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In this paper molecular hydrodynamics is used to calculate the dynamic friction on the

intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a simple

liquid. The predicted dynamic friction is then compared to recent computer experiments. Agreement
with the experimental dynamic function is obtained when the linearized hydrodynamics is modified
to include Gaussian viscoelasticity and compressibility. The hydrodynamic friction on the bond

appears to agree qualitatively very well, although quantitative agreement is not found at high
frequencies. Various limits of the hydrodynamic friction are discussedl985 American Institute

of Physics.

I. INTRODUCTION culate the dynamic friction coefficient on such a bond from

_ _ ) the equations of linearized hydrodynamics with appropriate
The generalized Langevin equattén (GLE) is fre- boundary conditions.

quently used to calculate rate constants and vibrational relax- |, the hydrodynamic model, the exact many-body dy-
ation times. In this formalism, the solvent degrees of free, '

- o ~hamics of the solute-solvent system is replaced by a single
dom are eliminated from the nonequilibrium thermodynamic,, ;e interacting with a continuum fluid described by the
description with the help of the Mori—Zwanzig projection

. | ) Navier—Stokes equations of fluid mechanics. The interaction
operator technlq.u%eto find a set of stochastic integro- o the single molecule with the rest of the system is con-
differential equations for dynamlcal state of the solu'ge. FOlbined in a set of physically realizable boundary conditions
example, the GLE for the displacement of of a particle ofy, the surface of the body. The detailed description of the
massm along thex direction is fluid mechanical system is determined by the context of the

9D (X) . problem.
mx= — _f dri(t—7)X(7)+F(t), (1) The earliest application of hydrodynamics to explain
X 0 molecular relaxation phenomena is the Stokes—Einstein

theory of the translational diffusion coefficient in a fluid.

whgreF(t) Is the ran,dom forceg(t)_ is the dynamic friction, Einstein showed that the diffusion coefficient of a spherical
kg is the Boltzmann's constant, is the absolute tempera- body of radiusR in a fluid with viscosity7 is given by
ture, and®(x) is the potential surface on which the vibra-

tional displacement moves. The random force has the follow- D kT

ing properties: T “)
(F(t))=0, (2)  Wherelis the translational friction coefficient. Stokes calcu-
lated the drag force on a sphere moving with constant veloc-
(F(O)F(t))=KkgTZ(t). (3) ity in an incompressible fluid by solving the linearized

Navier—Stokes equation and found, for stick boundary con-

Equation (3) is the second fluctuation-dissipation theoremditions,
which gives an explicit connection between the dynamic — 67mR 5
friction and the autocorrelation function of the random force. {=6mn ®)
The GLE has been rigorously derived only for the case whermand for slip boundary conditions,
the bath is assumed to be a collection of harmonic oscillators {=4mnR ©)
and the system-bath coupling is linear in the bath coordi- -
nates. Recent work has generalized this harmonic bath mod&he Stokes—Einstein approximation for the diffusion coeffi-
to space and time dependent friction. In such cases, furthaient is a very good approximation if the mass of the sphere
appropriate generalizations of the GLE are required and, ds much larger than those of the molecules comprising the
present, this remains an open problem. fluid medium, so that the motion of the sphere is supposedly

In order to use the GLE, one must know the dynamicsteady. When the mass of the sphere is comparable to that of
friction as a function of time. Unfortunately, in most prob- the surrounding molecules, the motion of the sphere is inher-
lems of physical interest;(t) is not known although it is ently unsteady, and it seems quite natural to generalize the
possible to determine it from molecular dynamics simula-friction to be time dependent. The first attempt to include the
tions as has been done for the friction on a single bond oéffect of unsteady motion was done by Boussinesq who gen-
simple moleculege.g., the covalent bond of a diatomic mol- eralized the Stokes calculation by deriving the drag force on
ecule and the C—Cl stretch in GEI). In this paper we cal- a spherical particle executing harmonic oscillation in a vis-
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cous incompressible fluid. The velocity correlation functionThis approximation should be valid only when the two atoms
(VCF) corresponding to a frequency dependent frictionare well separated. In this free draining limit, the friction on

coefficienf the bond{, is half the friction on the single atom. The
free-draining limit has been used to model friction on inter-
LO@vw) _2 J'w o oSt (77 hal bonds.
(v(0)v(0)) o —leot+{(e)/m’ (i) The linear hydrodynamic theory was applied to the
based on the Boussinesq frequency dependent friction, stlbratlonal rell?é(anor(dephasmg and population relaxation

seen not to agree with Rahman’s molecular dynamic y M_etlu ?t al.” They mod(_al the d|§tom|c as a spherocylin-
der vibrating along the cylinder axis. They do not calculate

experiments. It was realized that on the time scale for mo- h locitv field set up by th lati h linder but
lecular translational motion, the fluid behaves viscoelasti- € velocily Tield set up by he oscillating sphero-cylinder bu

cally and the effects of compressibility are important. Zwan-instead argue that since there is no fluid in between the two
zig and Bixort modified the hydrodynamic equations in hemispherical extremities, the friction experienced by each

order to incorporate unsteady motion of the molecular Syshemlspherlcal cagand thus, the friction on the bonis half

tem. They demonstrated that simple hydrodynamic modeIH1at of the fricFion egp(-erienced by an oscillating sphere i_n
can successfully describe the full time dependence of thgnbounded fluid. This is true only Wh‘?”_ the bqndlength 1S
velocity correlation function. Zwanzig and Bixc@B) cal- V&Y large and the cross terms are negligible. This free drain-

culated the frequency dependent friction by solving the Iin_ing limit ig.no-res the Qetailed effect of th_e molecular struc_ture
earized hydrodynamic equations for a spherical particle ex2" the friction. Metiuetal. also considered a breathing
phere model, but the quantitative conclusions derived from

ecuting nonuniform translational motion in a compressibles_
viscoelastic fluid with general stick-slip boundary conditions.this model are the Samg'ls _
While not in quantitative agreement, this model reproduces (1) Smith and Harris**have used molecular dynamics
the qualitative features of the VCF in a Lennard-Jones ﬁuid_smulatlons to calculate the total force autocorrelation func-
In addition, ZB obtained the asymptotic long time tail in the tion for a single atom and relate this to the friction coefficient
VCF of an atom in a simple fluid as a natural consequence dfy Using the second fluctuation dissipation theorem. They
the hydrodynamic theory, in agreement with that observed b{’€" take the friction on the bond to be half the value calcu-
Alder and Wainwrighf Ernst et al” have shown that the ated for that of the single atom; that is, they invoke the free
longest livedt 32 term in the VCF of an atom in a simple draining limit even when the two atoms are close to each
fluid is independent of fluid structure and depends only orPther (small bond lengths They also use an autoregressive
the hydrodynamic properties of the fluid. It was shown latefProcedure to model the dynamic friction for single atom.

by Levesqueet al® that the agreement of the Zwanzig— In this paper we extend the linear hydrodynamic theory
Bixon theory with the computer results is improved if the t0 the calculation of dynamic friction on the intramolecular
frequency dependent shear viscosity determined from movibrational degree of freedom of a diatomic molecule. We
lecular dynamics simulations by calculating the transversé€Port a calculation of the dynamic friction on the bond of a

current fluctuation is used instead of assuming a simple Maxhor_nqnuclear dl{:\tomm molecule. We do not invoke the free-
wellian model. draining approximation.

It is more difficult to calculate the friction coefficient for Our calculations are based on the full effect due to the
a molecular bond than for the translational motion of anmotion of the total body in the fluid continuum. When the
atom? and whole body rotations of rigid molecules with bond length is small, the molecule is modeled as an almost
simpl€*'®and more complex shap&sBerne and Harp have spherical axisymmetric quadrupoledeformed sphere
proposed a method of calculating the dynamic friction onmode). For large bondlengths, the molecule is modeled as
single spheres using molecular dynamics metHdecently, two spheres oscillating along the axis of symme(ayalo-
more extensive molecular dynan{iD) calculations for the  gous to two dipoles radiating in a dispersive mediuhere-
friction on the bond have been dote®For example, if we ~ after called the two sphere model. In the hydrodynamic
consider a homonuclear diatomic molecule of reduced magd&eory, the local interactions between the atoms are averaged
u, the GLE for the intramolecular degree of freedancan by a set of boundary conditions on the surface of the atom

be written as and, as a consequence, one finds an unphysical cusp in the
graph of the VCF at short times, rather than a smooth para-
. IW(x) ftg (t= x(7)dr+F(1) ®) bolic behavior. We observe that the deformed sphere model
Ix 0~ ’ does not show a long-time tail in the VCF, whereas that of

the two sphere model does. In molecular dynamic experi-
ments, the forces vary continuously in space and time. The
friction coefficient calculated thus differs from the hydrody-
[{11— o] [Lon—Eonl namic friction coefficients since, in these theories, the forces
=——> = 5 : (9)  are essentially impulsivE. Following Madden, we subtract
the contribution due to impulsive collisions at high frequen-
Here {3, is the friction on atoma; when atoma,; is moving cies from the hydrodynamic friction for comparison to MD
and atom, is at rest, and;, is the friction on atona; when  results. The simple Maxwellian approximation of the vis-
atom a, is in motion and atormg, is at rest. In the free coelastic model used in the earlier hydrodynamic theories
draining model of bond friction, the cross terms are omitteddoes not suffice to produce the correct frequency dependence

whereW(x) is the potential of mean force ang(t) is the
dynamic friction on the bond.
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of the friction and the power spectrum when compared to thésothermal case can be transformed into a single vector-
MD results. We use Gaussian models with single relaxatiotdelmholtz equation, the detailed derivation of which can be
times for the bulk viscosity and with two relaxation times for found in the paper by Zwanzig and Bix8n,
the shear viscosity. These results are compared to some of 2 5 _
the molecular dynamic calculations done recently on a G ¥ ¥ V(@) =GV XVXV(w)+w™V(0)=0, (15)
simple liquid systef?~*°and the agreement is been found to where

be good. i ()
w w
c2=c2— 2 (16)
Po
Il. HYDRODYNAMIC MODEL and
The motion in an infinite fluid medium is governed by 2 _ long() 17)
the basic classical laws of conservation: the continuity Po

equation(the conservation of massthe force equatiorithe  gre the speeds of the longitudinal and the transverse waves,
conservation of momenturmand the heat-exchange equation respectively,o, is the equilibrium density, ane is the fre-
velocity, density, and pressure changes induced by a movingyhere, Alternatively, by Helmholtz's theor&hihe solution
atom in the fluid are small, these equations may be linearizegay pe written as the sum of the longitudinal velogiffw)

trary function U(t) of time. This can be Fourier analyzed (—yc,) andk, (=wlc,), respectively, such that,

into frequency components,,,

) V() +kivj(w)=0 (18)
U(t)=f dw U, e '“t (10 and
2 2 _
as can be the frictional forcg(t): Vv (@) +kv, (0) =0, (19
" with the conditions
— —iwt
F(t)—f_mdw F.e '“. (11) Vxv|()=0 (20
Because of the linearity of the equations and the boundar@nd
conditions involved, we may solve the differential equations  y.y (4)=0. (21)

with the boundary conditions for each Fourier component ) . ) .
individually. The compressibility conditiofffinite speed of ~The physical meaning ofj andv, becomes obvious if one
sound propagatiorequires that the divergence of the veloc- takes the spatial Fourier trg(r)]sformvH is along thek vector
ity vector be nonzero. The viscoelastic behavior of the fluigdndv, is perpendlcular to ﬁ_.

is accounted for by using complex frequency-dependent vis- | he Stress tensor is written as

cosity coefficients. For example, one can adopt Maxwell’s C|2
form for the longitudinal and shear viscosities o(w)= ﬂs(w)< 2— ?) V-v(w)+ (o) Vv(w)
t
(@)= 71 (12 +V()V] (22
me l-iwT @IV
and where #; is the shear viscosity of the fluid. The boundary
conditions on the surface are the kinematic condition,
= 0 [V(@)~U(w)]-A=0, (23
ns(w) T iwry (13

) ~ the general slip condition,
where 7,4 and 5, are the corresponding zero-frequency vis-

cosities andr and 7, are the corresponding viscoelastic re- f-o(w)-i= ' [V(0)—U,]-i 24)
laxation times. R @l

It shoulq t_)e noted that, at the frequenues of interest, 1 the radiation condition,
here, the fluid is expected to behave isothermally, so that the

temperature gradient is neglected and the gradient of the limv(w)=0, (25
pressure is r—e
JP where By, (0<fqp<) is the coefficient of slipfi andt are
VP= 7y Vp=C?Vap, (14  the normal and the tangential unit vectors, respectively, and
p U, is the velocity on the surface of the sphere. When

whereC is the isothermal speed of sound in the fluid at ag;,=0, the fluid slips perfectly over the boundary and for
given temperature and density. Bsip=2, it sticks perfectly to the boundary. At the molecular

The usual linearized Navier—Stokes equation along witHevel, the slip boundary condition has been found to be more
the continuity equation and the velocity of sound relation forappropriate.
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The hydrodynamic force exerted on the surface of the
sphere is obtained by integrating the stress tensor over the
surface of the sphere,

F,= 3€ o, ds=—{(w)-U,. (26)
sphere

Henceforth, in this paper, we shall be working with the Fou-

rier components of the unsteady variables and so, the sub-

script w will be suppressed.

A. Solution of the vector-Helmholtz equation in
spherical coordinates

The vector-Helmholtz equation with the boundary con-
ditions [(1.9—(1.11)] defined on the surface of a sphere is
separable in spherical coordinates in the sense of Helm-
holtz's theorem for vector field®,and the general solution in
terms of the spherical vector wave functions can be written
as

V= ;m Alz_rnmLanm+Ai\rﬂanonm'i_AgnmNanm- (27)

L ,nm is the longitudinal component

Lonm=K VLY gnmhn(kin)]1, (28)

andM ,,, andN,,, are the transverse components

M onm=V X[rY znmhn(kir) ], (29 FIG. 1. Deformed sphere as a model to fit the description of a homonuclear
diatom when the bondlength is smail=1+2e cog 6—xe as referenced to

Ngnm= kt_lvxwlonm- (30 r=_1.

These are written in terms of the solutions of the scalar

Helmholtz equation in spherical coordinate system, . in(kir)

Y nmhn(Kr), with Y, ., being the spherical harmonic of or- np=rn(n+1) K Pn(cos 6)

der (h,m) and parity o, and h,(kr) being the spherical

Bessel function of the third kind of order, also known as ~ 1 djna(kir) 3

spherical Hankel function. Since we will consider problems ke d(kqr) Pn(cosf). 34

involving only axisymmetric cases herey will be zero . . o
. : Thus, for the axisymmetric case, the velocity field for
throughout, and thus parity will then be redundantly even . ; .
the outgoing wave is written as

Moreover, there is no contribution from the torsional compo-
nentM, ., as we do not expect ang component in the

— L N
solution. The vectors , (Lg no) andN, (Ng 1) Will then be V_; Anbnt ANy . (35

simplified as ) - L Lo
We find the coefficientsA; and A, with the help of the
_dh,(kr ~ h,(kir boundary condition$Egs. (23)—(25)].
Lo=F —da(( rl)) Pn(cos 6)— 6 n|((r| ) Pl(cos6), (31) y $E0s. (2329
| |
B. Flow due to the surface oscillation of a deformed
- hn(ker h
Ny=fn(n+1) “f( ") b (cost) sphere
tf When the bondlength of the homonuclear diatomic mol-
~ 1 dhy(kr) ecule is small, the surface of the diatom can be thought of as
kr dkr) Pl(cos#). (32)  an axisymmetric perturbation to a sphesee Fig. 1 Its
t t

surface is assumed to vibrate axisymmetrically so that the
Aforementioned expressions far andN have singularities center of mass is fixed. Let the surface of the perturbed
at the origin and thus are the representations of the outgoingphere be
waves, as r.equired by t_he radiation .bound.ary conditic_)n. The r=a(1+2e cof 6)—xe (36)
corresponding expressions for the incoming waves involve
Bessel functions, in spherical coordinates with its origin at the center of the
undeformed sphere of radius e(<1) is a dimensionless
in(kir) parameter ana is the bondlength of the diatom. The term
kr 2ae cog 6 perturbs the sphere to a family of approximate

. djn(kin) .
|n—l' d(Tlr) Pn(COSQ)_G

Pl(cos®), (33
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spheroids anae further distorts this to produce the notch in where each/"™ satisfies the vector-Helmholtz equation
the diatom. The parametersand € are chosen to fit the

diatom such that CFVV-V(n)—CtZV XV xviW+ @2v(M=0. (41
R+x=a(l+2¢)—xe This can be verified by direct substitution of the expansion in
the vector-Helmholtz equatigrEqg. (15)] and then equating
and : ) . _— "
terms involving like powers of. The radiation condition
R=maxr cos ), (37 [Eq. (25)] gives, for each/™,
whereR is thg radius of the atoms. _ . imvW=0 for all n=0,1,2,3,... . (42)
The Fourier component of the velocity of the surface is, ,_«

U,=+Uoz for =0, Each of thev(W’s in the axisymmetric case has the form

U,=—Upz for z<0 (38

. . . ((R= - (n) (n)
which in terms of the Legendre polynomials, can be written Y Y(R=r[1+¢€f(a, 0)])_21( ALI(R) +BNK(R)
as (43

U,=UqZ[ § P1(cos6)—§ P3(cos )+ 15 Ps(cos ) —---]. with f(a,6)=(2 cog 6—x/a). To satisfy the boundary con-
(39  ditions, we expand the(™’s aboutr =a by use of the trans-

We consider the solution for the perfect slip c#8g,=0 in lational prop_erties of spherical wavésee the Appendijx

Eq. (24)], the perfect slipping boundary condition being The expansions fob{R=r[1+€f(a,6)]} and N{R=r[1

more appropriate at the molecular level. Happel andt €f(a,0)]} in terms ofL(r) andN(r) are

Brennef! have described a method for calculating the veloc- »

ity field for deformed spheres f_or time—ind_ependent flow. L (R)= 2 TﬁnL,),[k,ref(a,H)]Lm(r),

They make use of the Taylor series expansion about the un- m=0

deformed sphere. We extend their method to the time depen- . (44

dent problem here in order to avoid divergences at high fre-

guencies, since the special functions require careful Nn(R) = E Tm[ktrd(a’ 0)INm(1),

consideration for their asymptotic behavior. The velocity e
field v is assumed to have an expansion of the form WhereT%,{[k,ref(a,a)] and Tﬁ,?'g[ktref(a,a)] are functions
o of the spherical Bessel functions rather than the spherical
VZE ey (40) Hankel functions sincgef(a,d)|<1. Using the product
A=0 ' theorem of Bessel functiorfé,we can write

i[kref(a,0)] 2 < (2s+1+)I(s+1+3) .
%‘l:ﬁg EER SFi(—s,1+5+3/21+3/2 ef(a,0)1%)])+ 254 1(KI), (45

where,F,(—s,| +s+3/2,|+3/2;[ef(a, 0)]?) is the conflu-  which implies that the differential dragz/dQ) exerted on

ent hypergeometric function with argumenrf[a, 6)]2. the area elemerdt() having surface velocity,z is
Calculation to zero-order is easily done by using unper-

turbed vector waves to satisfy the boundary conditions on the % __ 0w oSO onr=a. (47)

unperturbed sphere. For higher order terms, we substitute d< Uo

these expansions in the kinetic boundary condifioh Eq.  he friction on the surface above thg plane is found by

(23)] and the general boundary conditifcf. Eq. (24)] with integrating over the surface = a,0< 6</2,0< $<27)
Bsip=0 on the surface of the undeformed sphere and then

equate terms involving like powers efto get the perturba-

w2 (27 Ty )
i . <p<mi2)=— ——a“ sin  cosod 6d
tion of thev field. Lio=o=mr2) J; fo Uo ¢

In order to calculate the friction opposing the motion of (48)
the perturbed sphere in tizedirection, we note that the dif-
ferential force exerted on the surface indirection on a

w2 o
. . . =-2 azf — sin # cosb de. 49
differential area elemerd(} is m ! (49)

o Up
Similarly, on the surface below they plane
d

0 o .
Q F-z=Z-0-n=0,, COS# onr=a (46) 5(,7,,2S9§0)=—27ra2J —Lsingcoso do. (50

— /2 UO

o
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Sincexy plane is the plane of symmetry with respect to the

boundary conditions, we must have P((Rr'g
Lio<o<m12)= {(— mi2<p=0) - (51)
We calculate the approximate frictiafy< < only to
first order, since the algebra becomes tremendously involved:
2
_ mans X aEe 2
fo=o=m2 =3 (1—iy))(l+ 3 Ol )) 2-ans
25B U -1t
__ 2 a® Upe-iot
32 } 52 .
with FIG. 2. Coordinates for two spheres oscillating along their axis of symmetry
with infinitesimal amplitude.
x=k@a, hy=h,(x), y=ka,
hy=ha(y) 3y+ 25N
= , = - = . - .
=ty LAP) region between the two atoms. The friction experienced by

h h each sphere is not only due to its own motion but also due to
2t 2 3 1l . ..
N=(— (16—x )—Zhn){gq’(Y)(th—4 ——3hy, the motion of the other sphere close enough to sufficiently
X y affect the total friction experienced by each of thish Eq.
hay 12 (9)]. This cross effect has been ignored in earlier motfetS,
+ 12—) } ~ 5x(hu —4hg)[3®(x)(2hy—3hz)—hy],  We calculate in this section the dynamic friction experienced
y by each of the spheres when they are oscillating with a phase

xhyy difference of.
5:(2hllh3t+3h3lhlt_ o (2hll_3h3l)>' It is not so difficult to obtain an exact solution for the
friction for either stick or slip boundary condition when time
y=®(y)(—y*=2iy+2)/(1-iy), dependence is ignored since then the biharmonic equation

satisfied by the stream function is separable in the bispherical
coordinate systerft Whereas, for the case of a time depen-
hoy 2l ) dent problem, the vector-Helmholtz equation is not separable
Ny= 16h1l( 2 x hh) _Xh2t(7 (40-x )_4hll) in the bispherical coordinate system. We exploit the linearity
of the differential equation and the boundary conditions and
utilize the method of superposition of fields about two cen-
ters to obtain the approximate solution.
Let a spheres, of radiusR, have its center at origi®
(53) and a spher&, of radiusR,, have its center aD’ situated a
0 distanced away on thez axis (see Fig. 2 Let a pointP(r,R)
have coordinate§ ,6,¢) and(R,®,®) with respect to origins
O andQ’ in spherical coordinate systems.
The solution for the two-center linear-field problem can
be written as the linear combination of the fields about dif-

B:N1/51

h
+2(24+x?)hy 72'

a

3 1 [ji[aef(a,0)]
q’(“)__( ef(a,0)

from Eq. (45).
To find the relation between the bond frictigp[c.f. Eq.
(9)] and {(p< g<2), We recognize that

C117 {12= {(0=0=m/2) (54  ferent centers
i; the friction on one of the faces dge to the gombined MO~ v/(r,R)=v(r)+V'(R), (56)
tion of both of the faces, one motion opposing the other.
Thus, the friction on the bond is where the fields(r) andv(R) can be written as linear com-
¢ binations of the spherical vector-wave functions about cen-
gxz(o%s’ﬁz) (55 tersO andO’. Thus
for the deformed sphere model. V(r,R)=; [Ath(r)JrAwNn(r)]

C. Flow due to oscillations of two spheres along the
line joining them + >, [BLLA(R)+BNNL(R)]. (57)
n

When the bondlength of a real diatomic molecule is suf-
ficiently large (about twice the Lennard-Jones radjuis is In order to satisfy the boundary conditions 8pandsS,, one
possible that a solvent atom can enter into the neck. Then theeeds to expand,, and N,, into multipole fields about dif-
single deformed sphere model does not suffice to describierent centers. We derive their translational properties in the
the diatom and one can think of the molecule as consisting ofppendix. The expansions far andN aboutO’ in terms of
two spherical atoms, so that fluid is allowed to penetrate thé andn aboutO are
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Lo(R)= 2 Tiin (ki) In(r),
(58)
n(R)= E Tran (k) n(1),

and the corresponding expansions forand N aboutO in
terms ofl andn aboutO’ are

Lo(r)= E T (ki) (R),

B. Mishra and B. J. Berne: Frequency dependent friction

V(N)=ANL(n+ANN (N +BMT, 8 (kd)lq(r)
+BMT NV (kd)ny(r),
V(R)=AMTE (kd)I(R)+AMNTN
Ni(R). (65)

Consider the case when the two spheres have equal radii
R,=Rp,=R and their Fourier components of the velocities
areUz and —Uz. Symmetry of the problem abouty plane
requires that

)(kid)ny(R)
+BYL,(R)+BNY

(59

Nn<r>=mE:0 Tion

(kid)nm(R).

With these expansions, we can write the field about cen-

terO as

A(lL): _ B(lL) ’
(66)
AN=_BN,
We also note that fon=m=1,
T4 (d) =T1 M (kid),
(67)

V(r)= 2 (r)+2 2 BLT ) (kid)

=0 m=0

Ln(r)+ANN

TN (kd) =T; M (k.d).

Now, the velocity field about cent® satisfies a much sim-

plified equation which must be solved to calculate the fric-

XIm(r)+BNT N (ked)npn(1). (60)  tion on spheres,, namely,
Similarly, about cente®’, the field is V(r)=AL[Ly(r) =T (kd)ly(r)]+AMNINy(r)
L - ~ T (kd)ny(n)] (68)
V(R):z’o mZ‘O AnTmn(Ki D Im(R) + Ay Tinn (kid) with the boundary conditions o8,
° v-n=U cos ¥,
XN(R)+ 2 BrLa(R)+BIN,(R). (61) P
"o Orp= S"p (v-t+U sin 6),
Since dipole—dipole(and induced dipole—dipoleinterac-
tions dominate, we shall keep only the=1 andm=1 term. limv=0. (69)

Then the representation of fields about two centers are

V(r)=ALL,(r) + AN, (N +BITi " (kd)ly(r)

r—oo

We calculate the velocity (r) from the above equations.

The friction is calculated from the stress tensor in the integral

+ B?Ti(l'\”(ktd)nl(r), (62) in Eq. (64). The value of friction on spherg, then is
V(R)=ALTH (kid) 13 (R) + AYTHY (kd)ny (R) {a=4mRng A >( " ) kiRhy + 2AMNK Ry, (70
+BiL,(R)+BYNy(R). (63) with
Let us look at the expression for the force experienced , _ kR,
by the spheré, in the z direction,
- hnt: hn(X):
Fsa-2=27-rR§f0 sin 6(o,, cosO— o, sin H)d6. (64) y=KkR,
hoy=ha(y) 7D
oy, ando, , depend org asP,(cos6) andPi(cos#), respec- ni=n(Y),
tively. Integration over the rang®,w) is nonzero only when 1 xhy, _ Xj1t
n is equal to one. Furthermore, the expansion’dR) about A(L)ZK H oy — W) - ( Jar— 2+ (Bai 75)
the origin O is regular insideS, (Bessel functions being sivl 75 sie/ 75
regular atr =0), and thus cannot produce a resultant force on 3h,(kd)
S, .2 Hence, we only need to know the coefficieA’ and X (kt—d }

AN for the calculation of the friction on the sphe®g. As
most of the contributions comes from the interaction be-
tween the dipolar term@=1 andm=1 terms of the expan-
sion, we retain only these terms for the calculation of coef-
ficients. Therefore, the expression for the field abOuand

O’ becomes

1
A<N)=K {[hz21=ja(ho(kid) = 2h,(kid) T},

and

A:A1+A2_A3_A4,
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Real{Drag}

0 20 40 60 80 100 120 140 160 180 200
Frequency (LJ units)

FIG. 3. Real part of friction for the two sphere model as a function of frequency for different distances between the spheres with fixed radii. Solid line,
d=2.10; dashed linesg=5.00; dashed small linesj=10.0o.

Ay ={2h, g+ hgthp+[xhy /(2+ Bgiip! 75)] tiqng. of long wa\(elength. Figure 3 sh_ows the real part of
friction as a function of frequency for different sphere sepa-
X (2hz—ha}, rationd, with fixedr with a Gaussian model of viscoelastic-

hy(kd) ity instead of the Maxwell forn(see comparison with MD
AZZ3[h0(kld)_2h2(kld)]<v)(ijlj0t+jolj2t results.
t In the limit of bondlength going to infinity, the terms

Xj1t ) containing Hankel functions with argumerikgl andk.d go
RES. L R— § P T
2+ (Bsiip! 75) (2ja—]jo) to zero. Thus, we get
i 4ans[(h xhy )(xz )
= - ' j = lim {y=—— T ol
Aalholkid) ZhZ(k'd)]<2“'h°‘+J°'h2‘ bop= IM La=—1 | | P2™ 25, T ||y | M
N xhy, 2i . ))
2+ (Baiplme) 21V ) + 2hgxhy, (73)
hl(ktd)) ( ' i Xj1t where
A,=3———=|| 2hoyjo+ hotjor + ——————
4 k.d 2tJot ™ NoiJ 2t 2+ (Baipl 79) h
XNyt
Am=(2h g+ P+ = (2hy—h )
X(2hg—hg) |. (72 2imor T ot 2+(,85|ip/773)( 2~ ha) 7

The expression fof,(w) can be written as a linear com-
bination ofe'*'? and 't and thus one observes oscillations
in the real and the imaginary parts of friction as a function of
frequency. As the distance between the spheres increases, @gn
amplitude of the oscillation and the period decrease in mag-
mtude_. This bghawor is characterlsn_c (_)f the v_|scoelast_|c L= 1= Ca. (75)
modeling and is absent when the fluid is not viscoelastic.

Such oscillations are not found in the molecular dynamicsThus we find,
simulations. These oscillations are due to the unphysical na-
ture of the boundary conditions at finite frequencies. More- _{a
. : : : =% (76)
over, the hydrodynamic equations describe collective mo- 2

which is the result obtained by Zwanzig and Bixon for a
single sphere in an unbounded fldfd.

The dynamic friction{, (Eq. 70 can be related to the
d friction in Eq.(9) by recognizing that
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Decay factor for the VCF (Two Sphere Model)

1 1 1 1 1 1 1 1 1 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
R/d

FIG. 4. Decay factor for the velocity correlation functidig. (85)] as a function ofR/d, the ratio of atomic radius and bond-length for the two sphere model.

for the two-sphere model. If the two atoms are well separated 1 )
(d—), the cross frictiong{;,={,;) are almost zero. Then, §x(w)~27Rﬂs( (1-a)+ 3 (a+(RId)"=2)
the friction on the bond is equal to

. 1+i
d|Im g“x: gsp/2. (77) X(277—)l,7 (pow)llz) y (81)
— 0 S
Lspis the friction experienced by single sphere in absence ofvhere
the other sphergsee Eq(73)].
phergsee Eq(73) a=2(RId)— 2(Rid)2+ (RId)3— X(R/d)®. 82
D. Limiting behavior of friction Thus, in this case, the VCF hag @*? long-time tail:

1. Low frequency behavior

@OpM)  u [2—a—(R/d>2]<nswt w3

. . . . (v(0)p(0))  4Rpy  3(1-a) po |
The relation between the velocity correlation function (83

and the frequency dependent frictfas

In the limit of bondlength going to infinity, the VCF decays

v(0)v(t 2 cos wt
<<v((0)v((0)> f do S i o)n g
X | (v(0)v(t)) w [ pert) 32
Let us consider the deformed sphere model first. At very low d'"l (v(0)v(0)) - 6Rpo | po (84)
frequencies, the friction on the bond(w), is linearly de- -
pendent on frequency, as noted by Zwanzig and Bixon for a single sphere éase.
~a+tbao+ 3/2) 79 As we .know,. the long time tail in.the VQF qf an un-
{(w)~atboto(w™) 79 bound particle arises from the convective motion in the fluid
Consequently, from Ed78), set by an unsteadily moving sphere. The fluid elements in
(v(0)u(1)) d front of the sphere move out and to the back so as to enforce
W ’5(t)+b’ 5(t)+ (80)  the motion of the sphere in its own direction of movement.

This is also true when we have two spheres, only now the
we see that, asymptotically, the VCF appears to have no longnforcement gets enhanced by a factor which is dependent
time tail, in contrast with the behavior reported by Alder andon the distance between the spheres. Intuitively, we can think
Wainwrighf on hard spheres. For the two sphere model, abf replacing one of the spheres by a wall in front of the other
low frequencies, the expression fy(w) for the perfect slip  sphere which pushes the fluid in front of the sphere to the
case(Byp,=0) turns out to be back more efficiently,
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20 T T T T T T

Real and Imaginary parts of friction

0 20 40 60 80 100 120 140 160 180 200
Frequency

FIG. 5. Real and Imaginary parts of frequency dependent friction for single solvent atpmlab5 compared to analytic fit from the MD experiment of
Straubet al. (Ref. 15 for the same case. Solid and dashed lines, the real and the imaginary parts from MD; diamonds and crosses, the real and the imaginary
parts, respectively, from hydrodynamic the¢Bg. (77)].

0.045 T T T T T T

0.035

0.025

Frequency Spectrum

0.015

0.005

& N 'y 'y 4

0 20 40 60 80 100 120 140 160 180 200
Frequency

FIG. 6. Frequency spectrum of the velocity correlation function for single solvent atpmBa05 compared to analytic fit from the MD experiment of Straub
et al. (Ref. 19 for the same case reported in Ref. 13. Broken line, MD; diamonds, hydrodynamic theory.
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FIG. 7. Comparison of zero frequency value of the bond friction as a function of the bondlépgtfiw=0) of a diatom. Hydrodynamic calculation vs the
molecular dynamics result obtained by Straital. (Ref. 14. Diamonds, Strauket al. (Ref. 14, boxes, deformed sphere model; crosses, two sphere model.
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FIG. 8. Comparison of real part of the frequency dependent friction on the bond at bondterfg@b LJ units forp=1.05. Hydrodynamic calculation vs the
molecular dynamics result obtained by Bewteal. (Ref. 13 Bold line, MD result; thin line, hydrodynamic result.
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[2—a—(R/d)?] . In the earlier hydrodynamic models for calculating the
<U(0)v(t)>~w lim(v(0)v(t)). (85  frequency dependent friction coefficitt,the Maxwell's
d—e form of viscoelasticityf cf. Egs.(12) and(13)] has been used.
This enhanced factor has been plotted against the Ritlo We find that the important structural features at finite fre-
in Fig. 4. The factor is a monotonically increasing function quencies in the atomic friction obtainggq. (76)] are absent
of R/d and is maximum wheiR/d is maximum(touching (see Ref. 13, Fig. 6if we use the simple Maxwell form of
casg. In the case of the deformed sphere model, no fluid cawiscoelasticity with four adjustable parameters for the shear
penetrate between the two lobes of the diatom. As a conseénd the bulk viscositiesy(t) and 7 (t). Since it is known
guence, one does not see any enforcing convective behavithrat the Gaussian forms best describe the qualitative nature
and there will be no long time tail. of relaxation of the shear and the bulk viscosities in the
simple liquids® we anticipated that missing structural fea-
tures might be recovered if we use a more realistic Gaussian

2. High frequency behavior model instead. After trying various combinations of Maxwell
In real molecular fluids with continuous forces and Gaussian forms, we find that the following form with six
) adjustable parameters seems to be best:
lim J,(w)=0. (86)
0o 75(t) = ns(0) [ exp( — t?/ 72)) + (ash)* exp(—t7/75)],
In contrast, in hydrodynamic calculations the high frequenc
friction is nonzz;ro. Iglor example, in the caseg of tk?e twg m(t) = m(0)exp —t?/ 7). (89)
sphere model, whem—, the real part of friction on the The Laplace transform of these Gaussians involve
bond approaches a finite value, Fresnel's integral and we do the transform numerically. In
(c™)+2¢)) the MD experiments, the forces considered are smooth func-
. | t . . . . ..
lim ¢ (w)=27R%p, — 3 (87)  tions of space and time and purely impulsive collisions are
% not present. In contrast, in the hydrodynamic theory, the
where for the perfect stick case forces are impulsivé®? Thus, to reduce our expressions for
the frequency dependent friction to those of the MD simula-
wa)=C|(w—>°°), tions at high frequencies, we subtract the impulsive part

(88 [which is constant and real in the limit of infinite frequency,
c.f. Eq.(87)] from the total frequency dependence
A similar argument is applicable for the deformed sphere
modeL gbono(w) = gx( (1)) - gx(oc) . (90)
At short times in real fluids the local interactions becomegi,st we fit our single particle frictiorid— in the expres-

important and the boundary conditions in the hydrodynamicsjon, for the friction on the bond from the two sphere model,
description do not take these interactions into account. AEq. 70 to the MD results given by Strauét all® Straub’s
very short times, if we apply kinetic theory of gases andanayytic fit to the time dependent single particle friction ob-
calculate the pressure exerted by an ideal gas having thgjned from MD is numerically fourier transformed to get the
speed of sound,,=(ci"+2¢;)/3 and densityp, on @ mac-  rea| and imaginary parts of frequency dependent friction and
roscopic sphere of radiu, it is easy to see that this pressure yne frequency spectrum of the velocity correlation function at
is proportional to the limiting value of the friction calculated ygqyced densitiep=1.05 and 1.0 and the reduced tempera-
in Eq. (87). However, kinetic theory based on hard spherey,;e T=2 5. We need to adjust the seven parameteeszero
interactions also has discontinuities. frequency values of the Laplace-transformed viscosities and
their relaxation parametersy g, 79, 7|, Ts1» Tsps &g and
the velocity of souncC) required to described the continuum
fluid. The radius of the atom is taken to b&, whereo is
the LJ diameter of an argon atofa@=0.3504 nm. Since a
Recently, the dynamic friction on the bond of a diatomiclarge number of parameters are needed to fit the curves, there
molecule in a heat bath of argon atoms has been calculatédl no straightforward way to fit them except by trial and
using the molecular dynamic meth&ti®The frequency de- error. However, to begin with, the reasonable guess is the one
pendent friction and the frequency spectrum of the velocityreported by Metiuet al® The maxima and minima in these
correlation function as functions of bondlength have beercurves are fit by varying the relaxation parameters. The ve-
reported. In Sec. I, we derived the expression for the dyiocity of sound affects the fit only in the low frequencies
namic friction on the bond using the equations of linearizedregion. We also keep in mind the fact thag can be no less
hydrodynamics with the more realistic slip boundary condi-than 45.,/3, an important requirement which follows from
tion appropriate at the molecular level for the distorted-hydrodynamics. Once we have obtained these parameters for
spherdcf. Eq. 52 with Eq(55)] and two-spherécf. Eq.(70)  best fit for a certain density, they are used to calculate the
with Eq. (76)] models for small and large bondlengths, re-friction on the bond at that density for both modéthe
spectively. We now compare our hydrodynamic results tadistorted sphere model and the two sphere moddle val-
molecular dynamic simulations of a diatomic molecule dis-ues of these parameters at the reduced depsity.05 are
solved in a simple fluid. found to be

ng)zct(w—wo).

IIl. COMPARISON WITH MOLECULAR DYNAMICS
RESULTS

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



1172 B. Mishra and B. J. Berne: Frequency dependent friction

70=10.6x10"3 P, IV. CONCLUSION

Linearized hydrodynamic theory has been used to study

=6.91x103 P, , : , S
150 rotational line shapes, dynamics of polymers and atomic dif-

=1.11x10°18 g fusion with fair degree of success, which motivated us to use
Ts1 . ) C . . .
this simple theory to do the calculation of the dynamic fric-
T=2.36xX10"13 s, (91 tion on the bond of a diatomic molecule. There already exists
13 an attempt to compute this function using molecular hydro-
1n=2.35X10 "7 s, dynamics based on the free draining liftfitBerne and

co-worker$®~® have shown from molecular dynamics that

— 12 1
@s=2.71X10°% s, the free draining limit is not valid for the treatment of di-

c=8.0x10* cm/s atomic molecules. They showed that the friction coefficient
’ depends on bondlength. The purpose of this paper is to cal-
and atp=1.0, culate the dynamic friction on the bond using more accurate

boundary conditions. We have treated the hydrodynamic in-
teraction between parts of the molecule using two different
sets of boundary conditions:—a two sphere model and a de-
formed sphere model. Both of these models give dynamic

70=8.69x10"3 P,

7=5.45x10"3 P,

7=1.11x10"1% s, friction coefficients that depend on bondlength. The static
friction on the bond w—0) can be calculated within reason-

T=2.36X10713 s, (92 able approximations using these models. However, at high
frequencies(at short timep the linearized hydrodynamic

7=2.36x10" " s, theory departs from the computer results because of the un-

_ 12 1 physical nature of the hydrodynamic boundary conditions.
as=2.57x 1077 s, The two sph del sh hysical oscillations at finit
phere model shows unphysical oscillations at finite
c=7.0x10* cm/s. frequen_cies, because the viscoelastic continuum penetrates
the region between the two spheres. The deformed sphere
We show the comparison plots for the real and imaginarymodel, however, does not show such undulations, because
parts of the friction on the bond for the case of the freethe continuum fluid cannot penetrate the diatomic molecule.
draining limit atp=1.05 in Fig. 5. Figure 6 shows the cor- Consequently, the deformed sphere model gives a qualita-
responding frequency spectrum of the velocity correlatiortively correct picture at all frequencies only after a correction
function [the integrand in Eq(78)]. It can be seen that we [c.f. Eq.(90)] is made for the unphysical infinite frequency
recover the missing structural features of the frequency ddimit found in any hydrodynamic model. The Gaussian
pendent friction at finite frequencies for the case of freemodel for viscoelasticity is needed to correctly reproduce the
draining by using the Gaussian form for viscoelasticity. Thefriction calculated for a single atom at all frequencies. When
static friction (w—0 valug for different bondlengths at this is done, the deformed sphere model predicts a dynamic
p=1.0 is compared to the results of Straetoal X in Fig. 7. friction on the bond in reasonable agreement with molecular
The maximum in the zero frequency friction occurs at adynamics.
bondlength of about 1.7 LJ units where the deformed sphere The perturbation method for calculating the velocity
model breaks down. The bondlength is sufficiently large sovector used in the paper can easily be generalized to more
that atoms can move into the neck of the diatom, then theomplicated geometries to study low frequency, long wave-
two sphere model becomes more appropriate. The compariength molecular phenomena such as rotational dynamics or
son plot for bondlengtix=1.25 LJ units for the real part of dynamics in polymers.
friction as reported in the paper by Beraeal ¥ is given in

Fig. 8. At this bondlength, the distorted sphere model shoulthppENDIX: TRANSLATIONAL PROPERTIES OF

be appropriate as can be seen from the static friction ploéPHERK:AL VECTOR-WAVE FUNCTIONS
(Fig. 7). Qualitative, but not quantitative, agreement is found

especially at high frequencies. The molecular dynamic fric- ~ The translational properties of scalar and vector wave
tion is found to decay slower than the hydrodynamic friction.functions can be derived from the expansion formula for
The large disagreement at high frequencies may be attributdiane waves in spherical coordinafés®We report here the
to the absence of high frequency modes in the hydrodynamiEeSU“S with some details of derivation. The expansion for-
model which does not include the molecular level interactionmula for the plane wave in spherical wave about ori@in

in the boundary conditions. The same can be concluded frorffee Fig. 2is

the two sphere model. In Fig. 3 we observe oscillations at © . n
high frequencies. This is due to reflection of sound waves — e'*'= > Ami"Y (0", )Y (0, h)jn(kr),
between the boundaries of finitely separated spheres. The n=0 m=-n

amplitudes of these trapped waves become smaller as the (A1)
separation between the spheres grows. Thus, the two sphemberek has coordinategk,6',¢') aboutO and those of,
model also fails to correctly describe high frequency behav{r,6,¢). We start with the vector equatigwith R: (R,0,d),
ior for large bondlengths. d: (d,n,¥), andd>max[r,R] ]
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r=R+d, (A2)
and therefore,
eikr — gik-Rgik-d. (A3)

Then we have, using Eq474),

% Y|*m(t9’,<!>’)Y|m(t9,¢))j|(|<r)=§1 YEM(0l1¢’)YLM(®1®)jL(kr)>\EM Yiu(0",8)Y (7. ) jn(Kr). (Ad)

Multiplying both sides byY,,(¢',¢') and integrating oves’ and ¢', we get

o (27
V(0.0 kD=3 3 4wi““'m<w)jx<kd>YLM<®,<I>>jL<kR>fO fo Sin 0’ 46" g’ Yim(8',")YE(0', ')
L Lm

=2 Yim(0,®)j (KR[i'S . im(kd, 7,4)] (A5)

LM

with

I L A I L A
sLM,|m<kd,n,¢>=§4wi“L'Yw<n,¢>jx<kd><—1>m[<2|+1)<2L+1><2x+1>]“2(0 0 O)(_m M #)
(A6)
where

I L A
-m M u

is the Wigner 3} symbol. It is noticed here that sin&és in our case are complex numbers, the translational operators are no
longer unitary.

When one considers the outgoing fiedd, (#, #)h,(kr) about the centeD, in order to have correct convergence behavior,
the expansion fod>max[r,R] is

Y|m(9,¢)h|(kr):% Y m(©,®)j (KR)[I'S u im(kd, 7,4)] (A7)
with

_ AL m 1/2| L A I L M\

Stuan(kd7,) = 47, Py (kAT DL D@D o ol )

(A8)
Then, for the longitudinal component of the wave-vedtqy, we have the expression

Lolm(r):kl_lv[YalmhI(klr)]:kl_l% V[YLm(@).‘P)JL(k|R)][i'SLM,|m(kd.ﬂ,lﬂ)]:% [i'SLmm(kid, 7,4 1L oL (R).
(A9)

This follows from the fact that the gradient operator is invariant under coordinate transformation. For the torsional wave-vector
componenM,,,, we have

Molm(r):Vx[rYUImhl(ktr)]:V[Yolmhl(ktr)]xr:% [i'SLmim(kid, 7, 4) VLY LM (0, @)L (kR) ] X (R+d)

=§ [i'sLM,.m<ktd,n,«m]MLM(RH% ['SLmam(kid, 7,0 1V Y Lu(©,®)j L (kR)] xd. (A10)

Because of the divergenceless condition, we can write relaAs N~VxM andM~VxN, we also have
tion (A10) as

M im(r) = % [aLm,im(Kd, 7,)M 5 m(R) Ngim(r)= % [ m,im(Kid, 7,) Ny m(R)
+ Bim,im(Kd, 7, )N m(R) 1. (A1l + Bimim(Kid, 7, )M u(R)], (A12)
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where a; y |, and By |, can be evaluated in terms of the TPk d)=(—-1)""'TH (K d),

Sim,im - For the axisymmetric case, the expansions turn out

to be

L|<r>==§ TV (kdIL(R)] (A13)

with
I+L
T (kd)=(2L+1) ; (-1 l2n+1)

(I L A2
(A14)

Xlo o 0) hy (kid)

and

N|(r)= E TV (kd)nL(R)] (A15)

with
l+L

TN (kd)= 2L+1) ;| DHLEI2N+1)
L

X[1(1+1)L(L+1)]"?

X[124+1+L2+L—(A%+\)]

I L A\2
Xlo o o Mkd).

Forl=L=1, we have, for translation fro®’ to O,
T (kid) =ho(kid) — 2hy(kid),

(A16)

TV (ked) = ho(ked) + hy(ked). (A1D)

For translation fronD to O’, we use the vector relation with
d——d,

R=r—d.

One finds, for the axisymmetric case.

(A18)

(A19)
TV (kd)= (- 1) * TNV (k,d).

Thus, forl=L=1

T (kd)=TH (kd),
(A20)
T M(kd) =T (kd).
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