4052 Bader, Berne, and Pollak: Activated rate processes
in the well and at the barrier through the factorJ. This ratio
of quantum to classical partition functions includes the r
duction in the activation energy due to the zero-point ener
of the escaping particle, which should be the dominant effe
arising from quantization of energy levels. In the deep tu
neling regime below crossover, it is likely that an exact de
scription of the escape rate requires quantization of the a
sorbate motion in energy levels in each well. A tight-bindin
model involving coupled sites might be a more appropria
starting point than the semiclassical dynamics describ
here. The approximation here of incoherent hops betwe
sites might break down, and it might be necessary to descr
the diffusion in terms of coherent motion in bandlike
states.62,63

A number of other approaches have been used to inv
tigate diffusion on a multidimensional surface. Semiclassic
transition state theory calculations estimate a quantum m
chanical diffusion rate by performing a thermal average
the multidimensional tunneling probabilityT(E).64 Centroid
methods can also be used to estimate a quantum mechan
transition state theory rate constant.65–68 Although both of
these approaches can provide accurate values for r
constants,69 neither includes a direct estimate of the dynam
cal effects which lead to long correlated hops. Dynamic
effects have been estimated by running classical trajector
on effective potential energy surfaces and with initial cond
tions chosen from semiclassical distributions.70–72 These
methods do not accurately describe quantum tunneling
reflection beyond the initial barrier crossing. A fully quantum
mechanical description of a diffusing particle is possible u
ing basis set methods to evaluate a flux–flux autocorrelati
function,54,56,73 but so far has been limited to a rigid sub
strate. Real-time path integral methods might allow for
fully quantum mechanical treatment of a diffusing particl
and the substrate, with the substrate modes treated as
effective bath of harmonic oscillators.74–76 It might be diffi-
cult, however, to extend real-time path integration to time
sufficiently long to encompass a correlated hop.

As a practical manner, escape rates and diffusion co
stants can be quite sensitive to quantitative details of t
adsorbate/surface interactions. These include the relaxat
of surface atoms around an impurity, the coupling of th
adsorbate to phonon modes, and the effects of nonadiab
excitations of electron-hole pairs in the solid.55,56,68
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APPENDIX A: THE QUANTUM KERNEL

The quantum extension of PGH theory33 relies heavily
on the normal mode transformation31 around the barrier top
of the Hamiltonian equivalent of the GLE,

H5
pq
2

2
1w~q!1(

j

1

2 Fpxj2 1S v j xj2
cjq

v j
D 2G ~A1!
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from the mass-weighted original system and bath coordinate
(q,xj ; j51,...) to thenormal modes (r,yj ; j51,...). The
matrix element (u00) projecting the mass-weighted system
coordinate onto the unstable normal moder associated with
the barrier frequencyl‡ @cf. Eq. ~2.4!#, is given in terms of
the Laplace transform of the time dependent friction as

u00
2 5F11

1

2 S ĝ~l‡!

l‡ 1
]ĝ~s!

]s Us5l‡D G21

. ~A2!

The spectral density of the normal modes,I (l),28 may be
expressed similarly:

I ~l!5
1

l
Re@K̂~ il!#, ~A3!

where@K̂( il)# is the transform of the friction function of the
normal modes and is related to the time dependent friction

K̂~s!5
1

u00
2

s

s21sĝ~s!2v2 2
s

s22l‡2
. ~A4!

To determine the quantum kernel it is necessary to solve th
equation of motion for the trajectory which at time2` is
initiated at barrier 1 and as time goes to` it goes asymptoti-
cally to the adjacent barrier. This trajectory obeys the zero
order equation of motion for the unstable normal mode@cf.
Eq. ~3.15! of Ref. 33 or Section 2 of Ref. 28#:

r̈2l‡2r52u00
dw1~q!

dq
U
q5u00r

[F~ t !, ~A5!

wherew1(q) is the nonlinear part of the potential,

w1~q![w~q!2@w~q‡!2 1
2 v2~q2q‡!2#, ~A6!

andq‡ denotes the location of the barrier. The power spec
trum of the forceF(t) along the critical trajectory is defined
as

F̃~l![U E
2`

`

dteiltF~ t !U2. ~A7!

As shown in Ref. 28, the exponent of the quantum kernel ha
the general form:

r ~ t !5
1

2p\E2`

`

dl
I ~l!F̃~l!@cosh~ 1

2 \bl!2cos~ t\bl!

sinh~ 1
2 \bl!

.

~A8!

The numerical work in this paper is based on Ohmic friction
@Eq. ~2.33!#. Using the notation

a[
g

2v
~A9!

one has the well known Kramers result for the reactive fre
quency@Eq. ~2.4!#:

l‡

v
5~11a2!1/22a. ~A10!

We denote the second solution of the Kramers equation as

l1

v
5~11a2!1/21a. ~A11!
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The spectral density of the normal modes is now easily o
tained:

I ~l!5
l

2l‡ S 1

l21l‡2
2

1

l21l1
2 D . ~A12!

To proceed further one must use the specific form of t
potential, which in our case is the cosine potential of E
~2.35!. The explicit time dependence for the trajectory th
starts asymptotically att52` at the first barrier and ends a
t5` at the second barrier is needed for the effective for
~A5!. To obtain this trajectory we will use the weak dampin
limit of the equation of motion, which means effectively se
ting l‡5v‡,u0051,r5q in Eq. ~A5!. This trajectory is at
the barrier top energyE50 so that an analytic solution is
readily obtained by integratingdt/(dq)5@22w(q)#2 1/2.
The result is

sinF v‡

~2V‡!1/2
qG5tanh~v‡t !. ~A13!

In this weak damping limit, the forceF(t) is also determined
by the unperturbed system trajectory:

F~ t !5
dw

dq
1v‡2~q2q‡!, ~A14!

where the time dependence ofq is given in Eq. ~A13!.
ObtainingF̃(l) @cf. Eq. ~A7!# is not too difficult. The inte-
grals are tabular integrals, the only trick is that the integ
tion of the linear term inq should be done by parts, th
surface term vanishes, the second term involvesq̇ which is
easily expressed through energy conservation. The resu
rather simple:

F̃~l!5
2p2V‡

v‡2
~v‡21l2!2

l2

1

cosh2S pl

2v‡D . ~A15!

Finally, one does not need the exactI (l) for the Ohmic
friction as in Eq.~A12! but only the leading order term in the
dampingg. This is easily seen to be

I ~l!.
gl

~l21v‡2!2
. ~A16!

At this point we obtain the following explicit expression fo
the exponential factorr (t) that appears in the quantum ke
nel given in Eq.~2.39!. Finally, we note that the energy los
for the cosine potential is just:

d5gE
2 l0 /2

l0 /2

dq@22w~q!#1/258bV‡a. ~A17!

Although we have used only the weak damping limit of th
PGH formalism, for Ohmic friction, previous experience h
shown that differences are small. In the underdamped lim
the results used here are anyway exact: as the damping
creases both the PGH formalism as well as its ‘weak dam
ing’ limit as used here lead to large energy losses and
almost identical results. This may be seen explicitly for e
ample in Ref. 77.
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APPENDIX B: PERTURBATION THEORY FOR
ENERGY FLUCTUATIONS

When frictional damping is weak, the fluctuations in th
energy of a particle can be described by a perturbati
theory. The rate of change of the energy of a particle obeyi
Eq. ~3.1! is

dE

dt
5
dV

dq

dq

dt
1
m

2

d~ q̇2!

dt
5mq̇@~1/m!dV/dq1q̈#

5mq̇@2gq̇1R~ t !#. ~B1!

To obtain the average rate of change, the random forceR(t)
must be averaged,

^dE/dt&R52mg^q̇2&R1m^q̇~ t !R~ t !&R . ~B2!

The subscriptR indicates an average over the history of th
random forceR(t). Now we assume thatq(t) can be ex-
pressed as a power series inAg ~note thatR(t) is O (Ag)):

q~ t !5q0~ t !1Agq1~ t !1O ~g!. ~B3!

At time t50, q1(t)5q̇1(t)5•••50. Writing F(q)
52m21dV/dq, F0(t)5F@q0(t)#, F1(t)5dF0(t)/dq0(t),
and collecting terms ofO (1) and ofO (Ag) in the Langevin
equation, one finds the equations of motion

q̈0~ t !5F0~ t !; ~B4!

Agq̈1~ t !5Agq1~ t !F1~ t !1R~ t !. ~B5!

Clearlyq0 satisfies the conservative equation of motion wit
g50. Thus to lowest order ing, the first term in Eq.~B2! is
2gmq̇0(t)

2. To lowest order ing the second term is

m^q̇0~ t !R~ t !&R1m^Agq̇1~ t !R~ t !&R

5mK E
0

t

dt8Agq̈1~ t8!R~ t !L
R

, ~B6!

sinceq0(t) is independent ofR(t), andR has zero mean.
The remaining term can be expanded by noting that

Agq̈1~ t !5R~ t !1Agq1~ t !F1~ t !

5R~ t !1F1~ t !E
0

t

dt8Agq̇1~ t8!

5R~ t !1F1~ t !E
0

t

dt8E
0

t8
dt9R~ t9!1••• ~B7!

Finally, performing the average overR,
, No. 10, 8 March 1995
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mK E
0

t

dt8Agq̈1~ t8!R~ t !L
R

5mK E
0

t

dt8R~ t8!R~ t !L
R

1mK E
0

t

dt8F1~ t8!E
0

t8
dt9E

0

t9
dt-R~ t-!R~ t !L

R

1•••

5g/b1mE
0

t

dt8F1~ t8!E
0

t8
dt9E

0

t9
dt-~2g/bm!d~ t-2t !1•••

5g/b12g/bE
0

t

dt-E
t-

t

dt9E
t9

t

dt8F1~ t8!d~ t-2t !1•••5g/b. ~B8!
n

ra
ie

e

T
o

n

n

il

u
i

-

t
ti

r
,

The average energy changeD is obtained by integration:

D5E
0

t

dt8^dE/dt8&R

52gE
0

t

dt8mq̇0~ t8!q̇0~ t8!1E
0

t

dt8g/b

52gE
q0~0!

q0~ t !
dqp~q!1gt/b. ~B9!

The momentump(q) is A2@E2V(q)#/m.
In the weak damping limit, the first term in Eq.~B9! is

exactly the average energy lossd which appears in Eq.~2.9!,
derived from considerations of the energy loss of the u
stable normal mode. The first term inD must therefore be the
asymptotic limit for the average change in energy for a t
jectory traveling at the barrier top energy as the barr
height increases.

The second term in the perturbation theory will only b
valid for short times,gt!1, and will induce finite barrier
corrections to the standard estimates for the escape rate.
term describes the flow of energy back into the system fr
the bath. For a physical picture of this term, imagine thatV is
a harmonic potential (1/2)mv2q2, thatq0(0) andq0(t) are
the left and right turning points for energyE, and that
t5p/v. DefiningJ(E) as the action for the trajectory which
goes from the left turning point to the right turning point i
time p/v,

D~E!52gJ~E!1gJ~kBT!, ~B10!

since J for a harmonic oscillator is simplytE. When
E,kBT the harmonic oscillator gains energy on average, a
whenE.kBT the oscillator loses energy on average.

As seen explicitly in the example of the harmonic osc
lator, the function of the second term in Eq.~B9! is to main-
tain the proper distribution of energies deep in the well. F
thermore, deep in the well, the period is finite, motion
quasi-harmonic, andgt/b'gJ(kBT), where the action
J(kBT) is for a period of motion in the full nonlinear poten
tial for a particle energy of 1kBT. Therefore we adopt Eq.
~B10! as our expression forD, with the action evaluated a
the indicated energies for undamped motion in the poten
V(q).

Higher moments of the change in energy for a trajecto
can also be calculated from the Langevin equation. First
lowest order ing, dE/dt2^dE/dt&R5mq̇0(t)R(t). The sec-
ond moments2 of the distribution of energyE(t) given
energyE at time 0 is then
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s25^@E~ t !2~E1D!#2&R

5E
0

t

dt8E
0

t

dt9mq̇0~ t8!mq̇0~ t9!^R~ t8!R~ t9!&R

52gkBTE
0

t

mq̇0~ t !q̇0~ t !

52gkBTE
q0~0!

q0~ t !
dqp~q!. ~B11!

Furthermore, sinceR is a Gaussian random variable,
dE/dt2^dE/dt&R is a Gaussian random variable, and the
fluctuations ofE(t) about E1D must also be Gaussian.
Therefore, in the limit of weak damping, the probability dis-
tribution of E(t) is a Gaussian uniquely determined by the
first momentD and second moments2.

This Gaussian form of the transition kernelP does not
obey detailed balance,

P~EuE8!exp@2bE8#ÞP~E8uE!exp@2bE#. ~B12!

The kernel is not microscopically reversible because the pa-
rametersD ands2 are not symmetric in their dependence on
E andE8. The error made at each step can be estimated as

error5
P~EuE8!exp~2bE8!

P~E8uE!exp~2bE!
21, ~B13!

whereE is the energy at the start of the step andE8 is the
new energy chosen from the distributionP(E8uE). One can
show that^error& } ^E82E& } d, whered is the energy
loss at the barrier top energy. The cumulative systematic er-
ror afterN steps scales asNd. The number of stepsN re-
quired to follow an activated trajectory until it is trapped in a
well scales like 1/d. Thus, to lowest order ind, the cumula-
tive error over the length of a trajectory from activation until
thermalization should be independent ofd: even though
more steps are needed for a smallerd, the error per step is
smaller, and thed-dependence cancels out.

We have tested the importance of deviations from de-
tailed balance by performing simulations using both Lange-
vin dynamics and energy space dynamics at an intermediate
value of the frictiong corresponding to the reduced energy
loss d51. We found agreement in the results of these
two simulation methods, indicating that the energy space
dynamics simulations should also be accurate for smaller
values ofg.
No. 10, 8 March 1995
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