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We investigate the distribution of energies of thermally activated particles escaping from a
metastable well. This energy distribution is connected by detailed balance to the energy-dependent
transmission coefficient, the probability that a particle injected into a well will stick. Theoretical
expressions for the energy-dependent transmission coefficient show good agreement with simulation
results for a one-dimensional reaction coordinate coupled to a frictional bath. Slight deviations from
theoretical predictions based on turnover theldgy Pollak, H. Grabert, and P. Hggi, J. Chem.
Phys.91, 4073(1989] are understood in light of the assumptions of turnover theory. Furthermore,
the theoretical expressions for energy distributions also provide good fits for fully three-dimensional
simulations of sticking and desorption of Ar and Xe orf12f) [J. C. Tully, Surf. Sci.111, 461

(1981)]. Finally, we compare the theoretical efficiencies of several reactive flux sampling schemes,
including a scheme designed to be optimal. 1895 American Institute of Physics.

I. INTRODUCTION well with simulation results for sticking probabilities of mo-
noenergetic and thermal beams, and with results for the av-
Chemical reactions can often be described in terms of @rage energies of thermally desorbing partiéles.
on a surface with an energetic barrier. The reactant region iﬁollak—Grabert—Fmggi (PGH) turnover theory for con-
on one side of the barrier and the product region is on th@enseqd phase reaction rates, which has been quite successful

other side. A,‘t the moment when the pgrtlcle passes from thﬁ’l predicting rate constants for systems with weak friction,
reactant region to the product region, it travels with a veloc-

strong friction, and for the crossover region between weak
. . ’3 . .

with the distribution of energief{e) for thermally activated ﬁ:g TZ@”EJQE“"” tc\;\i tTer ggﬂ ;ﬁfofx‘;rtezsﬁ?csrgzzg"’ii

particles as they pass from reactant to product. The transitio 9 (). y P

state theory of reaction rates and the reactive flux method a,]rével by comparing the theoretically predicted value for

presented in terms of in Sec. Il A. f(€) with the actual value obtained by simulation. The simu-

The energy distribution of escaping particles serves tdation tests are reported in Sec. Ill B. The results bring to
probe the frictional damping of the reaction coordinate and idight an intriguing cancellation of errors in the calculation of
related by detailed balance to the energy-dependent transmi-transmission coefficient based on the PGH prediction for
sion coefficientk(e). The quantityx(e) describes the energy f(e).
dependence of a reaction probability. The sticking probabil- We also use theoretical expressions for the energy-
ity for atoms in a monoenergetic beam impinging on a surdependent transmission coefficient to investigate the relative
face, e.g., is given by(e). If frictional damping is small, efficiencies of various reactive flux sampling schemes. One
then particles with a large energywill most likely bounce  common scheme is to select the initial velocity of the reac-
off of the surface. If the damping is large, then particles withtion coordinate from a Boltzmann distribution; another is to
large energy will be more likely to stick than particles with select the initial velocity from a Maxwell-Boltzmann flux
small energies. In Sec. Il B we present an expressiox(ar gistribution. In Sec. Il C, the efficiencies of these schemes

for a parabolic barrier, which is also valid for escape overy o compared with the efficiency for sampling from the op-

nonlinear barriers when the frictional damping is moderate Qimal distribution, the distribution which produces the best
strong. When the motion of the reaction coordinate is only

. estimate fork with the smallest number of trajectories. The

weakly damped, another expression based on turnover theory .. C . . - .
) . i X ; c)btlmal distribution is described in the limits of strong fric-
and described in Sec. Il C is appropriate. Interpolation l‘or-ti n and weak friction. Samolina from th timal distrib
mulas connecting the weak friction and strong friction limits lon a eakriction. sampling 1ro € optimal distribu-

for «(e) are presented in Sec. Il D. Formulas are also pre:[Ion is shown to converge faster than sampling from the

sented for the energy distribution of escaping particles,BOItzmann and Maxwellian flux distribution, and for very

f(€), and for the first moment df(€), €, which is the mean weak friction the difference can be significant.

energy of an escaping particle as it crosses the transition state " Sec. IV we conclude with a discussion highlighting

dividing surface. the findings of our study. We discuss in particular why the
We show in Sec. Il A that the theory developed for a €rrors made by PGH theory tend to be in compensating di-

one-dimensional reaction coordinate can be successfully apections, leading in the end to very accurate predictions of

plied to the fully three-dimensional sticking of Ar and Xe reaction rates. We also describe possible extensions to the

atoms on a R111) surface. Theoretical expressions agreework presented here.

ity g which defines a kinetic energy We concern ourselves
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Il. THEORY w
K:f de e “k(e). (6)
0

A. Reactive flux in the energy representation

Wg take a standard model for the dynamics of a part.ichAn important quantity related ta(e) is f(e), the energy
escaping from a metastable well, namely the generalizegstribution of particles leaving the reactant region. By de-

Langevin equatiofGLE),*~® tailed balance, the normalized distribution is
. dVv(a) t . f(e)=k"le ¢k(e). (7
w0 = gt = [ y-ae o, @ )

In Eg. (6) we have introduced the energy-dependent

The reaction coordinate i, and x is the mass of the reac- transmission coefficient(e), defined as

tion coordinate. The potential of mean foroé(q), is as- _ - PekaTl
sumed to have a barrier of heighit at g=q*. The barrier w()=(OLa(rV2ekaT/u)])e
separates reactanig<q*, from productsg>q*. For con- —(O[q(7;,— V2ekgT/u)]); - (©)]

venience, we takg*=0. , ,
of\s seen in Eq(6), the Boltzmann weighted average of the

The coordinate is coupled to a thermal bath by means < I .
a Gaussian random forg&t) and a friction kernel(t). The  €nergy-dependent transmission coefficiatt) yields the
conventional transmission coefficient. Althougfe) speci-

friction kernel is related to the random force autocorrelationf, iritial tor th X 2" )
function by a fluctuation—dissipation theorem, ies an initial energy for the reactive system, it is not a mi-
crocanonical quantity because coupling with the bath allows

(EMEMR))=kgTuy(t=t]). 2 energy transfer into and out of the reaction coordinate. The
_ quantity e specifies how the reactive coordinatés prepared
The random force has zero meqg(t))=0, and is uncorre- at the top of the barrier, i.e., how much kinetic energy it

lated withq, (&(t)q(t’))=0 for t=t". possesses as it crosses the transition state dividing surface at
Our analysis of the energy distribution of reactive par-t=0.

ticles is framed in terms of the reactive flux theory for barrier  One quantity we wish to calculate & the average en-
crossing”™*® The reactive flux method has as its startingergy of reactive particles, relative to the barrier top energy, at
point the transition state theory estimate for the rate constanhe moment when=q*:

k. for thermal escape from the reactant region,

o — (8(a)a®[q(7)]e) 9
= (B(@EOTAD/(O] ~a)). ® (sl ©
The function® is the Heaviside function. The unsubscripted variables g, ande refer to the position,

The transition state theory rate constant does not accouglocity, and reduced energy at time zero. In terms of
for recrossings of the transition state by an activated particlg(¢), the average energy of escaping particles is
before it is thermalized in the reactant region or product re-
gion. The ratio of the actual rate constdnto the transition szflj'wde e “k(e)e. (10)
state theory estimatk,; is termed the transmission coeffi- 0
cient . It is possible to obtain the value af by running

trajectories away from the transition state dividing surface It IS convenient to use Laplace transforms ) to
for a time r, where 7 is long enough that the system has relate the overall transmission coefficiehand the average

thermalized in the reactant or product region but not so longSCape energy to «(e). Defining the Laplace transform of
that it can become reactivated. When this separation of tim&(e) as(s),
scales exists, the transmission coefficient is

. k(s)zf dee *k(e), (11
(8(a)q@[a(7)]) 0
K= — . (4)
(o(q)a®[ql) the transmission coefficient and the average escape energy
Writing the average explicitly in terms of the initig], are
L o ) k=K(S)|s=1, (12
”.dge PHa2(0[q(T,q)]) )
K= - B —Bﬂqz/Z' . . (5) _ d -~
[~.dge q0[q] e=— 5N k() (13
s=1

The position of the trajectory starting frogf with velocity o '

q after the plateau time is q(7;q). The average over his- Indeed, all moments of the distributiot{e) can be obNtalned

tories of the random forcé(t) is denoted by...).. by suitable differentiation of the generating functiags).
Rather than retaining the velocity to characterize the The variance, characterizing the width of the distribution of

initial conditions, we choose to writein terms of the energy  €nergies of escaping particles, is

of q, relative to the barrier energy, as it moves away from the d2

barrier at time zero. This energy in units &gT is (3)-22:&2"1 x(s)

(14
e=Brg%/2. In terms ofe, the transmission coefficient is

s=1
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B. Escape over a parabolic barrier

(E\H?)= f dty f “dt e M £(1) E(1,))
0 0

It is possible to calculat&(e) in a simple closed form
when the barrieNv(q) is parabolic. The form ok(e) for a . .
parabolic barrier should also be accurate when the frictional :zf dt, e 2\ dt, e M(ta—ty)
damping is large and the dynamics of activated particles are 0 ty
dominated by motion close to a parabolic barrier top. For a X (£(0)E(t— 1))
parabolic barrier with imaginary frequeney*, the GLE of 2 1
Eq. (1) is YNF

q :M;()\ ) . 21

t
Q(t)=w¢ZQ(t)+M71§(t)—fodt' yt=t)at’). (19  \jth these observations, E(B) becomes

The linear dynamics of the GLE can be posed in terms w(e)=erf yer*/y(\)], (22)
of a harmonic Hamiltonian. Normal mode analysis of thehere erfk) = 27~ Y21 %dt et Inserting Eq.(22) for (e)
Ha_n"_nltoma}zl can be employed to obtain the transmission €O Eq. (11) and exchanging the order of integration for the
efficient «.”" It is also possible to obtair without recourse ot ande. we obtain
to an explicit harmonic Hamiltonian, but with the equivalent ’
requirement that the stochastic foré) be a Gaussian ran- k(s) = s 1+ s y(\H)I\¥]712 (23
dom proces$®>*>'6 Here we use similar means to obtain

x(e). The starting point is the Laplace transform of Etf), ~ S€tings=1, the Grote—Hynes expression for the transmis-
sion coefficient is obtainetf;'”

y(\F)

gtu i)
- 1+—)\r

A(s) '

q(s)

—1/2 )\i

(16) = ;ﬁ = Kpb' (24)

K=

where §(s)=[gdt e S'q(t) and A(s)=s’+s¥(s)—w*2  The subscript “pb” stands for parabolic barrier, since this
The initial conditions areq(0)=q and q(O)zq*zO. The  expression is exact when the barrier is an inverted parabola.
Laplace transform of the random forcegés). Differentiating with respect t@ and making use of the

At long times, the largest positive rowt of the equation relationship in Eq(24), the average energy of escaping par-
A(s)=0 dominates the inverse Laplace transform d¢t). ticles is
This root, termed\*, is the Grote—Hynes frequenty’8

__1+>\*2y(>\¢)_3 1/ \%\2 -
. o . 0T T2 gt @9
NEES0n (7

This expression is exact for a parabolic barrier. Furthermore,
it should be reasonably accurate when motion near the bar-
rier top decides the fate of activated patrticles, i.e., in the
regime of moderate to large damping. When the damping is
{q+,u—1g(s)}‘ (18) moderate \*~ w*, and reactive particles cross the barrier
with about 1kgT of energy. The resule=1 is exactly the
prediction of transition state theory. It results from the as-
In Appendix A we describe why there must be a positive rootsumption that particles crossing the transition state are drawn
and show that the term in square brackgts—A*)/A(s)], from an equilibrium distribution, and that there are no rapid
is positive ass— \*. recrossings of the transition state dividing surface. As the
Consequently(t) will be in the product region at long damping becomes larger, the frictional forces cause recross-
times only if £(\*) is larger than— 1q. Thereforex(e) de- ings of the transition state. Recrossings are less likely as the
pends on the bath solely through the probability distributioninitial kinetic energy increases, ardncreases with friction,
P[E(N)] for £(\F), since rising above the transition state theory estimate kT and
eventually saturating at (3/X;T. The value at saturation is
estimated using the limiting results for large friction,
M=~ w0y (Z\)<w*. Although the average energy of an es-
caping particle in the high friction limit is (3/XgT as the
Furthermore, sincef(t) is a Gaussian random variable, particle crosses the barrier, the energy should be rapidly ther-

Thusq(t) is given asymptotically by

s— ¥
t)~eMt fim {
q(t) NG

[’

dENHPLEOH)]. (19)
~q

(©lacma= [

E()\*) also has a Gaussian distribution, malized by the frictional coupling and return to the equilib-

. rium value as the particle moves away from the batrrier.

. 1 E(NH)? We take a second derivative of E@3) to find the vari-
PLENH)]= = expg — —~— | (200  ance of the distribution,
vem(Enh?) L 2609 .

N2

. . o (e)—e=1+5|—5— (26)

The width of the Gaussian distribution is 2 o
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For moderate friction, the variance approaches unity. This iglso usual to assume thR{e’|e€) is only required for ener-
becausex(e) approaches 1 for all values ef just the result gies near the barrier-top energy, and therefore Bat | €)

of transition state theory. As friction increases, the variancelepends only on the differeneé— €. The form for the ker-
increases as well. At very high friction, the term in squarenel satisfying these requirements and detailed balafceds
brackets in Eq(26) approaches 1, and the variance saturates

1
at the high friction limit of 3/2. P(e'|e)= exd — (&' + 5— €)2/46]. 29
As the frictional damping increases, the number of dif- (<l Vars A Sl 29

fusive recrossings of the transition state dividing surface in-

creases. The recrossings decrease the transmission coefffle average energy loss in unitsigfT for the modep when
cient x and the energy-dependent transmission coefficientt Starts at the barrier energy is termédand the variance in
«(€). Although (e) decreases, the normalized energy distri-the reduced energy after a transit of the metastable well.is 2

proaches a limiting form. Expanding the error function in theidentical to the reaction coordinage andé can be estimated
definition of x(e) to lowest order in its argument, from the dynamics ofy rather than the more complicated
1/2 dynamics ofp.>>1%To lowest order in the frictional damping
Y(NF) 2 and the inverse of the barrier heighBM*, the energy loss is
f(e)=exp(—¢)| 1+ —
77 5—7 7Tdt1 7Tdt2 q(ty) y(ty—t2)q(tz). (30
1 t 3/2
% /6 A o A The asymptotic undamped trajectarft) starts at the barrier
e - S(\F) in the infinite past with energy—0, traverses the metastable
well once, and returns to the barrier top at tife>oo.
2 2 5 Particles escape from the metastable well with a rate
= \/__qu - E)f + ﬁ(K ) (27) Constantk,2:&6
T _ o K= Kestipb (319
The error in this expansion is of order h
N YD T~[ 0 7(N) ]2~ k2. To (x?), thenth moment  W1Er€
of the distribution of energies of escaping particles can be k= (wo/27)exd — BV*], (31b
obtained from the asymptotic distribution, EG7): Kpb=)\*/w*, (310
2 (e
<€n>:_J' de exp(— ) et 12 and
Valo (1 Jm L ML exp— 53 o)
Y, J, (28) (31d
22 2

The frequenciesv, and w* correspond to the curvature of
V(q) at the well and at the barrier, and" is the Grote—
C. Weak friction and energy diffusion Hynes frequency defined in E(R4).

So far we have discussed the energy in terms of the The energy-dependent transmission coefficigjfie) for
reaction coordinatg. It has be shown explicitly, however, the unstable mode can be obtained by noting that the
that the genera“zed Langevin equation for a parabo"c barsteady'state distribution of partiCleS |eaVing the well per unit
rier, Eq. (15), is identical to separable motion for a rotated €Nergy and unit time, normalized to one particle in the well,
set of oscillator$:* One of these barrier-top normal modes IS F(€) = exp(— ek A/ 0*) x,(€). The distributionF (e)
is unstable. The unstable barrier-top normal mode is termet$ the solution to the integral equatién,

p, and its imaginary frequency? is the Grote—Hynes fre- 0

quency. For a metastable well, the normal modes obtained F(G):f de’ P(ele')F(e) (32
from a quadratic expansion at the barrier-top mix with each o

other away from the barrier region, causing an exchange ofith the additional boundary conditiornx,(e)—1 as
energy between the unstable mggdand the remaining de- €— —c. The solution of Eq(32) is®

grees of freedom. i

In the weak friction limit, slow energy diffusion between k,(€)=exd (A+1/2) e]G( — 5) —
the unstable mode and the rest of the system serves to i

decrease the reaction rate beldyy. The kernelP(€’|e€) o R(\,A)
characterizes the exchange of energy betwgeand the re- X fo dx N+ (A+ 127 (33
maining modes. The probability that the unstable mpde
having energye when it moves away from the barrier and X{[A+1/2]cog Ne+ O(N,A)]
into the metastable well, will return to the barrier with an .
+X sifhe+ 6(N,A)]}. (39

energy betweer' ande’ +de is P(€'|€)de. Itis convenient
to characterizé®(e'|€) by its first and second moment. It is In this equation,
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- i 1 (= InG(\) of escape, and the weak damping limit, where energy diffu-
G| —5|=exX Zfo dkm =R(0,1/2; sion between the reaction coordinate and the bath is rate
(35) limiting.

It is also possible to construct an interpolation formula

1 (= A for «(e) itself to bridge the weak damping and large damping

R(K,A)=GXP[ ZL dy[m limits. An mterpplatlon formula suggested by the rigorous

resulf k= kppk,, is

lnG(y)] : (36) k(€)= Kpp(€)K,(€). (41)
This interpolation formula is motivated in a manner similar
1 (= y to that of Eq.(40). The first term,xy€), is the energy-
O(N\,A)=ex —f dy——=[In G(A+Yy) dependent transmission coefficient from E2QR). This term
2 ]o Yy +A . . L
is the exact result fok(e) for a parabolic barrier; it gives

. A
Ny TR

k(e) correctly for escape from a metastable well when the
—In G(?\—Y)]]; (387)  frictional damping is moderate to large. In the weak damping

limit, x,(€) approaches the transition state theory value of
the arbitrary constan®A is real and non-negative; and 1. The second term ,(¢€), is the transmission coefficient fo_r'
G(\)=1—exd—80\>+1/4)]. In the limit of large X\, the unstable mode'. For moderate to.large damping, transition
R(\,A)—1 and 6(\,A)—0. Therefore, the integrand in state theory_ is yal!d _and _thls quant!ty approaches 1. In the
Eq. (34) approaches| (A+ 1/2)coske)+ sin(eJ[A2+(A  Weak damping limit, inertial recrossings decrease the trans-
+ 1/2)?] for large .. For numerical evaluation, we found it Mission coefficient. Since the reaction coordinate and the
advantageous to perform this slowly convergent part of thémstable normal _mode are ess_ent|ally identical vyhen_ fr_lctlon
integral analytically. The remainder of the integral was com-S Small, () is given by« (¢) in the weak damping limit.
puted numerically with routines from theyUADPACK We note that Eq(41) is not exactly correct, since
library?® In our calculations we chos—O0", giving
R(N,A)=VG(N).

The average energy of the unstable mode when it crosses  _ fmdee*fx (e) f‘”de, e <k (€
the barrier top is termeed,. The subscripp serves to dis- 0 pb 0 P
tinguish this energy from that of the reaction coordinate
Equivalent expressions for the normal mode ene‘?r,gyalid = fmdee’fx (e)k,(€).
over the entire damping range &fé&?? 0 pI=T e

K= KppKp

. 1 (= 5 —x2+1/4 One measure of the error one makes with the interpolation
€,=1+ ;fo dxIn[1—e 21/ )]m (38)  formula (€)= kp(€)k,(€) is to compare[idee “kp,
(e)x,(€) with the exact value foi given by Egs.(319-
2 (ml2 (31d). For the systems for which we provide simulation re-
:1+;J dy In[1—e~ o4 cod Y1(2 cog y—1). sults, the relative difference between these two quantities
0

(39 was less than 1%. We consider this to be a negligible error.

D. Interpolation formulas Il APPLICATIONS

When friction is moderate to large, transition state theory

L . . Sticking probabilities and thermal desorption
is virtually exact for the unstable mode escape dynamics an

€, approaches 1 exponentially quicKlhis is in contrast to The theoretical expressions developed in Sec. Il can be
the behavior of the average energy for the reaction coordiused to obtain a more complete understanding of sticking
nate e— 3/2 for large friction. probabilitiesP ;. for atoms impinging on a surface. By de-

When friction is small, the unstable moges (within a  tailed balance, the sticking probability is related to the ther-
mass scalingvirtually identical to the reaction coordinage ~ mal desorption raté&p by kp=Pgjiakrst, Wherekrsris the

Thus, when friction is small, e,~e. Furthermore, transition state theory estimate for the thermal desorption

€,~ J8<1. This suggests an interpolation formula foin  rate. A similar detailed balance relationship exists between

terms ofe,. The formula is obtained by replacing the weak the dependence @, on the incident energf, of a par-
friction limit of Eq. (25), € = 1, with the correct limit ticle approaching a surface and the distribution of energies of

€= gp, yielding particles thermally desorbing from a surface.
In a fully three-dimensional description of the particle
_ _ A0 and surfacePg;c can depend on the angle of incidentef
=€t — 7 - (400 the particle with respect to the surface normal. If the reaction

coordinate for adsorption is effectively one-dimensional,
This formula bridges between the strong damping limit,Pg; should depend only on the energy in the normal direc-
when diffusive motion near the barrier top influences the ratgion, E, cos 6. Generally, normal energy scaling can only be
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expected for a perfectly flat surface which does not couple

motion in the normal direction to motion in the plane parallel
to the surface. Pk

We investigate the ability of our one-dimensional theory
to describe the energy and temperature dependenBg,qf 0
for a fully three-dimensional model of rate gas atoms inter- 0 2z 4 E'6 180 101 1214 16
acting with a surface, where motion in all three dimensions is e (KJ/mol)
coupled by the surface corrugation. The simulation results oals > ‘ ' ' |
we discuss were reported by Tully for a model of isolated Ar 061% _
and Xe atoms interacting with the(P11) surface Paiac o'y | R :

The rare gas atom in Tully’s simulation interacted by a 0.2F ——s : ~~~~~ g 9
pairwise Lennard-Jones potential with the closest 14 atoms % 500 1000 1500 2000
on the Pt surface. The interactions with the remaining atoms T (K)
were included using a continuum term dependent on the 1 . . .

4 o
height of the rare gas atom above the surface. The four sur- 091 e .
face atoms closest to the rare gas atom were allowed to 7,%@% 0.8F SN el :
. . BLsS [

move, and the identity of these four atoms followed the 07F °° O
shadow the rare gas atom projected onto the surface. The 0.6 s I
interactions between the four moving Pt atoms and the re- 0 500 Tsmo((%() 1500 2000

mainder of the Pt surface were mimicked with an effective
GLE. The friction kernel for the GLE was selected to repro-FIG L Ton E depend  the sticki babity for@mall

. . . . 1. Top: Ener ependence of the sticking probability for(gmal
duce Vlbratlonal properties of the (B1D) surfacez.s_’ The circles andee(Iarg?eycirclIJes on P{11]) at a surfa(?e [zemperatiljre of 250 K.
Pt(111) surface in the model was rather smooth, with only ayycigent atoms are monoenergetic with a é@ngular distribution. Middle:
0.1 kJ/mol barrier to surface diffusion for either Ar or Xe. Temperature dependence of sticking probability for(8mall circle$ and
The binding energy of Ar with the surface in the simulation Xe (large circle$. The surface is at temperatufg the incident gas is

was 9.2 kJ/mol. and that of Xe was 29.3 kJ/mol. These enlylaxweII—BoItzmann at temperaturg, with a cos@ angular distribution.

. h fi . | %ﬂ%; h Bottom: Mean translational energy of thermally desorbind#mall circle$
ergies were chosen to fit experimental res .There was and Xe(large circleg, in units of XgTg, whereTgis the temperature of the

no barrier to adsorption in this model. surface. Solid lines are theoretical fits for Ar; dashed lines are for Xe. The
In the simulation results, the sticking probability was asimulation results are from Ref. 1.

monotonically decreasing function of the incident energy of

the atoms. For this reason, we assume here that the energy-

diffusion regime is sufficient to descritig, and e. Thus {ace allowed for energy transfer between the normal direc-

ions and directions parallel to the surface. In spite of the
ﬁc)ieviations from normal energy scaling, however, the fit we
. resent for Ar is very good. The fit for Xe underestimates
We assume thaf can be written adE/kgT whereAE has P.ic for larger energies. This is due in large part to the

no temperature dependence. In terms of a GLE, this heoretical assumption that the energy léss independent

equivalent to the harmonic bath requirement that the frictiono]c the energy of the incident atom. In reality, the energy loss
ZeEm—ell f(k?/ h‘ﬁ T te?ApEer_a;u;ekJ/deplepde)zlce;rhwit USEhcreases with increasing incident energy. A larger energy

T t;TO or rfan h o NETO or he. Og ILJS/ loss results in a larger sticking probability in the energy dif-
arel noticeably worse for changes arger than 0. fusion regime. This effect will be discussed in greater detail
Mol in Sec. Il B 2.

In the top Fﬁqel of ]!:ig. 1lwe r?epifaﬁiclk for Ar ?]nd Xe The middle panel of Fig. 1 shows the sticking probabil-
atoms on a RL1) surface. In the simulations the atoms ity for a thermal distribution of atoms incident on a(Fitl)

Werg mO”Teng.r%‘?gc t\.Nlth ti';]al trans'?ilort]ﬁl ene:?g]yand a Isurface of the same temperature. The theoretical fits again
cosgangular distribution with respect to the surtace norma ‘provide excellent agreement with the simulation results over
Assuming thaPq depends only the trans!auonal energy 9f a wide range of temperatures. The small differences between
thebatlg)_lr_r: normal to the surface, we estimate the St'Ck'ngfhe simulation results and the theoretical fits can be ascribed
probabiity as to two sources. First, the energy IoA& has some energy

the only parameter required for a theoretical description o
P sick @nd its energy dependence is the energy &fss each
of the two atoms over the range of temperatures 50—2000

w2 dependence because thé¢1R1) surface is anharmonic. Sec-
P stick= JO d6 cos Ok(Eq cos 6/kgTs). (42)  ond, the multidimensional nature of the reaction coordinate
is neglected in the theoretical fit.
The surface temperaturgs in the simulations was 250 K. In the bottom panel of Fig. 1 the average energy of es-

The normal energy scaling we assume in our theoreticataping particles is shown relative t&gT s, whereTg is the
analysis is not entirely correct because thelPY) surface is temperature of the surface. Because there is no barrier to
not flat. Indeed Py the simulations did not obey normal adsorptionE is the total translational energy of a desorbed
energy scaling, i.e., the sticking probability was not exclu-particle far from the surface. According to transition state
sively dependent on the incident translational energy in théheory,(E)=2 kgTg: each of the two translational degrees
direction normal to the surfacdeThe corrugation of the sur- of freedom parallel to the surface has (1K3J's of energy,
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while the flux-weighted normal direction hak3Ts. Again 1.6 — . . . . .
the theoretical fit performs well for both Ar and Xe. The only 14
significant discrepancy is for Ar desorbing at 500 K. Our '
excellent agreement with the data overall suggests the possi- 12
bility that the simulation result at this single point might be 1
in error.
€ 08

. . . , 0.6
B. Simulation tests of the interpolation formulas

In this section, we compare simulation results for escape 04
from a metastable weN(q) to the predictions of the inter- 02
polation formulas relating the reaction coordinateo the 0

unstable mode of PGH theory. The potentidl(q) is piece-
wise harmonic with a metastable well,

logyy 0

1 wz(q+ q )2 q<- q* FIG. 2. The average energy of escaping particles relative to the barrier-top
V(q)= 2K @o 0l . (43 energy in units okgT is shown as a function of the damping parameter
Vi-iuw*? qgq>-q* Points are reactive flux simulations; the line is the interpolation formula, Eq.

o . ) ) ) ) (40). Statistical uncertainties in the simulation results are smaller than the
Continuity of V(q) and its derivative implies size of the points.

Ao/q* =1+ (w*/wo)? andV*= uw*?q*qy. Ohmic friction
was employedy(t—t')=2y,6(t—t"). Parameters were se-
lected to giveV*=5kgT, wy=w*=1, andu= 1. For Ohmic

friction, Eq. (30) reduces to . _ . . .
a.(30 (40). It is evident that the interpolation formula provides an

5= yoX ZBfodq m: 33.561K y,. (44) acgurate est.imate of the energies of escaping par.ticles for the
a entire damping range. The results show that particles escape
from the well with very little energy when the damping is
the left-hand turning point at energy, q,= —qo— 2VE, small. The energy of escaping partic!es_ attains the transition
We performed two sets of simulations of escape from thet@te value of IkgT for moderate friction, £6<10. For
metastable welV(q). In the first set of simulations, we var- larger friction, e saturates at the predicted value @f2)
ied the static frictiony, to obtaine and« as a function of the KsT.
energy loss parametet. Values of § ranged from 102 to We now describe the behavior in each of these regions in
10°. For weak to moderate frictiod< 10?5, 50 000 pairs of ~greater detail. At small dampingi=10"%%, the agreement
trajectories were initiated for each choice®fThe two tra-  between the theoretical expression and the simulation results
jectories of each pair started with a common initial energyis virtually exact. The reaction coordinagds essentially the
chosen from the distribution exp(). One trajectory started same as the unstable barrier normal mpdand the energy
with an initial >0, and the other witly<0. An indepen-  |oss ¢ for the unstable normal mode is given very accurately
dent sampling of the random forgge(t) was used for each py the lowest order perturbation theory, E80). Frictional
trajectory. For large frictiong=107*~1C", x(e) was sampled recrossings are not important, and the particle escapes as

at discrete values of Sthe energyand e was obtained by s, a5 sufficient energy has diffused into the reaction coor-

integration. At §=10°° 20000 pairs of trajectories were dinate to allow escape over the barrier

|n|t|ate_d 8§,7t5he value$f0.25, O'.5’ 8 to compgt_e(e). In the moderate friction regime, energy exchange be-

For §=10~"> 5000 pairs of trajectories were initiated at . - . " .
tween the particle and the frictional bath is sufficiently rapid

€=0.25, 0.5, ..., 8. For the largest frictioA=10°, between o B > )
15000 and 125000 pairs of trajectories were initiated a{hat the equilibrium distribution of energies is maintained

energies ranging frora=0.05 toe=10. In all of these simu- €Ven at the barrier top. The Grote—Hynes factor, measuring
lations except fors=10°, trajectories of escaping particles rictional recrossings, ranges from 0.99 &t1 to 0.86 at
were terminated when the energy of the particle fell belowd=10, indicating that frictional recrossings are relatively un-
the minimum of the metastable well. Fo= 10°, trajectories  important and that transition state theory estimate dor
of all particles were terminated when the energy was lesshould be accurate. Consequently the average energy of es-
than 1kgT above the minimum. caping particles is close to the transition state theory estimate
In the second set of simulations, we varied the initialof 1 kgT. Although the agreement between theory and simu-
energye to obtainx(e) for four choices of, 5=10"%2 10>, |ation is generally good in this region, the theoretical predic-
10*°, and 16. We ran 40 000 trajectories for each choice oftion for € is systematically smaller than the simulation re-
o ande, half with initial <0 and half withq>0. sults. As will be discussed in greater detail in Sec. Il B2 on
x(€), the theory underestimatege) for large energies and
overestimatex(e) for small energies. These small errors ac-
In Fig. 2 we display results obtained far for escape cumulate to produce a value ferthat is smaller than the
from V(q). The solid line in Fig. 2 is calculated using Eq. value obtained in simulations.

The above is the weak-damping expressiondoandq, is

1. The average energy of escaping particles €

J. Chem. Phys., Vol. 102, No. 20, 22 May 1995



7960 J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient

efficient «(e) again rises rapidly for moderate friction,
5=10"% and decays slowly for higher energies. Energy dif-
fusion is sufficiently rapid to maintain a distribution of ener-
gies close to the equilibrium distribution. The moderate fric-
tion results are closest to transition state theory, which
predicts thatk(e)=1 for all e>0. When the frictional damp-

ing becomes larger, the rise &fe) becomes slower. This is
seen in the strong friction result$=10"°. Particles with
small energies are buffeted by frictional forces at the barrier
and «(e) is small. The same behavior is seen at the largest
friction, 5=107. For these largest two values of the damping,
x(e) is monotonically increasing for the range of energies
depicted. Eventually, whea is sufficiently large, these two
curves will also reach a maximum and then decrease so as to
FIG. 3. The energy-dependent transmission coeffici€et is shown as a resemble the general form afe) for smaller values of the
function of the damping parametét Points are results of reactive flux damping.

simulations; lines are the interpolation formula, E4fl). The dotted line and The details of the theoretical curves in relation to the
small open circles are weak frictiop € 10 °%; the dashed line and small g, 1ation results reveal minor shortcomings in the theoreti-
filled circles are moderate frictions 10°9); the dot—dashed line and large . . . . .
open circles are strong frictiofs=109; the solid line and large filed ~C&l assumptions. We begin with an examination of the results
circles are the strongest fricticid=10?). for the smallest friction in Fig. 35=10 °°. The theoretical
curve is the produck,y(€)«,(€). Since the Grote—Hynes

When the frictional d ing is laraé=10"5 th factor k,(€) rises rapidly from its initial value of O a¢=0
en the frictional damping 1S farge-= e agree- 4, jis asymptotic value of Lx,y(€)=0.99 by the time that

ment between the interpolation formula and the S|mulat|on6:O_03kBT], «(€)~ K, (€) for weak damping. It is evident

resglt; IS again very good.. iny dynam.lcs near the bameﬁere that the theoretical results overestimgig for smaller
top is important when the frictional damping is large, and the

arabolic barrier expression, E@4), provides an excellent energies. One explanation for this systematic error is that the
par — P . P . theoretical estimate for the energy la$s too large: a larger
estimate fore. The simulation results approach the theoreti- .
cal plateau value of=(3/2)ksT. The last simulation point value for § results in faster energy transfer between the par-
5=1C°, gives an energy W?'IiCh falls slightly belog/2) ' ticle and the bath and a larger reaction rate in the low friction
kgT. The error bars for this point are roughly the size of thelreglme. The thgqretlial p;edlctlr(])n If6rm|ght mdeefd be too
point itself. It is likely that the difference between the pre- 1279€ because it s taken from the lowest order of a perturba-
diction and the simulation result is due to statistical noise irflon theory ordered by the frlctloinal dampingt) and by the
the simulation. The transmission coefficient for=1G° is  Inverse of the barrier height 8Y". The next contribution to
very small,k=0.034, making statistics difficult to collect. ~ the energy loss is expected to reduce the m?gnﬁude of the
effective energy loss by roughly a factorgi/*.1° Since a
2. The energy dependent transmission coefficient smaller energy loss implies a smaller escape rate, it is rea-
K(€) sonable thaix(e) obtained from simulation is smaller than
To examine the energy distribution of escaping particle that_predicted by theory, especially for energies close to the
in more detail, and to test the underlying assumptions Osparrler energy. o
PGH theory, we have used simulations to obtain the energy- The theoretical prediction is also seen to be too small for

dependent transmission coefficiettte) defined by Eq.(8). «(e) for small energies for intermediate frigtio&,le?? For
The results of simulations are shown as points in Fig. 3, an nergies smaller than 14T, the theoretical prediction is

theoretical predicitions are shown as lines. Data are pre§maller than the essentially exact results from simulations.

sented for four values of the energy lossweak damping, The reason, again, is_tha_t the truncated perturlriation theory
6=10"°5 moderate dampings=10"5 strong damping, for & neglects a contribution on the order ofBY* which
5=105 and very strong dampingi=1C%. acts to decrease the size &f In the intermediate friction

The general shape of the curves, a rise to a maximurfesults for energies larger thankgT, however, an error in
and then a gradual decline, demonstrates the interplay pdbe other direction is apparent: the theoretical prediction for
tween energy diffusion in the weak damping limit and fric- x(e) is smaller than the simulation results. This error is again
tional recrossings in the strong friction limit. For weak fric- due to an error in the theoretical assumption &iin this
tion, =10 %%, k(e) rises rapidly to its maximum value and case, the theoretical value fdris too small, leading to a
then falls off with an exponential decay. Particles escape theredicted transmission coefficient which is too small. The
well as soon as there is sufficient energy to cross the barrievalue of 5 from the theory is too small because of the as-
but the slow rate of energy diffusion into the reaction coor-sumption thaiis constant as a function of the energyrhe
dinate depletes the population of states near the barrier. lenergy loss in fact depends on the energy at which the par-
terms of a sticking probability, particles injected into the well ticle traverses the metastable well. When friction is very
with energy much larger thafibounce out without having a weak, the reactive flux over the barrier is very close to the
chance to thermalize. The energy-dependent transmission cbarrier energy and the variations wiftas a function ok are
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FIG. 5. The normalized distribution of energies of escaping particles,
e “k(e€)/k, is shown as a function of the reduced eneggjor various
choices of the damping parame@Points are results of reactive flux simu-
lations; lines use the interpolation formula, E¢1), for «(e), and

K= Kppk, - The dotted line and small open circles @e 10~°5, the dashed
line and small filled circles aré=10"5 the dot—dashed line and large open

. . L circles ares=10"5, the solid line and large filled circles af=10?.
small. In the intermediate friction case, however, a broader

range of energies is relevant, and the variatiod ofith € is

evident in the simulation results. Indeed, the energy 10ss P&l cles are moderate frictionst= 10°9): large open circles
circuit over the well should be roughly proportional to the ;. strong friction §=101%: and large filled circles are the
initial energy, makingj an increasing function of the energy. syongest friction §=10%). The lines correspond to the theo-
Energetic particles injected into the well lose more energyaiical estimate eXpE) i o €) K, (€)/ Kk, Wherek= K i, .
than the theory predicts, are therefore are more likely to be  There is a small burt) noticpeable difference beptw’éen the
trapped in the metastable well. _ , simulation results and the theoretical estimate for the small-
The simulation results and the theoretical estimate agregg; yalue of the dampingi=10"°%. The theory predicts a
well for strong friction, 6= 10+ and 16. The energy diffu-  gistribution f(€) shifted to lower energies than the distribu-
sion factorx,(€)>0.99 for the entire range of energies de- oy ohtained by simulations. It is likely that the theoretical
picted, andx(e)~ xpy(€). The energy diffusion factor will - gsumption thas is a constant independent efis respon-
eventually decrease for large enoughcausingx(e) to de-  gjpje for the shift of the theoretical prediction to lower ener-

crease and return to 0. Such high energies would not bgies. More energetic particles will have an effectvhich
important for thermal escape. o _ increases with, and will have a larger probability to remain
The results for weak to moderate friction shed light 0Ny 45564 in the well than predicted using the assumption that

why the estimate tha# is independent of eneréy‘ can be  5is constant. The difference between the theoretical predic-
reasonably accurate for predictions of barrier crossing rategion and the simulation results is virtually undetectable for

The theoretical approximation thatis a constant underesti- ,oqerate friction 5=10"5. For strong friction,6=105, the
matesk(e) for large e. The same approximation, along With ormajized distribution of energies of escaping particles is

the neglect of quantities on the order of8W*, overesti- seen to approach the limiting form 2 exp()\/%
mates «(e) for small e. These errors are in compensating

directions, yielding a net result for the transmission coeffi-
cient k which agrees well with simulation results. At the C. Optimal sampling for reactive flux simulations

smgllest values of the energy logs the_simulations de- The energy-dependent transmission coefficief@ can
scribed here reveal a small but systematic error made by thg, seq to characterize the relative efficiencies of various
theory in predicting ax slightly larger than the value ob- ahods for selecting initial conditions for reactive flux cal-
tained by simulations. Simulation results ferare shown as ¢ 1ations of reaction rates. The energy-dependent transmis-
points in Fig. 4, and the theoretical es“"l%tg EGA-  sion coefficientx(e) can also be used to design an optimally
(31d), is depicted as the solid line. Far=10""", the theo-  gffcient reactive flux sampling scheme, one that convekges

retical prediction is too large by a factor of about 20%. This,yit, the least amount of computational effort. Although this
difference is of the same magnitude ag\l/=1/5 in the optimal sampling analysis relies on knowledge fe),

FIG. 4. The transmission coefficiertis shown as a function of the damp-
ing parametep. Points are results of reactive flux simulations; the line is the
prediction of turnover theory, Eq3139—(31d). Statistical uncertainties in
the simulation results are smaller than the size of the points.

simulations. which implies thatx itself is known, it can serve as a guide
when «(€) can be estimated.

3. The normalized energy distribution of escaping Instead of restricting attention to GLE dynamics, let us

particles f (e€) suppose that the system of interest has a HamiltoRiark

The normalized distribution of energies of escaping par+eaction coordinatq is singled out from the coordinates and
ticles, expt-¢€)(e)/k, is displayed in Fig. 5. As before, small p is the momentum conjugate tp. The momentum is as-
open circles are weak friction €10 %%: small filed sumed to appear il as the kinetic energy terrp?/2u,
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where u is a reduced mass. The energyis defined as (8(9—q%|al®[q])

Bp?/2u. The rate constant corresponding to transitions from  Kist= O(F—q) (45
reactant <q¥) to product g>q¥) is xky. The transition

state theory rate constaky; is and the transmission coefficient is

. (8(a—a¥)]qlO[ale[a(n])—(s(a—a¥)|ale[—-ql®[a(n)]) (46)
(8(a—q)[qlO[ql) '

Starting at time 0 frong* with velocity g, the position of the  The weighting function corresponding t(e) is termed
reaction coordinate after a plateau timés q(7). As usual, w(e) and is defined by the relationship
O[...] is the Heaviside function. _

The transmission coefficient can be obtained through Plew(e)=exp(—e). (49)
simulations by selecting/ pairs of initial coordinates and The Maxwellian distribution corresponds to
momenta from a probability distribution proportional to ¢(e€)=exp(—e)/y/me, and the Maxwellian flux distribution
exd —BH18g—qg")®O[q]d(q), running a pair of trajectories corresponds tap(e)=exp(—e). Since the average value of
with initial reaction coordinate velocities=q for each w(e) over the distributione(e€) is unity, the transmission

choice, and estimating from the cumulative average,, , coefficient from Eq.(47) can be written as
Sho W@{e[a(ma)]-0[q(r—a)]} 1M
= . ) 4 =—> W(e) {0 (e,)— 0 (e,)}), 50
K ST W) (47) K ME (em{07 (€m) = 0™ (em)} (50

The sampling function®(q) and the weighting function where 6= (e)=0[q(7;* JV2ekgT/u)—q*].
W(q) have the relationshig (q)W(q)=|q|. The introduc- For each trajectory in thel pairs, the initial coordinates
tion of ®(q) andW(q) serves as a type of nonequilibrium and moment&other than the momentum of the reaction
sampling?®~2° Whereas nonequilibrium sampling is usually coordinat¢ are chosen from the distribution
designed to enhance the sampling of the coordinates, thisx—B(V+T')]&g—q"), while the kinetic energy of the
type of nonequilibrium sampling is designed to enhance theeaction coordinate is drawn from the distributige).
sampling of velocities. In order that the two trajectories of thth pair be un-
The Maxwellian velocity distribution corresponds to the correlated, we will assume that the coordinates and mo-
choiced®(q) =1 andW(q)=|q|. Another common choice is menta, other thap, are chosen independently. This corre-
the Maxwellian flux distribution, which ha®(g)=|g| and sponds to using independent samplings of the stochastic
W(q)=1. The Maxwellian flux distribution shifts the selec- force &(t) in a GLE simulation. Using the same initial coor-
tion of the reaction coordinate kinetic energy to slightly dinates and momenta for both trajectories in thia pair
higher energies than the pure Maxwellian distribution. Wewould decrease the sampling efficiency by introducing cor-
will show that the Maxwellian distribution performs better relation between the two trajectories of thh pair. To il-
than the Maxwellian flux when the frictional damping is lustrate this point, suppose that signs of the initial coordi-
weak and less energetic particles contribute to the reactiveates and momenta for the trajectory contributing to
flux. For strong damping, more energetic particles contributed™ (¢,,,) are reversed to obtain the initial conditions for the
to the reactive flux, and the Maxwellian flux distribution per- trajectory contributing t@~ (e,,). If the potential energy sur-
forms better than the pure Maxwellian distribution. face is symmetric with respect to inversion, then symmetry
Instead of describing the initial conditions in terms of requiresf®™ () =1— 0" (en), and 6™ (e,,) and 0~ (e, are
the velocityq, we choose to make contact with our expres-perfectly correlated.
sions forx(e) and describe the initial conditions in terms of Returning to Eq.(50), the quantity being averaged,
the reduced energy. Rather than selecting a reaction coor-w(e)[ 6" (e)— 6~ (€)], possesses an intrinsic varianog
dinate velocity from the distribution exp(Bug®2)®(q) which depends on the choice éf(€). This variance is de-
(where we recall that the exponential arises from the factofined as
e A we select an energy from a distribution¢(€). The .
relationship between these two distributions dge)de ai:J de ()W (e)([67(e)— 07 (e)]%) (51
« exp(—Budi2)®(q)|g|dg. The kinetic energy must be 0
non-negative classically, implying that(e)=0 for e<O. " 2
For positive energies¢(e)>0 because it is a probability _{f de p(e)W(e)(0F(e)— 0 (€))} . (52
distribution. The normalization ob(e) is 0
The angle brackets imply an average over the distribution

” _ exp(—BH)exp(e) &g—q"). Since theM pairs of trajectories
de ¢(e)=1. (48 - i .
0 are uncorrelated, the statistical uncertainty of the cumulative
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TABLE I. The mean square errer? expected for reactive flux sampling of the same variance in the strong damping limit because each
the transmission coefficient is shown for various sampling distributions indecays as exp(e). Although the Maxwellian distribution is

the weak friction and strong friction limits. singular, ~ e Y2 as e—0, this is an integrable singularity
2 to leading order Which produces little change in the overall sampling effi-
ciency.
Distribution ¢(€) Weak friction, <1 Strong friction When friction is strong, the relative error scales as 1/
Maxwelliarf Lo 575 4 for each_ of thg three distr_ibytions. Thu; for.a fixed number
M of trajectories, the statistical uncertainty in the measured
Maxwellian flux’ 1:?5 12 k increases rapidly with decreasirgSince the error aftavl
_ = trajectories scales as\i¥, the number of trajectories must
Optimaf T 172 be on the order of &? before the relative error is of order
unity.
:q{)(é):exp(fe)/\/;. We note that there are other methods of enhancing the
b(e)=exp(-e). sampling efficiency of reactive flux simulations. One could,

“¢(€) given by Eq.(B4). for instance, sample(e) directly for discrete choices of.

Calling theith choiceg;, the transmission coefficemt; for
particles with initial kinetic energy; can be calculated from
reactive flux simulations. The total transmission coefficient
be obtained by a quadrature of the discrete points
ki . Indeed, this was our method for obtainiagn the
large damping regime. A slightly more elaborate treatment
would be to partition the sampling of initial reaction coordi-
nate kinetic energies into bins, to calculate exp)x(e)
within each bin, and to sum the result to give the totalf
%riction is low, it is efficient to concentrate sampling on the
bins with small initial energies. For large friction, bins with
larger initial energies contribute more strongly#o
x(€)~2x+\/elm, moderate to strong damping; The absorbing boundary method has also been shown to
be quite efficient for reactive flux simulatiod%3! This
method is formally not exact—it does not produce the exact
were used in the calculation @f(e) and o> for the optimal ~ value for x as the number of trajectoried —c—but it has
distribution. been shown to be an excellent approximation in practice.
For weak friction,e~0.825.% The optimal distribution ~ With this method, trajectories are terminated if they return to
for weak friction is ¢(e)=(1/2¢)exp(—el2e), producing the transition state dividing surface, and a statistical approxi-
o2=kel(1/2+ €)2. In the weak friction limit, the energy loss mation is used to relate the decay of the population to the
6<1, ando? = %2 for the optimal sampling distribution. transmission coefficient.
The relative error for a simulation is proportional to
\/;E/K. For weak friction, k=&, and the relative error
« &5 Y4 for the optimal distribution. The Maxwellian distri-
bution exp(—e)/\/;, prOdUCGSO'iOC 6°* and a relative error In comparing our simulation results for escape over a
« 538 slightly worse than the optimal distribution. Of the barrier in a one-dimensional GLE with theoretical predic-
three distributions, the Maxwellian flux distribution is tions, we found good agreement when the frictional damping
weighted toward the highest energies and produces the largf the reaction coordinate was large. For weak to moderate
est varianceg>x «/(1+¢€) = 8. The relative error of the damping, we detected systematic errors in the predictions of
Maxwellian flux distribution is also the largest, scaling asthe analytic theory. These errors are relevant to the PGH
612 In terms of the relative error, the sampling from the turnover theory for reaction ratés.When the energy of an
optimal distribution is more efficient than sampling from the escaping particle is just above the barrier energy, the theo-
Maxwellian flux distribution by a factor o8~ ¥4 When retical prediction forx(e) is too large. Conversely, when the
6=0.01, e.g., this corresponds to a factor of 3 enhancememtarticle has an energy much larger than the barrier energy,
of the computational efficiency when the optimal distributionthe predicted value ok(e) is too small. These errors can be
is used instead of the Maxwellian flux distribution. understood in light of two of the assumptions of PGH theory:
For moderate to strong friction, the differences betweerfirst, that the lowest order of perturbation theory in the in-
the sampling efficiencies for the three choices¢dt) are  verse barrier height BV* is sufficient to obtains; second,
less substantial. In this case the optimal distribution is thehat the energy los$ is independent of the energy The
same as the Maxwellian flux distribution to leading order infirst assumption results in a value fér that is too large
«, and both the optimal distribution and the Maxwellian flux overall by a factor of roughly1— (8V*) ~1].1° This causes
distribution producer>=1/2 to leading order. The Maxwell- «(e) to be too large by the same factor for energies close to
ian distribution performs slightly worse, givin@iz 7l4 to  the barrier energy. Furthermore, the theoretical prediction for
leading order inx. All three distributions produce roughly « is also too large by a factor of roughlg — (8V*) ~1]. The

averagexy, Is \/oi/M. The optimal choice fowp(e) is the
probability distribution which minimize&ri and thereby n
produces the cumulative average with the smallest StatiStiCE(i:F_l p
fluctuations. We derive expressions for the optionéd) in
Appendix II.

In Table 1,02 is shown for three distributions: the Max-
wellian distribution, the Maxwellian flux distribution, and
the optimal distribution. Results are shown for both stron
friction and weak friction, assuming in each case thatl.
Limiting forms of «(e),

k(e)~(xle)exp(—ele), weak damping,

IV. CONCLUSIONS
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second assumption of a constant energy l6ssnderesti- s—oe, A(s) approaches?+ y(0)— w*2, which is positive

mates the energy loss for energetic particles and predicts tdor sufficiently large s. The largest positive root of

small a value foik(e). These errors combine to skew predic- A(s)=0 is termed\*, and we assume that it is an isolated

tions for the energy distribution of escaping particles toroot. ThenA(s) has the form §—\*)A’(s). Sincer* is the

slightly lower energies than are observed in simulationslargest rootA’(s) must be nonzero f=\*. Furthermore,

When the transmission coefficient itself is considered, howboth A(s) and (s—\*) are positive as— o, soA’(s) must

ever, these errors are in compensating directions. This camso be positive in this limit. SincA’(s) does not change

cellation of errors works to the favor of the PGH turnover sign fors=\* A’(\%) is also positive. Finally, the limit of

theory. [(s—\H)/A(s)] as s—\* is simply 1A’(A%), a positive
We have applied the theoretical expressions for weakjuantity.

friction to describe simulations of Ar and Xe interacting with

the Pt111) surface! Our expressions provide adequate single

parameter fits for simulation results for sticking probabilities

of atoms in a monoenergetic beam and for atoms from a

thermal distribution incident on the Pt surface. Good fits areAPPENDIX B: DERIVATION OF THE DISTRIBUTIONS

also obtained for the average energy of atoms desorbing thelfOR OPTIMAL SAMPLING

mally from the surface. Our analysis could be extended eas-

ily to describe the accomodation coefficient, which measures  To choose the optimal form foi(e), the variance de-

the energy transfer between incident particles and dined by Eq(52) must be minimized with respect t(e). In

Surfaceza_z_35 The favorable results we obtain for atom-— other WOde¢(€) is the solution to the functional derivative

surface sticking are encouraging for the prospect of describequationsl[ ¢]/6¢(e) =0, where

ing molecule—surface energy transfer and sticking probabili-

ties with a similar approaclifor a review of theoretical o 0 ,
methods see Ref. 36 [p]l=«a —1+f0 de ¢(e€) +fo de p(e)w(e€)

Our expression foPg; includes the possibility of mul-
tiple oscillations of the gas particle before it sticks to the X{[0"(e)— 9*(6)]2>, (B1)

surface or bounces away from the surface. It would be inter-

esting to compare our predictions to those of prompt stickand the constant is a Lagrange multiplier chosen to satisfy
ing, where it is assumed that the fate of a particle is decideghe  normalization  constraint, Eq. (48). Since

after a single round-trip. Using prompt sticking expressionsyy( ¢) = exp(— €)/#(e), the functional derivative is
others have been able to fit experimental sticking probabili-
ties for Ne, Ar, Kr, and Xe on R001).>” These workers 5[
found that a quantum-mechanical treatment was necessary to ¢]
describe the sticking of Ne and Ar. It would be straightfor- 5¢(e)
ward to include a quantum description of the particle and

bath using a semiclassical version of PGH turnover th&bry.

The success in describing gas—surface sticking over ahe final term in Eq(52) need not appear il ¢] because
broad range of temperatures with a single parameter provideé(€)w(e) =€ and the functional derivative of this term
evidence that the expressions developed here for a ondth respect toj(e) vanishes.
dimensional reaction coordinate can have general validity for |t iS necessary to relate the mean-square value
multidimensional systems. One such area where our agl? (€)= 6" (€)]°) to «(e). The form of the relationship de-
proach might prove useful is in gauging the prospects oPends on the strength of the damping. For moderate to large
bond-selective chemist?)=*! The expressions we present damping(or for a parabolic barrigr 6= (e) is + 1 with prob-
for «(e) could be used to estimate the probability that a mol-ability [1+«(€)]/2 and O with probability[ 1 «(e)]/2.
ecule prepared in a high-energy reactive state will succesdhus[6"(€)— 6 ()] is 1 with probability[1+ «*(€)]/2

fully traverse a barrier separating reactants from products. and 0 otherwise. o
For escape from a metastable well when the frictional

damping is weak, a good approximation is th#t(e) is
always +1, and that 6 (e) is +1 with probability

This work was supported by a grant from the NOFSF  1—«(¢€) and 0 otherwise. The reasoning above leads to the
CHE-91-22-508 following estimates foK[ 6" () — 6~ (€)]%):

=a—exp(—2€)¢ e[ (e)— 6 (e)]2)=0.
(B2)
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APPENDIX A: PROPERTIES OF A(S) ([6%(e)— 0 (&)1

Here we investigate the behavior ofA(s)=s?

- - H1+«%(e)], moderate to strong dampin
+ sy(s)— w*? near the largest positive roaf. We assume = A1+ w(e)] g p. g(BS)

that y(t) is analytic for realt and thaty(0) exists. There «(€), weak damping
must be at least one positive root to the equatlqs)=0
because the sign af(s) changes from negative to positive In terms of x(¢e), the normalized solutions to the varia-

along the positive real axis: a=0, A(0)=—w?*? as tional equation are
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[ exp— V1t k(o)
Jgdeexp(—e)\/l+f((e)’

moderate to strong damping

P(€)=1{ . (B4)
exp(—€) Vk(e)
jgdéeXﬂ—f)\/K(f),

\ weak damping
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