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We investigate the distribution of energies of thermally activated particles escaping from a
metastable well. This energy distribution is connected by detailed balance to the energy-dependent
transmission coefficient, the probability that a particle injected into a well will stick. Theoretical
expressions for the energy-dependent transmission coefficient show good agreement with simulation
results for a one-dimensional reaction coordinate coupled to a frictional bath. Slight deviations from
theoretical predictions based on turnover theory@E. Pollak, H. Grabert, and P. Ha¨nggi, J. Chem.
Phys.91, 4073~1989!# are understood in light of the assumptions of turnover theory. Furthermore,
the theoretical expressions for energy distributions also provide good fits for fully three-dimensional
simulations of sticking and desorption of Ar and Xe on Pt~111! @J. C. Tully, Surf. Sci.111, 461
~1981!#. Finally, we compare the theoretical efficiencies of several reactive flux sampling schemes,
including a scheme designed to be optimal. ©1995 American Institute of Physics.
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I. INTRODUCTION

Chemical reactions can often be described in terms o
reaction coordinate, or a one-dimensional particle, travel
on a surface with an energetic barrier. The reactant regio
on one side of the barrier and the product region is on
other side. At the moment when the particle passes from
reactant region to the product region, it travels with a velo
ity q̇ which defines a kinetic energye. We concern ourselves
with the distribution of energiesf (e) for thermally activated
particles as they pass from reactant to product. The transi
state theory of reaction rates and the reactive flux method
presented in terms ofe in Sec. II A.

The energy distribution of escaping particles serves
probe the frictional damping of the reaction coordinate and
related by detailed balance to the energy-dependent trans
sion coefficientk~e!. The quantityk~e! describes the energy
dependence of a reaction probability. The sticking probab
ity for atoms in a monoenergetic beam impinging on a s
face, e.g., is given byk~e!. If frictional damping is small,
then particles with a large energye will most likely bounce
off of the surface. If the damping is large, then particles w
large energy will be more likely to stick than particles wit
small energies. In Sec. II B we present an expression fork~e!
for a parabolic barrier, which is also valid for escape ov
nonlinear barriers when the frictional damping is moderate
strong. When the motion of the reaction coordinate is on
weakly damped, another expression based on turnover th
and described in Sec. II C is appropriate. Interpolation f
mulas connecting the weak friction and strong friction limi
for k~e! are presented in Sec. II D. Formulas are also p
sented for the energy distribution of escaping particl
f (e), and for the first moment off (e), ē, which is the mean
energy of an escaping particle as it crosses the transition s
dividing surface.

We show in Sec. III A that the theory developed for
one-dimensional reaction coordinate can be successfully
plied to the fully three-dimensional sticking of Ar and X
atoms on a Pt~111! surface. Theoretical expressions agr
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well with simulation results for sticking probabilities of mo-
noenergetic and thermal beams, and with results for the a
erage energies of thermally desorbing particles.1

The energy distributionf (e) is the central quantity of the
Pollak–Grabert–Ha¨nggi ~PGH! turnover theory for con-
densed phase reaction rates, which has been quite succes
in predicting rate constants for systems with weak friction
strong friction, and for the crossover region between wea
and strong friction too.2,3 The PGH rate expressions involve
integrals overf (e). We test PGH theory at a microscopic
level by comparing the theoretically predicted value fo
f (e) with the actual value obtained by simulation. The simu
lation tests are reported in Sec. III B. The results bring t
light an intriguing cancellation of errors in the calculation o
a transmission coefficient based on the PGH prediction f
f (e).

We also use theoretical expressions for the energ
dependent transmission coefficient to investigate the relati
efficiencies of various reactive flux sampling schemes. On
common scheme is to select the initial velocity of the reac
tion coordinate from a Boltzmann distribution; another is t
select the initial velocity from a Maxwell–Boltzmann flux
distribution. In Sec. III C, the efficiencies of these scheme
are compared with the efficiency for sampling from the op
timal distribution, the distribution which produces the bes
estimate fork with the smallest number of trajectories. The
optimal distribution is described in the limits of strong fric-
tion and weak friction. Sampling from the optimal distribu-
tion is shown to converge faster than sampling from th
Boltzmann and Maxwellian flux distribution, and for very
weak friction the difference can be significant.

In Sec. IV we conclude with a discussion highlighting
the findings of our study. We discuss in particular why th
errors made by PGH theory tend to be in compensating d
rections, leading in the end to very accurate predictions
reaction rates. We also describe possible extensions to
work presented here.
7953953/13/$6.00 © 1995 American Institute of Physics
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II. THEORY

A. Reactive flux in the energy representation

We take a standard model for the dynamics of a partic
escaping from a metastable well, namely the generaliz
Langevin equation~GLE!,4–6

mq̈~ t !52
dV~q!

dq
2mE

0

t

dt8 g~ t2t8!q̇~ t8!1j~ t !. ~1!

The reaction coordinate isq, andm is the mass of the reac-
tion coordinate. The potential of mean force,V(q), is as-
sumed to have a barrier of heightV‡ at q5q‡. The barrier
separates reactants,q,q‡, from products,q.q‡. For con-
venience, we takeq‡50.

The coordinate is coupled to a thermal bath by means
a Gaussian random forcej(t) and a friction kernelg(t). The
friction kernel is related to the random force autocorrelatio
function by a fluctuation–dissipation theorem,

^j~ t !j~ t8!&5kBTmg~ ut2t8u!. ~2!

The random force has zero mean,^j(t)&50, and is uncorre-
lated withq, ^j(t)q(t8)&50 for t>t8.

Our analysis of the energy distribution of reactive pa
ticles is framed in terms of the reactive flux theory for barrie
crossing.7–13 The reactive flux method has as its startin
point the transition state theory estimate for the rate const
ktst for thermal escape from the reactant region,

ktst5^d~q!q̇Q@ q̇#&/^Q@2q#&. ~3!

The functionQ is the Heaviside function.
The transition state theory rate constant does not acco

for recrossings of the transition state by an activated partic
before it is thermalized in the reactant region or product r
gion. The ratio of the actual rate constantk to the transition
state theory estimatektst is termed the transmission coeffi-
cient k. It is possible to obtain the value ofk by running
trajectories away from the transition state dividing surfac
for a time t, where t is long enough that the system ha
thermalized in the reactant or product region but not so lo
that it can become reactivated. When this separation of tim
scales exists, the transmission coefficient is

k5
^d~q!q̇Q@q~t!#&

^d~q!q̇Q@ q̇#&
. ~4!

Writing the average explicitly in terms of the initialq̇,

k5
E 2`
` dq̇e2bmq̇2/2q̇^Q@q~t;q̇!#&j

E 2`
` dq̇ e2bmq̇2/2q̇Q@ q̇#

. ~5!

The position of the trajectory starting fromq‡ with velocity
q̇ after the plateau timet is q(t;q̇). The average over his-
tories of the random forcej(t) is denoted bŷ ...&j .

Rather than retaining the velocityq̇ to characterize the
initial conditions, we choose to writek in terms of the energy
of q, relative to the barrier energy, as it moves away from th
barrier at time zero. This energy in units ofkBT is
e5bmq̇2/2. In terms ofe, the transmission coefficient is
J. Chem. Phys., Vol. 102
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k5E
0

`

de e2ek~e!. ~6!

An important quantity related tok~e! is f (e), the energy
distribution of particles leaving the reactant region. By de
tailed balance, the normalized distribution is

f ~e!5k21e2ek~e!. ~7!

In Eq. ~6! we have introduced the energy-dependen
transmission coefficientk(e), defined as

k~e!5^Q@q~t;A2ekBT/m!#&j

2^Q@q~t;2A2ekBT/m!#&j . ~8!

As seen in Eq.~6!, the Boltzmann weighted average of the
energy-dependent transmission coefficientk~e! yields the
conventional transmission coefficient. Althoughk~e! speci-
fies an initial energy for the reactive system, it is not a m
crocanonical quantity because coupling with the bath allow
energy transfer into and out of the reaction coordinate. Th
quantitye specifies how the reactive coordinateq is prepared
at the top of the barrier, i.e., how much kinetic energy
possesses as it crosses the transition state dividing surfac
t50.

One quantity we wish to calculate isē, the average en-
ergy of reactive particles, relative to the barrier top energy,
the moment whenq5q‡:

ē5
^d~q!q̇Q@q~t!#e&

^d~q!q̇Q@q~t!#&
. ~9!

The unsubscripted variablesq, q̇, ande refer to the position,
velocity, and reduced energy at time zero. In terms o
k(e), the average energy of escaping particles is

ē5k21E
0

`

de e2ek~e!e. ~10!

It is convenient to use Laplace transforms ofk~e! to
relate the overall transmission coefficientk and the average
escape energyē to k~e!. Defining the Laplace transform of
k~e! as k̃(s),

k̃~s!5E
0

`

de e2sek~e!, ~11!

the transmission coefficient and the average escape ene
are

k5k̃~s!us51 , ~12!

ē52
d

ds
ln k̃~s!U

s51

. ~13!

Indeed, all moments of the distributionk~e! can be obtained
by suitable differentiation of the generating functionk̃(s).
The variance, characterizing the width of the distribution o
energies of escaping particles, is

^e2&2 ē25
d2

ds2
ln k̃~s!U

s51

. ~14!
, No. 20, 22 May 1995
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B. Escape over a parabolic barrier

It is possible to calculatek~e! in a simple closed form
when the barrierV(q) is parabolic. The form ofk~e! for a
parabolic barrier should also be accurate when the friction
damping is large and the dynamics of activated particles a
dominated by motion close to a parabolic barrier top. For
parabolic barrier with imaginary frequencyv‡, the GLE of
Eq. ~1! is

q̈~ t !5v‡2q~ t !1m21j~ t !2E
0

t

dt8 g~ t2t8!q̇~ t8!. ~15!

The linear dynamics of the GLE can be posed in term
of a harmonic Hamiltonian. Normal mode analysis of th
Hamiltonian can be employed to obtain the transmission c
efficient k.14 It is also possible to obtaink without recourse
to an explicit harmonic Hamiltonian, but with the equivalen
requirement that the stochastic forcej(t) be a Gaussian ran-
dom process.13,15,16 Here we use similar means to obtain
k~e!. The starting point is the Laplace transform of Eq.~15!,

q̃~s!5
q̇1m21j̃~s!

D~s!
, ~16!

where q̃(s)5*0
`dt e2stq(t) and D(s)5s21sg̃(s)2v‡2.

The initial conditions areq̇(0)5q̇ and q(0)5q‡50. The
Laplace transform of the random force isj̃(s).

At long times, the largest positive rootl‡ of the equation
D(s)50 dominates the inverse Laplace transform forq(t).
This root, termedl‡, is the Grote–Hynes frequency,14,17,18

l‡5
v‡2

l‡1g̃~l‡!
. ~17!

Thusq(t) is given asymptotically by

q~ t !;el‡t lim
s→l‡

Fs2l‡

D~s! G$q̇1m21j̃~s!%. ~18!

In Appendix A we describe why there must be a positive ro
and show that the term in square brackets,@(s2l‡)/D(s)#,
is positive ass→l‡.

Consequentlyq(t) will be in the product region at long
times only if j̃(l‡) is larger than2mq̇. Thereforek~e! de-
pends on the bath solely through the probability distributio
P@ j̃(l‡)# for j̃(l‡), since

^Q@q~t;q̇!#&j5E
2mq̇

`

dj̃~l‡!P@ j̃~l‡!#. ~19!

Furthermore, sincej(t) is a Gaussian random variable
j̃(l‡) also has a Gaussian distribution,

P@ j̃~l‡!#5
1

A2p^j̃~l‡!2&
expF2

j̃~l‡!2

2^j̃~l‡!2&
G . ~20!

The width of the Gaussian distribution is
J. Chem. Phys., Vol. 102
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^j̃~l‡!2&5E
0

`

dt1E
0

`

dt2 e
2l‡~ t11t2!^j~ t1!j~ t2!&

52E
0

`

dt1 e
22l‡t1E

t1

`

dt2 e
2l‡~ t22t1!

3^j~0!j~ t22t1!&

5
mg̃~l‡!

bl‡ . ~21!

With these observations, Eq.~8! becomes

k~e!5erf@Ael‡/g̃~l‡!#, ~22!

where erf(x)52p21/2*0
xdt e2t2. Inserting Eq.~22! for k~e!

into Eq. ~11! and exchanging the order of integration for the
erf ande, we obtain

k̃~s! 5 s21@11 s g̃~l‡!/l‡#21/2. ~23!

Settings51, the Grote–Hynes expression for the transmis-
sion coefficient is obtained,14,17,18

k5F 11
g̃~l‡!

l‡ G21/2

5
l‡

v‡ 5 kpb. ~24!

The subscript ‘‘pb’’ stands for parabolic barrier, since this
expression is exact when the barrier is an inverted parabola

Differentiating with respect tos and making use of the
relationship in Eq.~24!, the average energy of escaping par-
ticles is

ē511
l‡g̃~l‡!

2v‡2 5
3

2
2

1

2S l‡

v‡D 2. ~25!

This expression is exact for a parabolic barrier. Furthermore
it should be reasonably accurate when motion near the bar
rier top decides the fate of activated particles, i.e., in the
regime of moderate to large damping. When the damping is
moderate,l‡'v‡, and reactive particles cross the barrier
with about 1kBT of energy. The resultē51 is exactly the
prediction of transition state theory. It results from the as-
sumption that particles crossing the transition state are drawn
from an equilibrium distribution, and that there are no rapid
recrossings of the transition state dividing surface. As the
damping becomes larger, the frictional forces cause recross
ings of the transition state. Recrossings are less likely as the
initial kinetic energy increases, andē increases with friction,
rising above the transition state theory estimate of 1kBT and
eventually saturating at (3/2)kBT. The value at saturation is
estimated using the limiting results for large friction,
l‡'v‡2/g̃(l‡)!v‡. Although the average energy of an es-
caping particle in the high friction limit is (3/2)kBT as the
particle crosses the barrier, the energy should be rapidly ther
malized by the frictional coupling and return to the equilib-
rium value as the particle moves away from the barrier.

We take a second derivative of Eq.~23! to find the vari-
ance of the distribution,

^e2&2 ē2511
1

2Fl
‡g̃~l‡!

v‡2 G2. ~26!
, No. 20, 22 May 1995
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7956 J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient
For moderate friction, the variance approaches unity. This
becausek~e! approaches 1 for all values ofe, just the result
of transition state theory. As friction increases, the varian
increases as well. At very high friction, the term in squa
brackets in Eq.~26! approaches 1, and the variance satura
at the high friction limit of 3/2.

As the frictional damping increases, the number of d
fusive recrossings of the transition state dividing surface
creases. The recrossings decrease the transmission c
cient k and the energy-dependent transmission coeffici
k~e!. Althoughk~e! decreases, the normalized energy dist
bution of escaping particles,f (e)5k21 exp(2e)k(e), ap-
proaches a limiting form. Expanding the error function in th
definition ofk~e! to lowest order in its argument,

f ~e!5exp~2e!F 11
g̃~l‡!

l‡ G 1/2 2

Ap

3HAe
l‡

g̃~l‡!
1O S l‡

g̃~l‡!
D 3/2J

5
2

Ap
exp~2e!e1/21O ~k2!. ~27!

The error in this expansion is of orde
@l‡/g̃(l‡)#;@v‡/g̃(l‡)#2;k2. To O (k2), thenth moment
of the distribution of energies of escaping particles can
obtained from the asymptotic distribution, Eq.~27!:

^en&5
2

Ap
E
0

`

de exp~2e!en11/2

52•
1

2
•
3

2
•••

2n11

2
. ~28!

C. Weak friction and energy diffusion

So far we have discussed the energy in terms of
reaction coordinateq. It has be shown explicitly, however
that the generalized Langevin equation for a parabolic b
rier, Eq. ~15!, is identical to separable motion for a rotate
set of oscillators.5,14 One of these barrier-top normal mode
is unstable. The unstable barrier-top normal mode is term
r, and its imaginary frequencyl‡ is the Grote–Hynes fre-
quency. For a metastable well, the normal modes obtai
from a quadratic expansion at the barrier-top mix with ea
other away from the barrier region, causing an exchange
energy between the unstable moder and the remaining de-
grees of freedom.

In the weak friction limit, slow energy diffusion betwee
the unstable moder and the rest of the system serves
decrease the reaction rate belowktst. The kernelP(e8ue)
characterizes the exchange of energy betweenr and the re-
maining modes. The probability that the unstable moder,
having energye when it moves away from the barrier an
into the metastable well, will return to the barrier with a
energy betweene8 ande81de is P(e8ue)de. It is convenient
to characterizeP(e8ue) by its first and second moment. It i
J. Chem. Phys., Vol. 102
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also usual to assume thatP(e8ue) is only required for ener-
gies near the barrier-top energy, and therefore thatP(e8ue)
depends only on the differencee82e. The form for the ker-
nel satisfying these requirements and detailed balance is2,3,19

P~e8ue!5
1

A4pd
exp@2~e81d2e!2/4d#. ~29!

The average energy loss in units ofkBT for the moder when
it starts at the barrier energy is termedd, and the variance in
the reduced energy after a transit of the metastable well is 2d.

When friction is weak, the unstable moder is almost
identical to the reaction coordinateq, andd can be estimated
from the dynamics ofq rather than the more complicated
dynamics ofr.2,3,19To lowest order in the frictional damping
and the inverse of the barrier height 1/bV‡, the energy loss is

d5
bm

2 E
2T

T

dt1E
2T

T

dt2 q̇~ t1!g~ t12t2!q̇~ t2!. ~30!

The asymptotic undamped trajectoryq(t) starts at the barrier
in the infinite past with energye→0, traverses the metastable
well once, and returns to the barrier top at timeT→`.

Particles escape from the metastable well with a ra
constantk,2,3,6

k5ktstkpbkr , ~31a!

where

ktst5~v0/2p!exp@2bV‡#, ~31b!

kpb5l‡/v‡, ~31c!

and

kr5expH 1

2pE-`
`

dx
ln@12exp~2d x22d/4!#

x2 1 1/4 J .
~31d!

The frequenciesv0 andv‡ correspond to the curvature of
V(q) at the well and at the barrier, andl‡ is the Grote–
Hynes frequency defined in Eq.~24!.

The energy-dependent transmission coefficientkr(e) for
the unstable moder can be obtained by noting that the
steady-state distribution of particles leaving the well per un
energy and unit time, normalized to one particle in the wel
is F(e) 5 exp(2e!ktst(l

‡/v‡)kr(e). The distributionF(e)
is the solution to the integral equation,2,3

F~e!5E
2`

0

de8 P~eue8!F~e! ~32!

with the additional boundary conditionkr(e)→1 as
e→2`. The solution of Eq.~32! is2

kr~e!5exp@~A11/2!e#G2S 2
i

2D 1p
3E

0

`

dl
R~l,A!

l21~A11/2!2
~33!

3$@A11/2#cos@le1u~l,A!#

1l sin@le1u~l,A!#%. ~34!

In this equation,
, No. 20, 22 May 1995
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7957J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient
G2S 2
i

2D 5expH 1

2pE0
`

dl
ln G~l!

l211/4 J 5R~0,1/2!;

~35!

R~l,A!5expH 1

2pE0
`

dy F A

~l2y!21A2

1
A

~l1y!21A2G lnG~y!J ; ~36!

u~l,A!5expH 1

2pE0
`

dy
y

y21A2 @ ln G~l1y!

2 ln G~l2y!#J ; ~37!

the arbitrary constantA is real and non-negative; and
G(l)512exp@2d(l211/4)#. In the limit of large l,
R(l,A)→1 and u(l,A)→0. Therefore, the integrand in
Eq. ~34! approaches@(A11/2)cos(le)1lsin(le)#/@l21(A
1 1/2)2] for largel. For numerical evaluation, we found i
advantageous to perform this slowly convergent part of
integral analytically. The remainder of the integral was co
puted numerically with routines from theQUADPACK
library.20 In our calculations we choseA→01, giving
R(l,A)5AG(l).

The average energy of the unstable mode when it cros
the barrier top is termedēr . The subscriptr serves to dis-
tinguish this energy from that of the reaction coordinateē.
Equivalent expressions for the normal mode energyēr valid
over the entire damping range are2,21,22

ēr511
1

pE0
`

dx ln@12e2d~x211/4!#
2x211/4

@x211/4#2
~38!

511
2

pE0
p/2

dy ln@12e2d/~4r cos2 y!#~2 cos2 y21!.

~39!

D. Interpolation formulas

When friction is moderate to large, transition state theo
is virtually exact for the unstable mode escape dynamics
ēr approaches 1 exponentially quickly.

2 This is in contrast to
the behavior of the average energy for the reaction coo
nateē→3/2 for large friction.

When friction is small, the unstable moder is ~within a
mass scaling! virtually identical to the reaction coordinateq.
Thus, when friction is small, ēr'ē. Furthermore,
ēr;Ad!1. This suggests an interpolation formula forē in
terms ofēr . The formula is obtained by replacing the wea
friction limit of Eq. ~25!, ē 5 1, with the correct limit
ē5 ēr , yielding

ē5 ēr1
l‡g̃~l‡!

2v‡2 . ~40!

This formula bridges between the strong damping lim
when diffusive motion near the barrier top influences the r
J. Chem. Phys., Vol. 102
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of escape, and the weak damping limit, where energy diffu
sion between the reaction coordinate and the bath is ra
limiting.

It is also possible to construct an interpolation formula
for k~e! itself to bridge the weak damping and large damping
limits. An interpolation formula suggested by the rigorous
result3 k5kpbkr is

k~e!5kpb~e!kr~e!. ~41!

This interpolation formula is motivated in a manner similar
to that of Eq.~40!. The first term,kpb(e), is the energy-
dependent transmission coefficient from Eq.~22!. This term
is the exact result fork~e! for a parabolic barrier; it gives
k~e! correctly for escape from a metastable well when th
frictional damping is moderate to large. In the weak dampin
limit, kpb(e) approaches the transition state theory value o
1. The second term,kr(e), is the transmission coefficient for
the unstable mode. For moderate to large damping, transitio
state theory is valid and this quantity approaches 1. In th
weak damping limit, inertial recrossings decrease the tran
mission coefficient. Since the reaction coordinate and th
unstable normal mode are essentially identical when frictio
is small,k~e! is given bykr(e) in the weak damping limit.

We note that Eq.~41! is not exactly correct, since

k5kpbkr

5E
0

`

de e2ekpb~e! E
0

`

de8 e2e8kr~e8!

ÞE
0

`

de e2ekpb~e!kr~e!.

One measure of the error one makes with the interpolatio
formula k(e)5kpb(e)kr(e) is to compare*0

`de e2ekpb

(e)kr(e) with the exact value fork given by Eqs.~31a!–
~31d!. For the systems for which we provide simulation re-
sults, the relative difference between these two quantitie
was less than 1%. We consider this to be a negligible erro

III. APPLICATIONS

A. Sticking probabilities and thermal desorption

The theoretical expressions developed in Sec. II can b
used to obtain a more complete understanding of stickin
probabilitiesPstick for atoms impinging on a surface. By de-
tailed balance, the sticking probability is related to the ther
mal desorption ratekD by kD5PstickkTST, wherekTST is the
transition state theory estimate for the thermal desorptio
rate. A similar detailed balance relationship exists betwee
the dependence ofPstick on the incident energyE0 of a par-
ticle approaching a surface and the distribution of energies
particles thermally desorbing from a surface.

In a fully three-dimensional description of the particle
and surface,Pstick can depend on the angle of incidenceu of
the particle with respect to the surface normal. If the reactio
coordinate for adsorption is effectively one-dimensional
Pstick should depend only on the energy in the normal direc
tion,E0 cos

2 u. Generally, normal energy scaling can only be
, No. 20, 22 May 1995
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expected for a perfectly flat surface which does not coup
motion in the normal direction to motion in the plane paralle
to the surface.

We investigate the ability of our one-dimensional theor
to describe the energy and temperature dependence ofPstick

for a fully three-dimensional model of rate gas atoms inte
acting with a surface, where motion in all three dimensions
coupled by the surface corrugation. The simulation resu
we discuss were reported by Tully for a model of isolated A
and Xe atoms interacting with the Pt~111! surface.1

The rare gas atom in Tully’s simulation interacted by
pairwise Lennard-Jones potential with the closest 14 ato
on the Pt surface. The interactions with the remaining atom
were included using a continuum term dependent on t
height of the rare gas atom above the surface. The four s
face atoms closest to the rare gas atom were allowed
move, and the identity of these four atoms followed th
shadow the rare gas atom projected onto the surface. T
interactions between the four moving Pt atoms and the
mainder of the Pt surface were mimicked with an effectiv
GLE. The friction kernel for the GLE was selected to repro
duce vibrational properties of the Pt~111! surface.23 The
Pt~111! surface in the model was rather smooth, with only
0.1 kJ/mol barrier to surface diffusion for either Ar or Xe
The binding energy of Ar with the surface in the simulatio
was 9.2 kJ/mol, and that of Xe was 29.3 kJ/mol. These e
ergies were chosen to fit experimental results.24,25There was
no barrier to adsorption in this model.

In the simulation results, the sticking probability was
monotonically decreasing function of the incident energy
the atoms.1 For this reason, we assume here that the energ
diffusion regime is sufficient to describePstick and ē. Thus
the only parameter required for a theoretical description
P stick and its energy dependence is the energy lossd for each
of the two atoms over the range of temperatures 50–2000
We assume thatd can be written asDE/kBT whereDE has
no temperature dependence. In terms of a GLE, this
equivalent to the harmonic bath requirement that the frictio
kernel g(t) has no temperature dependence. We u
DE51.1 kJ/mol for Ar andDE55.4 kJ/mol for Xe. The fits
are noticeably worse for changes inDE larger than 0.2 kJ/
mol.

In the top panel of Fig. 1 we depictPstick for Ar and Xe
atoms on a Pt~111! surface. In the simulations the atoms
were monoenergetic with total translational energyE0 and a
cosu angular distribution with respect to the surface norma
Assuming thatPstick depends only the translational energy o
the atom normal to the surface, we estimate the sticki
probability as

Pstick5E
0

p/2

du cosuk~E0 cos
2 u/kBTS!. ~42!

The surface temperatureTS in the simulations was 250 K.
The normal energy scaling we assume in our theoretic
analysis is not entirely correct because the Pt~111! surface is
not flat. Indeed,Pstick the simulations did not obey normal
energy scaling, i.e., the sticking probability was not exclu
sively dependent on the incident translational energy in t
direction normal to the surface.1 The corrugation of the sur-
J. Chem. Phys., Vol. 102
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face allowed for energy transfer between the normal dire
tions and directions parallel to the surface. In spite of th
deviations from normal energy scaling, however, the fit w
present for Ar is very good. The fit for Xe underestimate
Pstick for larger energies. This is due in large part to th
theoretical assumption that the energy lossd is independent
of the energy of the incident atom. In reality, the energy los
increases with increasing incident energy. A larger energ
loss results in a larger sticking probability in the energy dif
fusion regime. This effect will be discussed in greater deta
in Sec. III B 2.

The middle panel of Fig. 1 shows the sticking probabil
ity for a thermal distribution of atoms incident on a Pt~111!
surface of the same temperature. The theoretical fits ag
provide excellent agreement with the simulation results ov
a wide range of temperatures. The small differences betwe
the simulation results and the theoretical fits can be ascrib
to two sources. First, the energy lossDE has some energy
dependence because the Pt~111! surface is anharmonic. Sec-
ond, the multidimensional nature of the reaction coordina
is neglected in the theoretical fit.

In the bottom panel of Fig. 1 the average energy of e
caping particles is shown relative to 2kBTS, whereTS is the
temperature of the surface. Because there is no barrier
adsorption,E is the total translational energy of a desorbe
particle far from the surface. According to transition stat
theory,^E&52 kBTS: each of the two translational degrees
of freedom parallel to the surface has (1/2)kBTS of energy,

FIG. 1. Top: Energy dependence of the sticking probability for Ar~small
circles! and Xe~large circles! on Pt~111! at a surface temperature of 250 K.
Incident atoms are monoenergetic with a cosu angular distribution. Middle:
Temperature dependence of sticking probability for Ar~small circles! and
Xe ~large circles!. The surface is at temperatureT; the incident gas is
Maxwell–Boltzmann at temperatureT, with a cosu angular distribution.
Bottom: Mean translational energy of thermally desorbing Ar~small circles!
and Xe~large circles!, in units of 2kBTS , whereTS is the temperature of the
surface. Solid lines are theoretical fits for Ar; dashed lines are for Xe. Th
simulation results are from Ref. 1.
, No. 20, 22 May 1995
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7959J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient
while the flux-weighted normal direction has 1kBTS. Again
the theoretical fit performs well for both Ar and Xe. The only
significant discrepancy is for Ar desorbing at 500 K. Ou
excellent agreement with the data overall suggests the pos
bility that the simulation result at this single point might be
in error.

B. Simulation tests of the interpolation formulas

In this section, we compare simulation results for escap
from a metastable wellV(q) to the predictions of the inter-
polation formulas relating the reaction coordinateq to the
unstable moder of PGH theory. The potentialV(q) is piece-
wise harmonic with a metastable well,

V~q!5H 1
2mv0

2~q1q0!
2, q<2q.

V‡2 1
2mv‡2, q.2q.

. ~43!

Continuity of V(q) and its derivative implies
q0 /q

.511(v‡/v0)
2 andV‡5 1

2mv‡2q.q0 . Ohmic friction
was employed,g(t2t8)52g0d(t2t8). Parameters were se-
lected to giveV‡55 kBT, v05v‡51, andm51. For Ohmic
friction, Eq. ~30! reduces to

d5g032bE
ql

0

dqA2@V‡2V~q!#533.56193g0 . ~44!

The above is the weak-damping expression ford, andql is
the left-hand turning point at energyV‡, ql52q02A2V‡.

We performed two sets of simulations of escape from th
metastable wellV(q). In the first set of simulations, we var-
ied the static frictiong0 to obtainē andk as a function of the
energy loss parameterd. Values ofd ranged from 1022 to
103. For weak to moderate friction,d,102.5, 50 000 pairs of
trajectories were initiated for each choice ofd. The two tra-
jectories of each pair started with a common initial energ
chosen from the distribution exp(2e). One trajectory started
with an initial q̇.0, and the other withq̇,0. An indepen-
dent sampling of the random forcej(t) was used for each
trajectory. For large friction,d5102.5–103, k~e! was sampled
at discrete values of the energye and ē was obtained by
integration. At d5102.5, 20 000 pairs of trajectories were
initiated at the valuese50.25, 0.5, ..., 8 to computek~e!.
For d5102.75, 5000 pairs of trajectories were initiated at
e50.25, 0.5, ..., 8. For the largest friction,d5103, between
15 000 and 125 000 pairs of trajectories were initiated a
energies ranging frome50.05 toe510. In all of these simu-
lations except ford5103, trajectories of escaping particles
were terminated when the energy of the particle fell below
the minimum of the metastable well. Ford5103, trajectories
of all particles were terminated when the energy was le
than 1kBT above the minimum.

In the second set of simulations, we varied the initia
energye to obtaink~e! for four choices ofd, d51020.5, 100.5,
101.5, and 102. We ran 40 000 trajectories for each choice o
d ande, half with initial q̇,0 and half withq̇.0.

1. The average energy of escaping particles ē

In Fig. 2 we display results obtained forē for escape
from V(q). The solid line in Fig. 2 is calculated using Eq.
J. Chem. Phys., Vol. 102
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~40!. It is evident that the interpolation formula provides an
accurate estimate of the energies of escaping particles for th
entire damping range. The results show that particles escap
from the well with very little energy when the damping is
small. The energy of escaping particles attains the transitio
state value of 1kBT for moderate friction, 1,d,10. For
larger friction, ē saturates at the predicted value of~3/2!
kBT.

We now describe the behavior in each of these regions in
greater detail. At small damping,d&1020.5, the agreement
between the theoretical expression and the simulation resul
is virtually exact. The reaction coordinateq is essentially the
same as the unstable barrier normal moder, and the energy
lossd for the unstable normal mode is given very accurately
by the lowest order perturbation theory, Eq.~30!. Frictional
recrossings are not important, and the particle escapes a
soon as sufficient energy has diffused into the reaction coor
dinate to allow escape over the barrier.

In the moderate friction regime, energy exchange be-
tween the particle and the frictional bath is sufficiently rapid
that the equilibrium distribution of energies is maintained
even at the barrier top. The Grote–Hynes factor, measurin
frictional recrossings, ranges from 0.99 atd51 to 0.86 at
d510, indicating that frictional recrossings are relatively un-
important and that transition state theory estimate forē
should be accurate. Consequently the average energy of e
caping particles is close to the transition state theory estimat
of 1 kBT. Although the agreement between theory and simu-
lation is generally good in this region, the theoretical predic-
tion for ē is systematically smaller than the simulation re-
sults. As will be discussed in greater detail in Sec. III B 2 on
k(e), the theory underestimatesk~e! for large energies and
overestimatesk~e! for small energies. These small errors ac-
cumulate to produce a value forē that is smaller than the
value obtained in simulations.

FIG. 2. The average energy of escaping particles relative to the barrier-to
energy in units ofkBT is shown as a function of the damping parameterd.
Points are reactive flux simulations; the line is the interpolation formula, Eq.
~40!. Statistical uncertainties in the simulation results are smaller than the
size of the points.
, No. 20, 22 May 1995
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7960 J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient
When the frictional damping is large,d*101.5, the agree-
ment between the interpolation formula and the simulatio
results is again very good. Only dynamics near the barr
top is important when the frictional damping is large, and th
parabolic barrier expression, Eq.~24!, provides an excellent
estimate forē. The simulation results approach the theoret
cal plateau value ofē5(3/2)kBT. The last simulation point,
d5103, gives an energy which falls slightly below~3/2!
kBT. The error bars for this point are roughly the size of th
point itself. It is likely that the difference between the pre
diction and the simulation result is due to statistical noise
the simulation. The transmission coefficient ford5103 is
very small,k50.034, making statistics difficult to collect.

2. The energy dependent transmission coefficient
k(e)

To examine the energy distribution of escaping particle
in more detail, and to test the underlying assumptions
PGH theory, we have used simulations to obtain the energ
dependent transmission coefficientk~e! defined by Eq.~8!.
The results of simulations are shown as points in Fig. 3, a
theoretical predicitions are shown as lines. Data are p
sented for four values of the energy lossd: weak damping,
d51020.5; moderate damping,d5100.5; strong damping,
d5101.5; and very strong damping,d5102.

The general shape of the curves, a rise to a maximu
and then a gradual decline, demonstrates the interplay
tween energy diffusion in the weak damping limit and fric
tional recrossings in the strong friction limit. For weak fric
tion, d51020.5, k~e! rises rapidly to its maximum value and
then falls off with an exponential decay. Particles escape t
well as soon as there is sufficient energy to cross the barr
but the slow rate of energy diffusion into the reaction coo
dinate depletes the population of states near the barrier.
terms of a sticking probability, particles injected into the we
with energy much larger thand bounce out without having a
chance to thermalize. The energy-dependent transmission

FIG. 3. The energy-dependent transmission coefficientk~e! is shown as a
function of the damping parameterd. Points are results of reactive flux
simulations; lines are the interpolation formula, Eq.~41!. The dotted line and
small open circles are weak friction (d51020.5); the dashed line and small
filled circles are moderate friction (d5100.5); the dot–dashed line and large
open circles are strong friction~d5101.5!; the solid line and large filled
circles are the strongest friction~d5102!.
J. Chem. Phys., Vol. 102
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efficient k~e! again rises rapidly for moderate friction,
d5100.5, and decays slowly for higher energies. Energy dif
fusion is sufficiently rapid to maintain a distribution of ener
gies close to the equilibrium distribution. The moderate fric
tion results are closest to transition state theory, whic
predicts thatk~e!51 for all e.0. When the frictional damp-
ing becomes larger, the rise ofk~e! becomes slower. This is
seen in the strong friction results,d5101.5. Particles with
small energies are buffeted by frictional forces at the barri
andk~e! is small. The same behavior is seen at the large
friction, d5102. For these largest two values of the damping
k~e! is monotonically increasing for the range of energie
depicted. Eventually, whene is sufficiently large, these two
curves will also reach a maximum and then decrease so as
resemble the general form ofk~e! for smaller values of the
damping.

The details of the theoretical curves in relation to th
simulation results reveal minor shortcomings in the theore
cal assumptions. We begin with an examination of the resu
for the smallest friction in Fig. 3,d51020.5. The theoretical
curve is the productkpb(e)kr(e). Since the Grote–Hynes
factor kpb(e) rises rapidly from its initial value of 0 ate50
to its asymptotic value of 1@kpb(e)50.99 by the time that
e50.03kBT], k(e)'kr(e) for weak damping. It is evident
here that the theoretical results overestimatek~e! for smaller
energies. One explanation for this systematic error is that t
theoretical estimate for the energy lossd is too large: a larger
value ford results in faster energy transfer between the pa
ticle and the bath and a larger reaction rate in the low frictio
regime. The theoretical prediction ford might indeed be too
large because it is taken from the lowest order of a perturb
tion theory ordered by the frictional dampingg(t) and by the
inverse of the barrier height 1/bV‡. The next contribution to
the energy loss is expected to reduce the magnitude of t
effective energy loss by roughly a factor 1/bV‡.19 Since a
smaller energy loss implies a smaller escape rate, it is re
sonable thatk~e! obtained from simulation is smaller than
that predicted by theory, especially for energies close to t
barrier energy.

The theoretical prediction is also seen to be too small fo
k~e! for small energies for intermediate friction,d5100.5. For
energies smaller than 1.5kBT, the theoretical prediction is
smaller than the essentially exact results from simulation
The reason, again, is that the truncated perturbation theo
for d neglects a contribution on the order of 1/bV‡ which
acts to decrease the size ofd. In the intermediate friction
results for energies larger than 2kBT, however, an error in
the other direction is apparent: the theoretical prediction fo
k~e! is smaller than the simulation results. This error is aga
due to an error in the theoretical assumption ford; in this
case, the theoretical value ford is too small, leading to a
predicted transmission coefficient which is too small. Th
value of d from the theory is too small because of the as
sumption thatd is constant as a function of the energye. The
energy loss in fact depends on the energy at which the p
ticle traverses the metastable well. When friction is ver
weak, the reactive flux over the barrier is very close to th
barrier energy and the variations withd as a function ofe are
, No. 20, 22 May 1995
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7961J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient
small. In the intermediate friction case, however, a broad
range of energies is relevant, and the variation ofd with e is
evident in the simulation results. Indeed, the energy loss p
circuit over the well should be roughly proportional to th
initial energy, makingd an increasing function of the energy
Energetic particles injected into the well lose more energ
than the theory predicts, are therefore are more likely to
trapped in the metastable well.

The simulation results and the theoretical estimate agr
well for strong friction,d5101.5 and 102. The energy diffu-
sion factorkr(e).0.99 for the entire range of energies de
picted, andk(e)'kpb(e). The energy diffusion factor will
eventually decrease for large enoughe, causingk~e! to de-
crease and return to 0. Such high energies would not
important for thermal escape.

The results for weak to moderate friction shed light o
why the estimate thatd is independent of energy2–4 can be
reasonably accurate for predictions of barrier crossing rat
The theoretical approximation thatd is a constant underesti-
matesk~e! for largee. The same approximation, along with
the neglect of quantities on the order of 1/bV‡, overesti-
matesk~e! for small e. These errors are in compensatin
directions, yielding a net result for the transmission coeffi
cient k which agrees well with simulation results. At the
smallest values of the energy lossd, the simulations de-
scribed here reveal a small but systematic error made by
theory in predicting ak slightly larger than the value ob-
tained by simulations. Simulation results fork are shown as
points in Fig. 4, and the theoretical estimate, Eqs.~31a!–
~31d!, is depicted as the solid line. Ford<1020.5, the theo-
retical prediction is too large by a factor of about 20%. Th
difference is of the same magnitude as 1/bV‡51/5 in the
simulations.

3. The normalized energy distribution of escaping
particles f (e)

The normalized distribution of energies of escaping pa
ticles, exp(2e)k(e)/k, is displayed in Fig. 5. As before, small
open circles are weak friction (d51020.5); small filled

FIG. 4. The transmission coefficientk is shown as a function of the damp-
ing parameterd. Points are results of reactive flux simulations; the line is th
prediction of turnover theory, Eq.~31a!–~31d!. Statistical uncertainties in
the simulation results are smaller than the size of the points.
J. Chem. Phys., Vol. 102
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circles are moderate friction (d5100.5); large open circles
are strong friction (d5101.5); and large filled circles are the
strongest friction (d5102). The lines correspond to the theo-
retical estimate exp(2e)k pb(e)kr(e)/k, wherek5k pbkr .

There is a small but noticeable difference between the
simulation results and the theoretical estimate for the small-
est value of the damping,d51020.5. The theory predicts a
distribution f (e) shifted to lower energies than the distribu-
tion obtained by simulations. It is likely that the theoretical
assumption thatd is a constant independent ofe is respon-
sible for the shift of the theoretical prediction to lower ener-
gies. More energetic particles will have an effectived which
increases withe, and will have a larger probability to remain
trapped in the well than predicted using the assumption tha
d is constant. The difference between the theoretical predic-
tion and the simulation results is virtually undetectable for
moderate friction,d5100.5. For strong friction,d*101.5, the
normalized distribution of energies of escaping particles is
seen to approach the limiting form 2 exp(2e)Ae/p.

C. Optimal sampling for reactive flux simulations

The energy-dependent transmission coefficientk~e! can
be used to characterize the relative efficiencies of various
methods for selecting initial conditions for reactive flux cal-
culations of reaction rates. The energy-dependent transmis
sion coefficientk~e! can also be used to design an optimally
efficient reactive flux sampling scheme, one that convergesk
with the least amount of computational effort. Although this
optimal sampling analysis relies on knowledge ofk~e!,
which implies thatk itself is known, it can serve as a guide
whenk~e! can be estimated.

Instead of restricting attention to GLE dynamics, let us
suppose that the system of interest has a HamiltonianH. A
reaction coordinateq is singled out from the coordinates and
p is the momentum conjugate toq. The momentum is as-
sumed to appear inH as the kinetic energy termp2/2m,

e

FIG. 5. The normalized distribution of energies of escaping particles,
e2ek(e)/k, is shown as a function of the reduced energye for various
choices of the damping parameterd. Points are results of reactive flux simu-
lations; lines use the interpolation formula, Eq.~41!, for k~e!, and
k5kpbkr . The dotted line and small open circles ared51020.5; the dashed
line and small filled circles ared5100.5; the dot–dashed line and large open
circles ared5101.5; the solid line and large filled circles ared5102.
, No. 20, 22 May 1995
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where m is a reduced mass. The energye is defined as
bp2/2m. The rate constant corresponding to transitions fro
reactant (q,q‡) to product (q.q‡) is kktst. The transition
state theory rate constantktst is
J. Chem. Phys., Vol. 102
m ktst5
^d~q2q‡!uq̇uQ@ q̇#&

^Q~q‡2q!&
~45!

and the transmission coefficient is
k5
^d~q2q‡!uq̇uQ@ q̇#Q@q~t!#&2^d~q2q‡!uq̇uQ@2q̇#Q@q~t!#&

^d~q2q‡!uq̇uQ@ q̇#&
. ~46!
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Starting at time 0 fromq‡ with velocity q̇, the position of the
reaction coordinate after a plateau timet is q(t). As usual,
Q@ ...# is the Heaviside function.

The transmission coefficient can be obtained throug
simulations by selectingM pairs of initial coordinates and
momenta from a probability distribution proportional to
exp@2bH#d(q2q‡)Q@q̇#F(q̇), running a pair of trajectories
with initial reaction coordinate velocities6q̇ for each
choice, and estimatingk from the cumulative averagekM ,

kM5
(m51
M W~ q̇!$Q@q~t;q̇!#2Q@q~t;2q̇!#%

(m51
M W~ q̇!

. ~47!

The sampling functionF(q̇) and the weighting function
W(q̇) have the relationshipF(q̇)W(q̇)5uq̇u. The introduc-
tion of F(q̇) andW(q̇) serves as a type of nonequilibrium
sampling.26–29Whereas nonequilibrium sampling is usually
designed to enhance the sampling of the coordinates, t
type of nonequilibrium sampling is designed to enhance t
sampling of velocities.

The Maxwellian velocity distribution corresponds to th
choiceF(q̇)51 andW(q̇)5uq̇u. Another common choice is
the Maxwellian flux distribution, which hasF(q̇)5uq̇u and
W(q̇)51. The Maxwellian flux distribution shifts the selec-
tion of the reaction coordinate kinetic energy to slightl
higher energies than the pure Maxwellian distribution. W
will show that the Maxwellian distribution performs bette
than the Maxwellian flux when the frictional damping is
weak and less energetic particles contribute to the react
flux. For strong damping, more energetic particles contribu
to the reactive flux, and the Maxwellian flux distribution per
forms better than the pure Maxwellian distribution.

Instead of describing the initial conditions in terms o
the velocityq̇, we choose to make contact with our expres
sions fork~e! and describe the initial conditions in terms o
the reduced energye. Rather than selecting a reaction coor
dinate velocity from the distribution exp(2bmq̇2/2)F(q̇)
~where we recall that the exponential arises from the fact
e2bH),we select an energye from a distributionf(e). The
relationship between these two distributions isf(e)de
} exp(2bmq̇2/2)F(q̇)uq̇udq̇. The kinetic energy must be
non-negative classically, implying thatf(e)50 for e,0.
For positive energies,f(e).0 because it is a probability
distribution. The normalization off(e) is

E
0

`

de f~e!51. ~48!
h

his
he

e

y
e
r

ive
te
-

f
-
f
-

or

The weighting function corresponding tof(e) is termed
w(e) and is defined by the relationship

f~e!w~e!5exp~2e!. ~49!

The Maxwellian distribution corresponds t
f(e)5exp(2e)/Ape, and the Maxwellian flux distribution
corresponds tof(e)5exp(2e). Since the average value o
w(e) over the distributionf(e) is unity, the transmission
coefficient from Eq.~47! can be written as

kM5
1

M (
m51

M

w~em!$u1~em!2u2~em!%, ~50!

whereu6(e)5Q@q(t;6A2ekBT/m)2q‡#.
For each trajectory in theM pairs, the initial coordinates

and momenta~other than the momentump of the reaction
coordinate! are chosen from the distributio
exp@2b(V1T8)#d(q2q‡), while the kinetic energye of the
reaction coordinate is drawn from the distributionf(e).

In order that the two trajectories of themth pair be un-
correlated, we will assume that the coordinates and m
menta, other thanp, are chosen independently. This corr
sponds to using independent samplings of the stocha
force j(t) in a GLE simulation. Using the same initial coo
dinates and momenta for both trajectories in themth pair
would decrease the sampling efficiency by introducing c
relation between the two trajectories of themth pair. To il-
lustrate this point, suppose that signs of the initial coor
nates and momenta for the trajectory contributing
u1(em) are reversed to obtain the initial conditions for th
trajectory contributing tou2(em). If the potential energy sur-
face is symmetric with respect to inversion, then symme
requiresu2(em)512u1(em), andu1(em) andu2(em) are
perfectly correlated.

Returning to Eq.~50!, the quantity being averaged
w(e)@u1(e)2u2(e)#, possesses an intrinsic variancesk

2

which depends on the choice off(e). This variance is de-
fined as

sk
25E

0

`

de f~e!w2~e!^@u1~e!2u2~e!#2& ~51!

2H E
0

`

de f~e!w~e!^u1~e!2u2~e!&J 2. ~52!

The angle brackets imply an average over the distribut
exp(2bH)exp(e)d(q2q‡). Since theM pairs of trajectories
are uncorrelated, the statistical uncertainty of the cumula
, No. 20, 22 May 1995
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7963J. S. Bader and B. J. Berne: Energy-dependent transmission coefficient
averagekM is Ask
2/M . The optimal choice forf~e! is the

probability distribution which minimizessk
2 and thereby

produces the cumulative average with the smallest statisti
fluctuations. We derive expressions for the optionalf~e! in
Appendix II.

In Table I,sk
2 is shown for three distributions: the Max-

wellian distribution, the Maxwellian flux distribution, and
the optimal distribution. Results are shown for both stron
friction and weak friction, assuming in each case thatk!1.
Limiting forms of k~e!,

k~e!'2kAe/p, moderate to strong damping;

k~e!'~k/ ē !exp~2e/ ē !, weak damping,
~53!

were used in the calculation off(e) andsk
2 for the optimal

distribution.
For weak friction, ē'0.82d.2 The optimal distribution

for weak friction is f~e!5~1/2ē)exp(2e/2ē!, producing
sk
25kē/(1/21 ē)2. In the weak friction limit, the energy loss

d!1, andsk
2 } d3/2 for the optimal sampling distribution.

The relative error for a simulation is proportional to
Ask

2/k. For weak friction, k'd, and the relative error
} d21/4 for the optimal distribution. The Maxwellian distri-
bution exp(2e)/Ape, producessk

2}d5/4 and a relative error
} d23/8, slightly worse than the optimal distribution. Of the
three distributions, the Maxwellian flux distribution is
weighted toward the highest energies and produces the la
est variance,sk

2}k/(11 ē) } d. The relative error of the
Maxwellian flux distribution is also the largest, scaling a
d21/2. In terms of the relative error, the sampling from th
optimal distribution is more efficient than sampling from th
Maxwellian flux distribution by a factor ofd21/4. When
d50.01, e.g., this corresponds to a factor of 3 enhancem
of the computational efficiency when the optimal distributio
is used instead of the Maxwellian flux distribution.

For moderate to strong friction, the differences betwee
the sampling efficiencies for the three choices off~e! are
less substantial. In this case the optimal distribution is th
same as the Maxwellian flux distribution to leading order i
k, and both the optimal distribution and the Maxwellian flu
distribution producesk

251/2 to leading order. The Maxwell-
ian distribution performs slightly worse, givingsk

25p/4 to
leading order ink. All three distributions produce roughly

TABLE I. The mean square errorsk
2 expected for reactive flux sampling of

the transmission coefficient is shown for various sampling distributions
the weak friction and strong friction limits.

sk
2 to leading order

Distributionf(e) Weak friction,d!1 Strong friction

Maxwelliana 1
2pkAē;d1.25 p/4

Maxwellian fluxb
k

11 ē
;d 1/2

Optimalc
kē

~1/21 ē !2
;d1.5 1/2

af(e)5exp(2e)/Ape.
bf(e)5exp(2e).
cf(e) given by Eq.~B4!.
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the same variance in the strong damping limit because eac
decays as exp(2e). Although the Maxwellian distribution is
singular,;e21/2 as e→0, this is an integrable singularity
which produces little change in the overall sampling effi-
ciency.

When friction is strong, the relative error scales as 1/k
for each of the three distributions. Thus for a fixed numbe
M of trajectories, the statistical uncertainty in the measure
k increases rapidly with decreasingk. Since the error afterM
trajectories scales as 1/AM , the number of trajectories must
be on the order of 1/k2 before the relative error is of order
unity.

We note that there are other methods of enhancing th
sampling efficiency of reactive flux simulations. One could,
for instance, samplek~e! directly for discrete choices ofe.
Calling the ith choicee i , the transmission coefficentk i for
particles with initial kinetic energye i can be calculated from
reactive flux simulations. The total transmission coefficientk
can be obtained by a quadrature of the discrete point
e2e ik i . Indeed, this was our method for obtainingē in the
large damping regime. A slightly more elaborate treatmen
would be to partition the sampling of initial reaction coordi-
nate kinetic energies into bins, to calculate exp(2e)k(e)
within each bin, and to sum the result to give the totalk. If
friction is low, it is efficient to concentrate sampling on the
bins with small initial energies. For large friction, bins with
larger initial energies contribute more strongly tok.

The absorbing boundary method has also been shown
be quite efficient for reactive flux simulations.30,31 This
method is formally not exact—it does not produce the exac
value fork as the number of trajectoriesM→`—but it has
been shown to be an excellent approximation in practice
With this method, trajectories are terminated if they return to
the transition state dividing surface, and a statistical approx
mation is used to relate the decay of the population to th
transmission coefficient.

IV. CONCLUSIONS

In comparing our simulation results for escape over a
barrier in a one-dimensional GLE with theoretical predic-
tions, we found good agreement when the frictional damping
of the reaction coordinate was large. For weak to moderat
damping, we detected systematic errors in the predictions o
the analytic theory. These errors are relevant to the PGH
turnover theory for reaction rates.2,3When the energye of an
escaping particle is just above the barrier energy, the theo
retical prediction fork~e! is too large. Conversely, when the
particle has an energy much larger than the barrier energ
the predicted value ofk~e! is too small. These errors can be
understood in light of two of the assumptions of PGH theory
first, that the lowest order of perturbation theory in the in-
verse barrier height 1/bV‡ is sufficient to obtaind; second,
that the energy lossd is independent of the energye. The
first assumption results in a value ford that is too large
overall by a factor of roughly@12(bV‡)21#.19 This causes
k~e! to be too large by the same factor for energies close t
the barrier energy. Furthermore, the theoretical prediction fo
k is also too large by a factor of roughly@12(bV‡)21#. The

in
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second assumption of a constant energy lossd underesti-
mates the energy loss for energetic particles and predicts t
small a value fork~e!. These errors combine to skew predic
tions for the energy distribution of escaping particles t
slightly lower energies than are observed in simulation
When the transmission coefficient itself is considered, how
ever, these errors are in compensating directions. This ca
cellation of errors works to the favor of the PGH turnove
theory.

We have applied the theoretical expressions for wea
friction to describe simulations of Ar and Xe interacting with
the Pt~111! surface.1 Our expressions provide adequate singl
parameter fits for simulation results for sticking probabilitie
of atoms in a monoenergetic beam and for atoms from
thermal distribution incident on the Pt surface. Good fits ar
also obtained for the average energy of atoms desorbing th
mally from the surface. Our analysis could be extended ea
ily to describe the accomodation coefficient, which measur
the energy transfer between incident particles and
surface.32–35 The favorable results we obtain for atom–
surface sticking are encouraging for the prospect of descri
ing molecule–surface energy transfer and sticking probabi
ties with a similar approach~for a review of theoretical
methods see Ref. 36!.

Our expression forPstick includes the possibility of mul-
tiple oscillations of the gas particle before it sticks to the
surface or bounces away from the surface. It would be inte
esting to compare our predictions to those of prompt stick
ing, where it is assumed that the fate of a particle is decide
after a single round-trip. Using prompt sticking expression
others have been able to fit experimental sticking probabi
ties for Ne, Ar, Kr, and Xe on Ru~001!.37 These workers
found that a quantum-mechanical treatment was necessary
describe the sticking of Ne and Ar. It would be straightfor
ward to include a quantum description of the particle an
bath using a semiclassical version of PGH turnover theory.38

The success in describing gas–surface sticking over
broad range of temperatures with a single parameter provid
evidence that the expressions developed here for a on
dimensional reaction coordinate can have general validity f
multidimensional systems. One such area where our a
proach might prove useful is in gauging the prospects o
bond-selective chemistry.39–41 The expressions we present
for k~e! could be used to estimate the probability that a mo
ecule prepared in a high-energy reactive state will succes
fully traverse a barrier separating reactants from products.
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APPENDIX A: PROPERTIES OF D(S)

Here we investigate the behavior ofD(s)5s2

1 sg̃(s)2v‡2 near the largest positive rootl‡. We assume
that g(t) is analytic for realt and thatg̃(0) exists. There
must be at least one positive root to the equationD(s)50
because the sign ofD(s) changes from negative to positive
along the positive real axis: ats50, D(0)52v‡2; as
J. Chem. Phys., Vol. 102
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s→`, D(s) approachess21g(0)2v‡2, which is positive
for sufficiently large s. The largest positive root of
D(s)50 is termedl‡, and we assume that it is an isolated
root. ThenD(s) has the form (s2l‡)D8(s). Sincel‡ is the
largest root,D8(s) must be nonzero fors>l‡. Furthermore,
bothD(s) and (s2l‡) are positive ass→`, soD8(s) must
also be positive in this limit. SinceD8(s) does not change
sign for s>l‡, D8(l‡) is also positive. Finally, the limit of
@(s2l‡)/D(s)# as s→l‡ is simply 1/D8(l‡), a positive
quantity.

APPENDIX B: DERIVATION OF THE DISTRIBUTIONS
FOR OPTIMAL SAMPLING

To choose the optimal form forf~e!, the variance de-
fined by Eq.~52! must be minimized with respect tof(e). In
other words,f(e) is the solution to the functional derivative
equationdI @f#/df(e)50, where

I @f#5aF211E
0

`

de f~e!G1E
0

`

de f~e!w2~e!

3^@u1~e!2u2~e!#2&, ~B1!

and the constanta is a Lagrange multiplier chosen to satisfy
the normalization constraint, Eq. ~48!. Since
w(e)5exp(2e)/f(e), the functional derivative is

dI @f#

df~e!
5a2exp~22e!f22~e!^@u1~e!2u2~e!#2&50.

~B2!

The final term in Eq.~52! need not appear inI [f] because
f(e)w(e)5e2e and the functional derivative of this term
with respect tof(e) vanishes.

It is necessary to relate the mean-square value
^@u1(e)2u2(e)#2& to k~e!. The form of the relationship de-
pends on the strength of the damping. For moderate to large
damping~or for a parabolic barrier!, u6(e) is 11 with prob-
ability @16k(e)#/2 and 0 with probability@17k(e)#/2.
Thus @u1(e)2u2(e)#2 is 1 with probability @11k2(e)#/2
and 0 otherwise.

For escape from a metastable well when the frictional
damping is weak, a good approximation is thatu1(e) is
always 11, and that u2(e) is 11 with probability
12k(e) and 0 otherwise. The reasoning above leads to the
following estimates for̂ @u1(e)2u2(e)#2&:

^@u1~e!2u2~e!#2&

5H 1
2@11k2~e!#, moderate to strong damping

k~e!, weak damping
. ~B3!

In terms ofk~e!, the normalized solutions to the varia-
tional equation are
, No. 20, 22 May 1995
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f~e!55
exp~2e!A11k2~e!

#0
` de exp~2e!A11k~e!

,

moderate to strong damping

exp~2e!Ak~e!

E0
` de exp~2e!Ak~e!

,

weak damping

. ~B4!

We note first that when transition state theory is val
k(e)'1 for all e. In this case, the optimal
f(e)'exp(2e).
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