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An efficient molecular dynamics~MD! algorithm is presented in this paper for biomolecular
systems, which incorporates a novel variation on the fast multipole method~FMM! coupled to the
reversible reference system propagator algorithm~r-RESPA!. A top-down FMM is proposed which
calculates multipoles recursively from the top of the box tree instead of from the bottom in
Greengard’s original FMM, in an effort to be more efficient for noncubic or nonuniform systems. In
addition, the use of noncubic box subdivisions of biomolecular systems is used and discussed.
Reversible RESPA based on a Trotter factorization of the Liouville propagator in generating
numerical integration schemes is coupled to the top-down FMM and applied to a MD study of
proteinsin vacuo, and is shown to be able to use a much larger time-step than the standard velocity
Verlet method for a comparable level of accuracy. Furthermore, by using the FMM it becomes
possible to perform MD simulations for very large biomolecules, since memory and CPU time
requirements are now nearly of order ofO(N) instead ofO(N2). For a protein with 9513 atoms~the
photosynthetic reaction center!, the efficient MD algorithm leads to 20-fold reduction in CPU time
for the Coulomb interaction and approximately 15-fold reduction in total CPU time over the
standard velocity Verlet algorithm with a direct evaluation of Coulomb forces. ©1995 American
Institute of Physics.
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I. INTRODUCTION

Molecular dynamics simulations of biologica
macromolecules1,2 are computationally demanding, owing t
the large number of particles, as well as the complex nat
of their associated interactions. There are generally two
proaches to simplify this enormous computational proble
One is to use simpler physical models for the protein, t
other is to develop more efficient theories or numerical me
ods without modification of the physical model. In this pape
we will focus on the second approach, that is to deve
some numerically more efficient methods to reduce the co
putational burden.

The most time-consuming part of the simulation is th
calculation of the long-range pairwise Coulombic forces. T
computational complexity for these Coulombic interactio
scales asO(N2), whereN is the number of particles. Since
the interaction decays with distance asO(r21), it is normally
not appropriate to use short cutoffs for electrostatic inter
tions, especially for large proteins where the long-range
fects of inhomogeneous charge distributions are though
be important.3,4

The second most time-consuming part of the simulati
arises from the small time steps required to accurately so
the equation of motion for the stiff bond stretch and bo
bending vibrations, even though one may be primarily int
ested in events that occur over a much longer time scale
standard numerical integration methods, such as those of
Störmer–Verlet variety,5,6 one is generally required to use
time step smaller than one femtosecond in order to maint
an acceptable level of accuracy in the integration of the eq
tions of motion.
9444 J. Chem. Phys. 103 (21), 1 December 1995 0021-9606
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There have been a number of efforts to solve the first
problem, i.e., to reduce the computational complexity for the
electrostatic interactions. Hockneyet al.7 proposed a
particle/mesh method to address this problem by using a
mesh over the computational domain. The source density i
interpolated at the mesh points, then the Poisson equation
solved to obtain the potential values on the mesh, and the
forces are computed from the potential. The computationa
complexity is thus reduced fromO(N2) to O~N logN!. The
mesh provides only limited resolution and highly nonuni-
form source distributions cause significant errors. To im-
prove accuracy, a particle–particle/particle–mesh method
was developed,8 in which the potential arising from short-
range interactions is calculated directly. Appel9 and Barnes
et al.10 developed a ‘‘tree code’’ method in place of the grid
methods, in which the computational region is organized into
a tree structure. The tree structure makes it possible to de
velop a rapid systematic procedure to determine which par
ticles are ‘‘distant’’ from each other. By exploiting the fact
that a particle interacts with a distant group of particles much
as if it were interacting with a single particle at the center of
mass~monopole! of the distant group, the complexity is also
reduced toO~N logN!, although there is again some loss of
accuracy by using the monopole approximation.

Greengard and Rokhlin11 then developed the fast multi-
pole method~FMM! based on the ‘‘tree code’’ idea, but with
higher-order multipoles in addition to the simple monopole
approximation. The FMM method first organizes multipole
representations of charge distributions in hierarchically struc-
tured boxes, then transforms those multipoles into local field
expansions, so that each particle interacts with the local field
/95/103(21)/9444/16/$6.00 © 1995 American Institute of Physics
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9445R. Zhou and B. J. Berne: New molecular dynamics method
generated from distant particles. The multipoles are gen
ated by direct calculation in the lowest level and success
shifting from lower levels to upper levels. In this paper, w
propose a top-down recursive method in generating the m
tipoles in the hierarchical box tree, in which the multipole
are calculated recursively from the top of the tree instead
from the bottom as in Greengard’s FMM method. At ea
level of the tree, the method first looks for charged partic
in every box. If there is no charged particles in a particu
box, then the multipoles and local field expansions for th
box and all its subdivided boxes, are assigned automatic
to be zero without any further calculations. This is mo
efficient for nonuniform or noncubic systems, such as p
teins.

A variety of techniques have also been introduced
address the second problem, i.e., to increase the time ste
MD simulations. One common approach is to constrain bo
lengths using either the SHAKE or RATTLE algorithms.12,13

Although application of these methods allow for a mode
increase in time-step, time-dependent quantities may
affected.14,15Additionally, the constraint methods have bee
shown to work poorly for bond angle degrees of freedo
when applied to macromolecules.14

Another approach to increase the time step in MD sim
lations is that of the multiple time-step methods.16 These
methods are based upon integration schemes that allow
different time steps according to how rapidly a given type
interaction is evolving in time. Teleman and Jo¨nsson17 intro-
duced an algorithm whereby the slower degrees of freed
are held constant for a number of smaller time steps, whic
usually called the long-range constant force approximati
This method has, however, been shown to lead to the ac
mulation of numerical error in calculated quantities.18,19 Al-
ternatively, Swindoll and Haile20 introduced a procedure
which uses a Taylor series approximation for the less rapi
evolving forces. Although this algorithm has been shown
give some improvement in CPU times for simple system
such as alkane chain liquids,20 it is not yet evident whether it
would be computationally advantageous in the case of m
romolecules. In this paper, a multiple time-step algorithm
designed specifically for macromolecular simulation whi
uses a combination of time steps of different lengths to in
grate interactions which evolve on different time scales. T
algorithm is essentially a generalization of the previous
introduced reversible reference system propagation al
rithm ~r-RESPA!,21 which employs a Trotter factorization22

of the classical Liouville operator as a means to derive
numerical propagation scheme for the system. This r-RES
scheme is a time reversible, symplectic~measure conserving
in phase space!, and highly stable integrator. This approac
has been shown to be considerably more efficient than s
dard techniques when applied to simple systems or sm
proteins.19,21,23,24

In this paper, we will present a new efficient MD algo
rithm, which uses the top-down recursive FMM with nonc
bic box subdivisions and reversible RESPA. A brief descr
tion of the theories will be summarized in Sec. II, followe
by the computational implementation in Sec. III. Section
will give some results of the application of the algorithm
J. Chem. Phys., Vol. 103,
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MD simulations for proteinsin vacuo, and Sec. V contains
the conclusion. It is shown that the new MD algorithm is
much more efficient than the standard methods. For a protei
with 9513 atoms, the CPU time is reduced by a factor of 20
for the electrostatic interactions, and about 15 for total MD
simulations with a comparable level of accuracy compared to
velocity Verlet method.

II. THEORY

A. The fast multipole method

The fast multipole method~FMM! was introduced by
Greengard and Rokhlin.11 It is an efficient method for evalu-
ating Coulombic interactions between a large number of par
ticles. The CPU time increases linearly [O(N)] rather than
as square of the number of particles [O(N2)]. In this section,
a top-down recursive method is proposed for multipole gen
eration. The method is based on White and Head–Gordon
simplified derivation.25

The basic principle of FMM is rather elegant. It interpo-
lates the potential and force on a particular charge due t
distant charges not by direct calculation, but by using the
local expansion of fields produced by the multipoles gener
ated from those distant charges. If first organizes multipole
representations of charge distributions in hierarchically struc
tured boxes, then transforms these multipoles into local field
expansions. Each particle then interacts with the local field to
count the interaction from distant particles. In this method
the short-range interactions are calculated directly. The po
tential ~and force! consists of two parts:

F~x!5Fmultipole~x!1Fdirect~x! ~1!

whereFdirect contains the short-range interparticle interac-
tions, Fmultipole contains the contribution from distant par-
ticles.

Before giving the detailed mathematical formulas for the
FMM, it may be useful to define some parameters and ‘‘ter-
minology.’’ Three parameters~n,p,ws! are used in FMM:n
represents the number of levels in the box tree, where th
system is divided into 8n lowest-level boxes;p is the number
of terms used in the multipole expansions,~e.g., p52 in-
cludes contributions up to quadrupole, andp54 includes
contributions up to hexadecapoles!; ws is the parameter
which defines well-separated boxes, where ws51 indicates
thatFdirect includes the contribution from the box itself and
its 26 nearest-neighbor boxes, and ws52 indicatesFdirect in-
cludes contributions up to the second nearest-neighbor boxe
at the lowest level in the tree. Box level 0 specifies the larg
est box which holds the whole system, while box levell11
is obtained from levell by subdivision of each box into eight
smaller equal-sized boxes. A tree structure is then impose
on this box hierarchy. The eight boxes at levell11 obtained
by subdivision of a box will be referred to itschildren, and
the levell box is called theirparentbox.

We now turn to the theory of FMM. The method is based
on the the expansion of the Coulombic potentials in multi-
poles. For two unit charges atr ~r ,u,f!, and a~a,a,b! the
potential may be written as
No. 21, 1 December 1995
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1

ur2au
5(

l50

`

Pl~cosg!
al

r l11

5(
l50

`

(
m52 l

l
~ l2m!!

~ l1m!!

al

r l11 Plm~cosa!

3Plm~cosu!e2 im~b2f!

5(
l50

`

(
m52 l

l
~ l2umu!!
~ l1umu!!

al

r l11 Pl umu~cosa!

3Pl umu~cosu!e2 im~b2f!, ~2!

whereg is the subtended angle betweenr anda (a,r ). The
expansion separates the coordinates of the two particles
terms of associated Legendre polynomials. After redefini
the associated Legendre polynomials,25

P̃lm[~ l2m!!Plm ~3a!

P5 lm[
1

~ l1m!!
Plm , ~3b!

the multipole moments and electric potentials can be e
pressed more compactly.25 We can now define the moments
of a multipole expansion about the origin~the box center! of
a charge~or charge distribution! at a as

Mlm~a!5al P̃lm~cosa!e2 imb, ~4a!

Mlm~q;a!5qMlm~a!, ~4b!

Mlm~Q;A!5( Mlm~q;a!, ~4c!

whereMlm~a! are the multipole moments about an origi
~such as a box center! for a unit charge located ata with
respect to that origin,Mlm~q;a! are the multipole moments
for a chargeq at a, andMlm~Q;A! are the multipole mo-
ments for many charges in a box expanded around a comm
origin ~box center!. We use capital letters to denote collectiv
sets of charges and positions in a box. Since these multip
momentsMlm~Q;A! are all expanded with respect to th
same origin, they can of course be summed directly.26 The
corresponding Taylor coefficients for a local field expansio
of the potential due to a charge~or charge distribution! at r
are then

Llm~r !5
1

r l11 P5 lm~cosu!eimf, ~5a!

Llm~q;r !5qLlm~r !, ~5b!

Llm~Q;R!5( Llm~q;r !, ~5c!

where the indices have the same meaning as those in
multipole moments, except the charge is now located ar
respect to the origin. Then the potential atr due a charge at
a, or vice versa, could be expressed as
J. Chem. Phys., Vol. 103, N
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5(

l50

`

(
m52 l

m5 l

M lm~q;a!Llm~r ! ~6a!

5(
l50

`

(
m52 l

m5 l

M lm~a!Llm~q;r !. ~6b!

The expansion of above equation is exact in the limit of
an infinite sum. However, it is normally not necessary to add
up very high-order multipoles or local expansions, and a
truncation ofp53 or p54 is usually sufficient for simula-
tions which do not require extraordinarily high
accuracies.11,27Also, it has been shown that the same level of
truncation is appropriate for both the multipole and the loca
expansions.

The essential idea of FMM is to build a hierarchical
structure of multipoles, a tree structure, with each multipole
containing the contribution of a subset of charges of limited
spatial extent. The smallest box on the lowest level of the
tree will then contain only a small number of particles~3–
20!. The boxes on successively higher levels~parent boxes!
are the union of eight lower level children boxes, until one
single box on the highest level contains all other boxes, an
therefore all charges.

The multipoles associated with lowest level boxes are
calculated according to Eqs.~4a!–~4c! directly. Multipoles of
higher level boxes are calculated not from charges, but from
the shifting of lower level multipoles. This is usually called
an ‘‘upward pass,’’

Mlm~Q;A1b!5(
j50

l

(
k52 j

j

Tlm, jk
MM ~b!M jk~Q;A!, ~7!

whereb is the displacement of the multipole expansion cen-
ter andTlm, jk

MM is the shift translation operator for multipole to
multipole

Tlm, jk
MM ~b!5Ml2 j ,m2k~b!. ~8!

The new version of FMM proposed here, the top-down
recursive FMM, however, calculates multipoles recursively
from the top of the tree instead of from the bottom as in
‘‘upward pass’’ in FMM. It is a top-down recursive genera-
tion of the multipoles specially designed for biosystems,
such as proteins, since these biomolecules are usually no
uniform and noncubic systems. By using the top-down gen
eration scheme, it is easier to cut some ‘‘branch’’ of the tree
if there are no charges in it. At each level in the recursive
calculation, it first looks for charged particles in each box. If
the number of charges in a box is zero then it skips all mul-
tipole calculations for the box, its children, grandchildren...,
as well as all the corresponding local field translations de
scribed below. The top-down recursive calculation allows
this pruning operation systematically, which is more efficient
for noncubic or nonuniform systems.

After the multipolesMlm of all boxes are obtained, a
local expansionLlm is constructed for each box, describing
the potential inside the box caused by all distant charges

Llm~Q;A2b!5(
j50

`

(
k52 l

l

Tlm, jk
LM ~b!M jk~Q;A!, ~9!
o. 21, 1 December 1995
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9447R. Zhou and B. J. Berne: New molecular dynamics method
and the transformation operator is

Tlm, jk
LM ~b!5Ll1 j ,m1k~b!. ~10!

Another essential idea in the FMM is the efficient use
higher-level local expansions to reduce the effort in sub
quent transformations, since these transformations are
most CPU time consuming calculations in the FMM. T
local expansions for a given leveln are actually calculated
using

Llm
~n!5Llm8

~n!1Llm
~n21! , ~11!

whereLlm8
(n) is the local expansions from the present leve

~level n! multipoles which are not already contained
Llm
(n21). For example, if there is a boxB1 at a given level,

only the multipoles in boxes at this level which are w
separated fromB1, but are not well separated fromB1’s par-
ent are transformed into local expansions inB1. The number
of these multipoles is never larger than 632335189 for
ws51, and 1032535875 for ws52.

The shift of a higher level expansion to a lower level
done much like the multipole shifts from a lower level to
higher level. This is usually called a ‘‘downward pass,’’

Llm~Q;R2b!5(
j5 l

`

(
k52 j

j

Tlm, jk
LL ~b!L jk~Q;R!, ~12!

and the shift translation operator from local expansion
local expansion is

Tlm, jk
LL ~b!5M j2 l ,k2m~b!. ~13!

Once the local expansions at the lowest level are known,
electrostatic potential and the forces are easily calculated
using Eqs.~1! and ~6!.

As mentioned above, in the new version of the FMM, w
have used a top-down recursive method to generate the
tipole expansion, in an effort to be more efficient for nonc
bic or nonuniform systems, such as biosystems. Another
to save CPU time in the FMM is to use noncubic boxes
subdivide noncubic systems. Using noncubic boxes, suc
rectangular boxes, may help to reduce the number of va
boxes in the tree, and also reduce the number of pair
neighbor boxes which need to be calculated directly. Th
the CPU time required can be further reduced for noncu
systems. Care must be taken however when using nonc
boxes because the accuracy of the potential goes as

UF~r !2
q

ur2auU5uqu (
l5p11

`

Pl~cosg!S ar D
p11

<
uqu
r2aS ar D

p11

, ~14!

wherea refers to the positions for particles inside a lowe
level box, andr refers to the positions for particles in wel
separated boxes. It is clear that the largest error will co
from maximizing the ratio ofa/r . For a lowest-level cubic
box with side 2d, this maximum ratio occurs fora5)d,
andr53d ~for ws52! or r55d ~for ws52!. Then, the error
bound can be expressed as
J. Chem. Phys., Vol. 103,
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uFexact2Fws51u<
uqu

~32) !d
S 1

)
D p11

, ~15a!

uFexact2Fws52u<
uqu

~52) !d
S)5 D p11

. ~15b!

However, if we use rectangular boxes with side
d1<d2<d3 , a5)d should now be replaced by
a5(d1

21d2
21d3

2)1/2, andr53d (r55d) should be replaced
by r53d1 (r55d1) ~d1 is the smallest dimension ind1, d2,
andd3 for a rectangular box!. If d1 is much less than other
two dimensions, for example in linear molecules like som
polymers, the accuracy may go down when we use higherp,
because nowa may be larger thanr in some particular cases.
So for these linear molecules, it may not be appropriate
use noncubic boxes. One way to fix this problem may be
use several adjoining level 0 boxes to hold the whole mo
ecule, instead of using only one level 0 box. The possibilit
of using several boxes to hold one polymer molecule is un
der investigation. Of course, the top-down recursive metho
is also useful for these linear molecules.

Since the three dimensions for most proteins are no
mally comparable~the difference is less than a factor of three
for all proteins studied here!, and also since we do not re-
quire very highp ~as described in Sec. IV!, noncubic boxes
could be used to divide protein molecules, with a little los
of accuracy. Thus both the top-down recursive method an
noncubic boxes are used in the following simulations~for
simplicity, we call this new version of the fast multipole
method ‘‘TFMM’’ in following sections!.

B. The reversible reference system propagator
algorithm

1. The Trotter expansion of the Liouville propagator

The reference system propagator algorithm~RESPA! for
molecular dynamics was first introduced by Tuckerman
Martyna, and Berne.18,21 It has been shown to be much more
efficient than standard techniques, such as the velocity Ver
method. The early applications were applied to simple sy
tems with stiff and soft forces, short- and long-range inter
actions, and disparate masses.21,28 Recently, this algorithm
has been successfully applied to diatomic molecules
solution,29 small organic molecules by Watanabe and
Karplus,23 the fullerene crystal by Procacci and Berne,24 and
a small protein by Humphreys and Berne.19 In this paper, we
will couple the algorithm to the fast multipole method and
apply it to very large proteins.

The reversible RESPA28 is based upon the Trotter expan-
sion of the classical Liouville propagator. The Liouville op-
eratorL for a system ofN degrees of freedom in Cartesian
coordinates is defined as

iL5@ ...,H#5(
i51

N F ẋi ]

]xi
1Fi~x!

]

]pi
G , ~16!

where @...,...# is the Poisson bracket,H is the Hamiltonian,
(xi ,pi) is the position and conjugate momentum for the co
No. 21, 1 December 1995
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ordinate i . The state of the system at a timet, G(t), is
defined as the collective set of positions and conjugate m
menta$x(t),p(t)%. It evolves with time as

G~ t !5U~ t !G~0!, ~17!

whereU(t) is the classical time evolution propagator

U~ t !5eitL . ~18!

Since the classical Liouville operator is self-adjoint,U(t) is
a unitary operator and the time evolution in above equat
is reversible.

We may then choose to decompose the Liouville ope
tor into two parts, such that

L5L11L2 . ~19!

This allows us to apply the Trotter theorem,22 giving

eit ~L11L2!5@ei ~ t/N!~L11L2!#N

5@ei ~Dt/2!L2eiDtL1ei ~Dt/2!L2#N1O~Dt3!, ~20!

whereDt[t/N. In practice,Dt is chosen small enough, i.e.
N large enough, to generate an accurate and stable MD si
lation. One may then define a discrete time propagator a

G~Dt !5U2~Dt/2!U1~Dt !U2~Dt/2!

5ei ~Dt/2!L2eiDtL1ei ~Dt/2!L2. ~21!

The inner propagator in Eq.~21! can be further decompose
as

eiDtL15@eidtL1#n

5@e~dt1 /2!F1~x!~]/]p!edt1ẋ~]/]x!e~dt1 /2!F1~x!~]/]p!#n

1O~dt1
3!, ~22!

if L15 ẋ(]/]x)1F1(x)(]/]p). This provides us with a
means for determining the time evolution of a system who
interactions evolve according to two different time scale
That is, the inner propagatoreiDtL1 may be taken to be asso
ciated with the rapidly varying interactions with a smalle
time-step, which we call as a ‘‘reference’’ system propagat
The outer propagators (eiDt/2L2) are used to evolve the
slowly varying interactions with a larger time step, which
named as a ‘‘correction’’ propagator. The formal solution f
the discretized equations of motion is then given by

G~Dt !5U2~Dt/2!U1~Dt !U2~Dt/2!G~0!1O~Dt3!

5ei ~ndt/2!L2@eidtL1#nei ~ndt/2!L2G~0!1O~Dt3!.

~23!

This approach can be easily expanded to a general c
with more than two effective time scales. Suppose we ha
m different time scales for a particular system, so we choo
to break the Liouville operator into a sum ofm terms,

L5L11L21•••1Lm . ~24!

It follows that the entire discretized propagator for a sy
tem withm time scales can be written as
J. Chem. Phys., Vol. 103,
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G~Dt ![ei ~n1n2 ...nm21dt1 /2!Lm•••

3@ei ~n1dt1 /2!L2@eidt1L1#n1ei ~n1dt1 /2!L2#n2•••

3ei ~n1n2 ...nm21dt1 /2!Lm. ~25!

The m different timescales are given bydt1 , n1dt1 ,
n1n2dt1 ,..., n1n2 ...nm21dt1 . This corresponds to a situa-
tion where the innermost reference propagator is evaluated
every small time stepdt1, the second innermost correction
propagator is evaluated everyn1 small steps, and so on, with
the mth correction propagator evaluated only every
n1n2 ...nm21 small time-steps.

2. Reversible reference system propagation algorithm
(r-RESPA) for biomolecules

In order to apply the techniques discussed above to the
MD simulation of biomolecules, we take the Liouville opera-
tor for a macromoleculein vacuocontainingN atoms to be

iL5(
i

3N F ẋi ]

]xi
1Fi~x!

]

]pi
G , ~26!

where

F~x!5Fstret~x!1Fbend~x!1F tors~x!1FHbond~x!

1FvdW~x!1Felec~x!, ~27!

Fstret, Fbend, F tors, FHbond, FvdW, and Felec represent the
forces for stretch, bending, torsion~including improper tor-
sion!, hydrogen bonding, van der Waals, and electrostatic
interactions, respectively. Their functional forms can be
found elsewhere.30,31 The databases of parameters for these
functional forms are generally called force fields. There are
several force fields available for biomolecular simulations,
such as CHARMM,3 AMBER,31 OPLS,32 etc.

In an atomic level simulation using force fields, the
stretch vibrations are usually the fastest motions in the mo-
lecular dynamics of biomolecules, so we use the evolution of
the stretch vibration as a ‘‘reference’’ propagator with the
smallest time scale. The nonbonded interaction, including
van der Waals and electrostatic forces, are the slowest vary-
ing interactions, and a much larger time step may be used.
The bending, torsion and hydrogen-bonding forces are
treated as intermediate time-scale interactions.

In addition, the nonbonded forces can be divided into
several regions in pair distance according to their importance
and varying speeds. The near region is normally more im-
portant than the distant region because the nonbonded forces
decay with distance. Since most of the CPU time in a MD
simulation is spent in the calculation of these nonbonded
interactions, the separation in pair distance results in valu-
able speedups.

Using a three-fold distance split, the nonbonded forces
are separated in three regions: near, medium, and far distance
zones. Thus, the Liouville operator can be express as a sum
of five terms

L5L11L21L31L41L5 , ~28!

where
No. 21, 1 December 1995
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iL 1[ ẋ
]

]x
1F1~x!

]

]p
, ~29a!

iL i[Fi~x!
]

]p
, i52,3,4,5, ~29b!

and

F1~x![Fstret~x!, ~30a!

F2~x![Fbend~x!1F tors~x!1FHbond~x!, ~30b!

F3~x![FvdW
near~x!1Felec

near~x!, ~30c!

F4~x![FvdW
med~x!1Felec

med, ~30d!

F5~x![FvdW
far ~x!1Felec

far . ~30e!

To separate the nonbonded forces into near, medium, an
zones, pair distance separations are used for the van
Waals forces, and box separations are used for the ele
static forces since the box separation is a more conven
breakup in the TFMM method.

The distance separation for van der Waals forces is m
easily implemented by using switching functions.21,28For ex-
ample, if we want to separate the pairwise interactionFvdW
intom subsegments in the pair distance regions, i.e.,@02r 1#,
[ r 12r 2],..., and [rm212rm], we may write the van der
Waals force as

FvdW~x!5 (
k51

m

FvdW
k ~x![(

k51

m

@Sk~r !2Sk21~r !#FvdW~x!,

~31!

whereSk(r ) are switching functions which are defined as

S0~r ![0; Sm~r ![1.0

and

Sk~r !5H 1, 0<r,r k2Dr k ,
12Rk

2~322Rk!, r k2Dr k<r<r k ,
0, r k<r .

~32!

HereRk[[ r2(r k2Dr k)]/Dr k , r is the interatomic distance
r k is the kth distance cutoff, andDr k is the kth healing
length. The analytical form for the switching function is a
bitrary, and the only requirement is that it and its first deriv
tive are to be continuous, atr k and r k2Dr k . The reason to
use switching functions is to avoid the sudden change
forces when crossing between different distance regio
This ensures that the force in the first region~0,r<r 1! de-
creases smoothly to zero atr 1, and in other regions, such a
in thekth region, it increases smoothly from zero atr k21 and
decreases smoothly to zero atr k . Using this method, highly
stable molecular dynamics simulations are possible.

The box separation used for the electrostatic interacti
is taken to be consistent with the box division in the TFMM
For a particular box in the lowest-level, the box and its
nearest boxes are regarded as the near zone, its 98~53233!
second-nearest neighbor boxes as the medium zone, an
the other boxes as the far zone. As we will see in Sec.
using ws52 in the TFMM is even faster than ws51 if a high
accuracy level is required. Thus, for the box separation of
J. Chem. Phys., Vol. 103,
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electrostatic forces, using ws52 may be a better choice than
using ws51, since it is more convenient to calculate the
forces from near and medium zones directly, and forces from
the far zone by local field expansions from distant multi-
poles, which is exactly what is done in the TFMM with
ws52.

A diagram for the near and medium zones for the elec
trostatic forces is given in Fig. 1. Cubic boxes were used fo
simplicity. Assuming that the side-length for the smallest box
in the tree is 2d, the pair distance in the near zone, as show
in Fig. 1~a!, ranges from 0 to 4)d; the medium zone, as
shown in Fig. 1~b!, ranges from 2d to 6)d; and the far zone
ranges from 4d to infinity. Since these zones are constructed
from cubic boxes, they are not spherical shells, therefor
these zones overlap in distance. The overlap region will b
wider if rectangular boxes are used. The pair numbers in th
overlap region decrease to zero slowly for the nearer zon
since there are few pairs of atoms which are in opposin
corners, and increase slowly from a small number for th
next zone for a similar reason. For example, in the overla
region (2d24)d) of the near and medium zones, the pair
numbers for the near zone decreases slowly to zero when t
pair distance goes to 4)d, and the pair numbers for the
medium zone increases slowly from a small number whe
the distance increases from 2d. This means that the pair
numbers in the overlap regions behave as a sort of switchin
function, so that no explicit switching functions are used for
the electrostatic forces. The following MD simulations pre-
sented in Sec. IV show that we can generate very stable M

FIG. 1. A diagram showing the box separation for the electrostatic forces
~a! The near zone: a lowest-level box~center box! and its 26 nearest-
neighbor boxes.~b! The medium zone: its 98 second-nearest-neighbor boxe
~dashed boxes!.
No. 21, 1 December 1995
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9450 R. Zhou and B. J. Berne: New molecular dynamics method
simulations using the box separation for electrostatic forc
without an explicit switching function.

After separating the nonbonded forces in the three d
tance regions, we may write the discretized propagator a

G~Dt ![ei ~n1n2n3n4dt1 /2!L5@ei ~n1n2n3dt1 /2!L4

3@ei ~n1n2dt1 /2!L3@ei ~n1dt1 /2!L2@eidt1L1#n1

3ei ~n1dt1 /2!L2#n2ei ~n1n2dt1 /2!L3#n3

3ei ~n1n2n3dt1 /2!L4#n4ei ~n1n2n3n4dt1 /2!L5, ~33!

whereL1, L2, L3, L4, andL5 are given by Eqs.~29a! and
~29b!. The inner ‘‘reference’’ propagator in Eq.~33!, which
contains the bond stretching vibrations evolution, is given

eidt1L15expFdt1S ẋ ]

]x
1F1~x!

]

]pD G . ~34!

This can be further expanded by using the following Trott
factorization

expFdt1S ẋ ]

]x
1F1~x!

]

]pD G
5expF ~dt1/2!F1~x!

]

]pGexpS dt1ẋ
]

]xD
3expF ~dt1 /2!F1~x!

]

]pG1O~dt1
3!. ~35!

As has been shown in Refs. 21 and 28 this factorization
equivalent to the velocity Verlet algorithm. The outer ‘‘co
rection’’ propagatorse( idtm /2)Lm, for m52, 3, 4, 5, are of the
form

e~dtm /2!Fm~x!~]/]p!. ~36!

After acting to the right on an arbitrary state$x,p%, one find
that

expF S dtm
2 DFm~x!

]

]pG$x,p%5$x,p1~dtm /2!Fm~x!%.

~37!

Thus, the evolution of the system is determined nume
cally by acting with the propagator in Eq.~33! to the right on
the initial state$x(0),p(0)%, using Eqs.~37! and ~35!.

In the following sections we apply the new MD algo
rithm based on the combination of TFMM and r-RESPA
simulations of proteinsin vacuo. We use the TFMM to cal-
culate electrostatic interactions for large protein molecu
and we use the propagator in Eq.~33! to generate the inte-
gration scheme, with a reference propagator of the form
Eq. ~35!. The results are discussed and compared with tha
the standard velocity Verlet integrator.

III. COMPUTATIONAL IMPLEMENTATION

The potential parameters used in this paper are adop
from the AMBER31 force field, although our program is de
signed to be capable of using various force fields. The f
long-range Coulomb potentials (O(r21)) were used in the
simulation by taking advantage of the fast multipole alg
rithm. For the short-range van der Waals potentia
J. Chem. Phys., Vol. 103,
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(O(r26)), a cutoff distance ofr c512 Å was used. The cutoff
was made such that the forces and their first derivatives g
smoothly to zero atr c by using a switching function as in Eq.
~32!. The calculation results show thatr c512 Å is large
enough for the van der Waals potentials.

Normally, molecular simulations using force fields ex-
clude nonbonding forces between atoms that are consider
to be chemically bonded. But, as we have seen above, it
more convenient to calculate potentials and forces for a
point charges in the FMM, so we need to subtract the chem
cally bonded pair contributions from the FMM results. Usu-
ally, ~1,2! stretching and~1,3! bending interactions are ex-
cluded totally in all force fields, but~1,4! torsional
interactions are treated slightly differently in various force
fields due to different choices of parameters. In the AMBER
force field, only 1

2 of the ~1,4! interactions are subtracted.
The FMM algorithm was implemented as a portable

module using the C programming language. It uses a tre
structure of boxes to handle the multipoles and Taylor expan
sions. For example, a specific box in the tree can be de
scribed as ‘‘box[n][ i ][ j ][ k] ’’ in C language syntax, wheren
is the level in the tree, andi , j ,k are indices of the box inx,
y, andz directions respectively, which can range from 0 to
2n. Then the eight nearest neighbors can be easily access
by i 85 i1$1,0,21%; j 85 j1$1,0,21%; and k85k1$1,0,21%.
Furthermore, its parent is now just box[n21][ i /2][ j /2][k/
2], and its eight children are given by box [n11][2 i
1$0,1%][2 j1$0,1%][2k1$0,1%]. All the multipoles and
Taylor expansions can be well organized through this struc
ture for use in the ‘‘upward’’ and ‘‘downward’’ passes. In our
top-down FMM, the charges in each box [n][ i ][ j ][ k] are
first checked during the recursive multipole calculation from
the top of tree. If the charge is zero, then the multipole an
corresponding Taylor expansion coefficients for this box an
all its children and grandchildren are assigned to be zer
without any further calculations.

The FMM module is then called by a MD module which
is written in FORTRAN. The implementation of the r-RESPA
algorithm in the MD module is quite straightforward, and a
schematicFORTRAN code can be found elsewhere.19 All
simulations were performed on IBM RISC 6000/model 580
and 590 computers.

IV. RESULTS AND DISCUSSIONS

Six protein systemsin vacuoare used in this paper to
test the new MD algorithm: a 292-atom fraction of insulin
~4insb!, crambin~655 atoms, 1crn!, interleukin 8~1144 at-
oms, 3il8!, ribonuclease-H ~2470 atoms, 2rn2!, L-*
arabinose-Binding Protein~4674 atoms, 8abp!, and the Pho-
tosynthetic Reaction Center~including the active branch
only, i.e., subunit C and L, 9513 atoms, 1prc!.

Before performing a production MD simulation, we need
to apply some primary ‘‘treatments’’ to the initial structure—
x-ray structure from Brookhaven PDB file, with addition of
explicit H atoms. First, we minimize the x-ray structure us-
ing the conjugate gradient method to obtain a minimum en
ergy structure. This is necessary because AMBER and oth
available force fields, while reasonable, are not sufficientl
accurate to give exact structures, and the explicit H atom
No. 21, 1 December 1995
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9451R. Zhou and B. J. Berne: New molecular dynamics method
added by the program may not in correct positions. Typica
it takes several thousand iterations to minimize a 1000-at
protein, and tens of thousands of iterations to minimize
5000-atom protein. The rms deviation for the minimize
structure compared to the initial x-ray structure is usua
very small, only 0.5–1.0 Å. The initial velocities are the
sampled from a Maxwell–Boltzmann distribution at a give
initial temperature, such as 100 K. In order to avoid havi
the structure blow up, the minimized structure is slow
heated up to 300 K from 100 K over a 10 ps MD run. This
then followed by a 20 ps MD run at 300 K~canonical en-
semble! for equilibration. During the equilibration the ve
locities are resampled from a Maxwell–Boltzmann distrib
tion periodically if the average temperature over the previo
0.5 ps deviated from 300 K by more than65 K.

A. Optimum parameters for TFMM

As we discussed in Sec. II A, three parameters~n, p,ws!
are used in the FMM. In this section, we will determine th
optimum values for these parameters in our MD simulatio

The total number of tree levelsn is determined by

TABLE I. Tree leveln and the average particle numbers in the finnest-lev
box N0 used in FMM for various proteins with total atom numberN.

Protein 4insb 1crn 3il8 2rn2 8abp 1prc

N 292 655 1144 2470 4674 9513
n 2 2 3 3 3 4
N0 4.56 10.23 2.24 4.82 9.13 2.32
J. Chem. Phys., Vol. 103, N
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n5 int~ log8
N/N0!, ~38!

where the int function returns the integer part,N is the num-
ber of total atoms, andN0 is the desired average particle
number in the finest-level box. Generally, using a largerN0
requires more multipole terms to obtain a given level of ac-
curacy, and thus more CPU time; on the other hand, using a
smallerN0 may result in more tree levels, and thus more
CPU overheads in FMM as well. Various simulations have
shown that settingN0 to 2–16 is an optimum choice.11,25,27,33

Similar results are found by our calculation. The optimum
tree leveln and the average particle number in the finest-
level boxN0 for various proteins are listed in Table I.

For the well-separated parameter ws, it is obvious that
ws51 is faster but less accurate than ws52 for the samep
level. Thus, we may ask which is more efficient for a given
level of accuracy: to use ws51 with a higherp or use ws52
with a lowerp. In order to address this question, we define
two measures of accuracy. One is the relative error in the
potential, the other is the relative error in the forces:

DF5
uFdirect2FTFMMu

uFdirectu
~39a!

DF5
(uFdirect

~ i ! 2FTFMM
~ i ! u2

(uFdirect
~ i ! u2

. ~39b!

Some numerical results for both ws51 and ws52 are listed
in Table II. For ws51,DF is 102221023 for p54; while for
ws52, DF is about 102321024 for p54. Thus, ws52 is
approximately ten times as accurate as ws51. To reach the
same accuracy as that in ws52 with p54, multipoles up to

l

TABLE II. Accuracy and speed up of the new version of the fast multipole method for various proteins in both
ws51 and ws52 cases. The CPU time of the direct method is also included for comparison. For each column,
the three numbers are CPU time,DF andDF rms respectively. All CPU times~seconds! are obtained from IBM
RISC6000/MODEL 590 machines.

Protein Direct

ws51 ws52

p52 p54 p58 p52 p54 p58

4insb 0.06 0.08 0.14 0.42 0.10 0.14 0.26
~292! 8.740E-3 3.045E-3 4.266E-4 3.928E-4 6.222E-4 3.169E-5

2.132E-2 1.108E-2 6.284E-3 2.547E-4 7.046E-4 7.393E-5

1crn 0.30 0.24 0.31 0.74 0.38 0.44 0.65
~655! 5.318E-4 4.696E-5 5.755E-6 3.488E-4 4.021E-6 1.209E-7

1.067E-2 3.035E-3 4.700E-4 1.055E-3 1.521E-4 4.575E-6

3il8 1.02 0.64 0.72 1.13 1.01 1.09 1.46
~1144! 3.520E-4 7.194E-5 2.648E-5 6.290E-5 7.497E-6 1.624E-7

9.914E-3 3.566E-3 1.371E-3 9.698E-4 1.789E-4 9.968E-6

2rn2 4.98 1.42 2.55 8.32 2.50 3.48 8.24
~2470! 1.052E-4 6.798E-5 4.934E-5 2.039E-4 1.707E-5 1.487E-6

2.507E-2 1.020E-2 3.271E-3 7.898E-3 2.327E-3 3.742E-5

8abp 17.48 2.81 3.99 10.29 7.05 8.04 13.13
~4674! 1.095E-4 9.061E-5 2.843E-5 1.398E-4 2.831E-5 2.229E-6

2.155E-2 8.345E-3 2.367E-3 6.933E-3 1.823E-3 2.536E-4

1prc 76.13 7.32 14.37 52.52 13.06 20.26 60.03
~9513! 1.720E-4 1.167E-4 1.606E-5 2.076E-4 8.478E-6 8.170E-6

3.491E-2 1.780E-2 9.655E-3 1.328E-2 4.313E-3 1.125E-3
o. 21, 1 December 1995
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9452 R. Zhou and B. J. Berne: New molecular dynamics method
p54, multipoles up top58 should be used in ws51, which
requires more CPU time. This is consistent wit
Greengard’s11 and Head-Gordon’s25 results. Both of them
claimed that ws52 was the optimum choice. Also, we note
from Table II that the crossover point for the TFMM vs
direct evaluation is about 1000 atoms for ws52 at an accu-
racy level ofDF;102421025 andDF;102321024, which
is comparable or even better than previously report
results.11,25,27,33

In addition, since we may use distance separations in
r-RESPA algorithm, ws52 is the better choice for our MD
simulations because we can easily use the nearest-neigh
boxes as the near zone, the second-nearest shell of box a
medium zone and all the other boxes as the far zone.

To address the parameterp, we need to determine what
p level is sufficient to generate a stable MD simulation, i.e
to avoid possible accumulation of errors in MD runs. Tw
energy conservation parameters are commonly used to
scribe the stability of a constant-energy MD simulation.19,23

One is the total energy fluctuationDE defined by

DE[
1

NT
(
i51

NT UEinitial2Ei

Einitial
U, ~40!

whereEi is the total energy at stepi , Einitial is the initial
energy, andNT is the total number of time steps. This quan
tity has been shown to be a reasonable measure of accu
in previous simulations,19,23 and a value ofDE<0.003, i.e.,
log(DE),22.5, gives an acceptable numerical accurac
Another common measure of the accuracy is the ratio of t
rms deviation of the total energy to the rms deviation of th
kinetic energy,34

R[
DErms

DKErms
. ~41!

A value ofR<0.05, can be used as an alternate criterion f
stability in MD simulations.19,23

The protein ribonuclease-H~2rn2! is used as an example
to perform constant energy~microcanonical ensemble! MD
simulations to determine the necessaryp level. Figure 2
shows the dependence of log(DE) with p for 1 ps of MD
simulation using the standard velocity Verlet integratio
scheme with the new version of FMM implemented for Cou

FIG. 2. Dependence of energy conservation on the parameterp used in the
FMM algorithm which is now incorporated in MD module,~p52, includes
contributions up to quadrupole,p54, to hexadecapoles!.
J. Chem. Phys., Vol. 103, N
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lomb forces. The result for the direct electrostatic calculation
is also included for comparison. It is found thatp54, which
includes contributions up to hexadecapoles, is sufficient for
stable constant-energy MD simulation. So in the following
simulations,p54 is used.

At this point, the three parameters used in TFMM have
been optimized for our MD simulation. The tree levelsn for
various proteins are listed in Table I~N0 equals to 2–10!.
The other two parameters are set top54 and ws52 for all
proteins studied.

B. Energy conservation comparison

In this section, we will compare the energy conservation
for three different methods, r-RESPA, velocity Verlet, and
constant long-range force approximation~CLFA!.

In r-RESPA, we separate forces according to their intrin
sic different time scales to increase the overall time step. W
use the notation (n1 ,n2 ,n3 ,n4) to indicate different combi-
nations of time-scale separation. That is, if the time step isdt
for stretching forces, then time step is

n1dt for bending, torsion and H-bond forces,
n1n2dt for near zone van der Waals and electro-

static forces,
n1n2n3dt for medium zone van der Waals and elec-

trostatic forces,
n1n2n3n4dt for far zone van der Waals and electro-

static forces.
In dividing the near, medium, and far zones, we use pa

distance separations for van der Waals forces and box sep
rations for electrostatic forces, as described in Sec. II. Th
results of the calculation show thatr 15729 Å ~with healing
length 1.5–2.0 Å! is a good choice for the near zone in
dividing the van der Waals forces using a switching function
A value of r 158.0 Å is used in the following simulations.
The pair distance region~8–12 Å! is defined as the medium
zone, and no far zone of van der Waals forces is actuall
included here because of the cutoff at 12.0 Å, which is suf
ficiently large for van der Waals forces.

Box separation for the electrostatic forces is more con
venient within the FMM~ws52 is used!. For simplicity, we
consider a cubic-box subdivision. The side length (2d) for
the smallest box in the tree, which contains 2 to 10 atoms o
average, is from 4 to 6 Å for all proteins studied here, i.e.,
d52.0 to 3.0 Å. Using an average value ofd52.5 Å for
estimation, the pair distance for the electrostatic near zon
which includes the smallest box and its 26 nearest-neighb
boxes, ranges from 0 to 4)d ~0 to 17.3 Å!. The medium
zone encompasses the second nearest-neighbor boxes, ra
ing from 2d to 6)d ~5.0 to 26.0 Å!, and the far zone from
4d to infinity ~>10.0 Å!. The electrostatic forces in the near
and medium zones are evaluated directly, while the contribu
tions from the far zone are evaluated by local field expan
sions from distant multipoles. No explicit switching func-
tions are used for electrostatic forces, as has been mention
before, since these zones overlap in distance and the p
numbers in the overlap region behave as a sort of switchin
function.

Physically, the separation of nonbonded forces on th
basis of the pair distance is a kind of ‘‘short/long’’ range
o. 21, 1 December 1995
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9453R. Zhou and B. J. Berne: New molecular dynamics method
breakup, the separation of bonded forces from nonbon
forces is an ‘‘internal/external’’ force breakup, and the sep
ration of stretching vibrations from other bonded interactio
is a ‘‘stiff/soft’’ force breakup. These three separations ha
been shown to be ideal for the application of the r-RES
method.28,29 It is the difference in intrinsic time scales in
these breakups that make the r-RESPA algorithm valua
and powerful.

Figure 3~a! shows the energy conservation performanc
of velocity Verlet and r-RESPA/TFMM. Here, again, w
studied protein ribonuclease-H as an example, with 1 ps M
runs for both methods. The curve for r-RESPA/TFMM
obtained from various combinations of (n1 , n2 , n3 , n4)
with smallest time stepdt50.25 fs. The overall time step is
then given byDt5n1n2n3n4dt. For example,~1,1,2,2! gives
a time step of 1.0 fs, and~2,2,2,2! gives a time step of 4.0 fs.
The results indicate that for a similar accuracy level, t
r-RESPA/TFMM method is able to use a time step nea
8–9 times larger than that of velocity Verlet. For veloci
Verlet,Etotal starts drifting to higher energies with time whe
the time step exceeds 1.0 fs, whereas r-RESPA/TFMM
quite stable even for an overall time step as large as 4.0

It is also interesting to compare r-RESPA/TFMM with
frequently used approximation whereby one treats the lo
range force as effectively constant over a number of tim
stepsn while a standard integrator such as velocity Verlet
used. We denote this method as the constant long-range f
approximation~CLFA!. In order to make the comparison, w
choose to employ the identical ‘‘short/long’’-range forc
breakup for nonbonded forces in two methods. That is,

FIG. 3. Comparison of the energy conservation for various methods i
1 ps constant-energy MD runs for the protein ribonuclease-H:~a! r-RESPA/
TFMM vs the velocity Verlet.~b! r-RESPA/TFMM vs the constant long-
range force approximation~CLFA!.
J. Chem. Phys., Vol. 103, N
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choose the near zone as ‘‘short’’ range~r<8.0 Å for vdW,
and nearest-neighbor boxes for electrostatic force!, and me-
dium and far zones as ‘‘long’’ range. In both region there are
contributions from vdW and electrostatic forces. The overal
time step for CLFA is thenndt. The energy conservation
parameter log (DE) is plotted as a function of overall time
step in Fig. 3~b! for both CLFA and r-RESPA/TFMM. The
results indicate that the constant long-range approximatio
leads to very poor energy conservations in this case, where
r-RESPA/TFMM remains quite stable to significantly larger
time steps.

Furthermore, our r-RESPA/TFMM is even faster than
CLFA for time steps larger than 2.0 fs. It should be men
tioned that log (DE) will decrease to some extent for CLFA
if we use a small time-step ofdt50.25 fs in CLFA, or use
both near and medium zones as ‘‘short’’ range, but log (DE)
still increases much faster with the overall time step than
r-RESPA/TFMM, i.e., it is not as stable as r-RESPA/TFMM.
And, of course, the CPU time required in CLFA increases a
the same time, which is absolutely not desired.

Table III summarizes some results from the three differ
ent methods velocity Verlet, CLFA, and r-RESPA/TFMM for
comparison.

C. Spectral density comparison

To explore the question of whether r-RESPA/TFMM
does indeed generate the correct dynamics for the system,
compare a spectral densityI ( ñ) as a function of the fre-
quencyñ in wave numbers, obtained from the two methods
velocity Verlet and r-RESPA/TFMM, where

a

TABLE III. Comparison of energy conservation and associated CPU time
for velocity Verlet, constant long-range force approximation~CLFA!, and
r-RESPA/TFMM. Here,Dt ~fs! is the overall time step~the smallest time
step is 0.5 fs for CLFA and 0.25 fs for r-RESPA/TFMM,$n% represents the
combinations of separations in CLFA and r-RESPA!. Ttotal is the total CPU
time spent~in seconds! in all force routines. All data are collected from 1 ps
MD runs for protein ribonuclease-H in IBM RISC6000/MODEL 590 ma-
chines. The asterisk indicates that the structure blows up whenDt53.0 fs in
Verlet method.

Method $n% Dt log(DE) R Ttotal

Verlet ••• 0.50 23.2861 0.0374 16776.7
••• 1.00 22.8746 0.0715 8363.9
••• 1.50 22.2127 0.0934 6401.7
••• 2.00 21.5436 0.2966 4218.6
••• 3.00 •••* •••

CLFA 1 0.50 23.2861 0.0374 16776.7
2 1.00 23.0181 0.0574 9386.8
3 1.50 22.5984 0.1708 6753.3
4 2.00 22.3232 0.1885 5514.8
6 3.00 22.0180 0.4415 4495.4
8 4.00 21.8654 0.8730 3651.5

RESPA/ ~1,1,1,2! 0.50 23.4171 0.0247 14575.2
TFMM ~1,1,2,2! 1.00 23.3592 0.0371 9281.6

~1,1,2,3! 1.50 23.3100 0.0343 8285.4
~1,2,2,2! 2.00 23.2962 0.0330 4895.0
~1,2,2,3! 3.00 23.2690 0.0329 3977.9
~2,2,2,2! 4.00 23.1980 0.0378 2520.7
o. 21, 1 December 1995
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I ~ ñ !5E
0

`

Cv~ t !cos~2pcñt !dt ~42!

andCv(t) is the normalized velocity autocorrelation functio
of the system,

Cv~ t !5
^( i51

N vi~ t !•vi~0!&

^( i51
N vi~0!•vi~0!&

. ~43!

Herec is the speed of light,vi(t)5(vx(t), vy(t), vz(t)) is
the velocity of atomi at timet, andN is the total number of
atoms. As an example, we use protein interleukin 8~3il8! for
the spectrum simulation. The velocity autocorrelation fun
tion and its infrared spectrum are obtained from 5 ps M
runs for three different cases:

~1! velocity Verlet with time step 0.25 fs~Verlet–0.25 fs!
~2! velocity Verlet with time step 0.50 fs~Verlet–0.5 fs!
~3! r-RESPA/TFMM with time step 4.0 fs,~2,2,2,2! combi-

nation ~RESPA/TFMM–4.0 fs!.

We assume the Verlet–0.25 fs case represents the ‘‘ex
act’’ result. Figure 4 shows the autocorrelation functions f
the three cases~only 2 ps is plotted!. They look similar in

FIG. 4. The velocity autocorrelation functionCy(t) as a function of time for
three cases:~a! velocity Verlet withDt50.25 fs, ~b! velocity Verlet with
Dt50.50 fs, and~c! r-RESPA/TFMM with time step 4.0 fs@combination of
~2,2,2,2! with dt150.25 fs#.
J. Chem. Phys., Vol. 103,
n

c-
D

-
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Fig. 4, but the details shown in Fig. 5 indicate that the auto-
correlation function of Verlet–0.50 fs actually differs from
the Verlet–0.25 fs after 0.5 ps. On the other hand, RESPA/
TFMM–4.0 fs stays very close to Verlet–0.25 fs for 1.2 ps.
These differences in autocorrelation functions result in the
differences between the three corresponding spectral profile
given in Fig. 6. The sharp peak at 2955–2985 cm21 is due to
the C–H stretch vibrations, and the small peak near 332
cm21 are due to the hydrogen-bonded O–H stretches, while
the small shoulders around 600–1200 cm21 and small peaks
around 1500 cm21 belong to various bending modes, as well
as C–C and CvO stretch vibrations.

In order to establish a quantitative estimate of the accu
racy of the resulting spectral densities, we consider24,35

D[arccosS S1•S2
uS1uuS2u

D , ~44!

where

S5~s1 ,...,sn!, ~45!

and thesi are the spectral components at frequencyi . The
quantityD in the above equation can be viewed as the angle
between the vectorsS1 andS2. If the two spectra are identi-
cal, thenD50, whereas, if they are uncorrelated,D5p/2.
We take as a reference, the ‘‘exact’’ spectral density to be
defined as that obtained from a MD simulation using the
velocity Verlet integrator with a time step of 0.25 fs. We then
calculateD with respect to this reference spectral density for
the other two cases. We obtainD50.549 for that of velocity
Verlet using a time-step of 0.5 fs, andD50.109, for
r-RESPA/TFMM with an overall time step 4.0 fs. Thus,
r-RESPA/TFMM not only reduces the CPU time, but also
gets better spectra compared to the velocity Verlet integrato
using a time step of 0.5 fs.

The poorD value for the velocity Verlet withDt50.5 fs
can be attributed to a numerically induced ‘‘blue shift’’ evi-
dent at the higher frequencies of the spectral density.19,24To
illustrate this, Fig. 7 shows the detailed spectra for the thre
cases in four different frequency regions. The differences
between the three cases are small in the frequency regio
600–1600 cm21, but the Verlet–0.50 fs spectrum starts to
differ from Verlet–0.25 fs at higher frequencies. The sharp
C–H stretch peak at 2954 cm21 shifts to 2961 cm21, the
hydrogen-bonded O–H stretch shifts from 3321 to 3332
cm21, and the free O–H stretch shifts from 3728 to 3745
cm21. The RESPA/TFMM–4.0 fs spectrum agrees with
Verlet–0.25 fs very well, and no evident shifts are found for
these peaks. This indicates that the smallest time step fo
stretching is critical in generating the correct infrared spec
tra. Also, the fact that Verlet–0.50 fs agrees well with
Verlet–0.25 fs at low frequencies, but differs at higher fre-
quencies~the higher the frequency, the larger the blue shift!
indicates that for high-frequency vibrations, such as C–H
O–H stretch, a time step of less than 0.50 fs is necessary.

D. CPU timing comparison

To our knowledge, in all the FMM work previously
reported11,25,27,33,36 the space was subdivided into cubic
No. 21, 1 December 1995



FIG. 5. Comparison of the velocity autocorrelation functions in detail: velocity Verlet withDt50.25 fs~solid line!, velocity Verlet withDt50.50 fs~dash
line!, and r-RESPA/TFMM with overall time step 4.0 fs@combination of~2,2,2,2! with dt50.25 fs, dotted line#.
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boxes. This subdivision of space makes it simpler to co
struct the FMM algorithm and easier to determine the er
bounds~Sec. II A!. The use of rectangular boxes instead
cubic boxes will further reduce the number of vacant box
and will also reduce the set of pair numbers in the ne
region which must be evaluated directly. Although usin
rectangular boxes may lower the accuracy for systems w
very high aspect ratios, for most proteins the accuracies
perfectly acceptable~see discussions in Sec. II A!.

Figure 8 shows the CPU times for the calculation of t
electrostatic potential and the forces in one MD time-step
FMM ~cubic box!, the top-down FMM with cubic box
~TFMM-C! and the top-down FMM with rectangular boxe
~TFMM!. The optimum parameters~n,p,ws! obtained in Sec.
IV A are used here. The top-down FMM with cubic boxes
found to be up to 15% faster than the conventional FM
depending on the inhomogeneity of the proteins. The p
centages of the vacant boxes for these proteins are from 1
~1crn! to 37% ~1prc! when using cubic boxes, and this pe
centage may be a normal range for most proteins. Howe
it must be pointed out that the percentage of the vacant bo
depends on the tree levels used; the higher the tree level
larger the percentage. Here, we have used optimum tree
els listed in Table I; that is, the average atom number in
smallest box is roughly 2–10. The TFMM, using both to
down recursion and rectangular boxes, however, is found
be 20%–40% faster than the normal FMM, indicating that
may be useful for noncubic inhomogeneous systems, suc
proteins.

The CPU saving of r-RESPA vs velocity Verlet spring
from the fact that in r-RESPA one can use a time step;8
J. Chem. Phys., Vol. 103,
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times larger than that of velocity Verlet for the far region
nonbonded forces~which are usually the most CPU consum-
ing interactions!. Figure 9 shows plots of the total CPU times
for 1 ps MD runs using velocity Verlet with a time step 0.5 fs
and r-RESPAwith an overall time step 4.0 fs@combination of
~2,2,2,2! in force separation#. It is clear that r-RESPA is
about 4–6 times faster than velocity Verlet for various pro
teins with the same level of accuracy.

Implementation of the TFMM for electrostatic interac-
tions in r-RESPA will further reduce the CPU time for Cou-
lomb interactions compared to the direct evaluation. The to
tal CPU times for r-RESPA/TFMM are also shown in Fig. 9
for comparison. It is found that for a protein larger than
;1000 atoms the TFMM is faster than the direct evaluation
indicating that the crossover point of is about 1000 atoms
For the protein 1 prc, the TFMM further reduces the tota
CPU time by a factor of 3, i.e., the r-RESPA/TFMM is;3
times faster than r-RESPA for a protein with 9513 atoms~in
fact, the CPU saving for electrostatic forces is about 4–5, th
factor 3 is for total CPU saving!. This CPU saving is from
the elegant use of the multipoles and local field expansion
in FMM as discussed in Sec. II A, as well as the top-down
recursion and noncubic box separation.

It is of interest to replot the CPU time in Fig. 9 on a log
scale, log~TCPU! vs log(N), and fit it with a straight line,

log~TCPU!5c01c1 log~N!, ~46!

then we find that the CPU time scales withN as:

Velocity Verlet: TCPU;N1.90

r-RESPA: TCPU;N1.79
No. 21, 1 December 1995
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9456 R. Zhou and B. J. Berne: New molecular dynamics method
r-RESPA/TFMM: TCPU;N1.32.

It is clear that the CPU time scales nearly asN2 in the ve-
locity Verlet integration method. The r-RESPA method r
duces CPU time by a factor of 4–6 for various proteins, a
reduces the order from 1.90 to 1.79. After applying TFM
in r-RESPA, the CPU time scales almost linearly with th
number of atoms, which is also clear in Fig. 9. Thus, w
expect an even larger speedup for larger biosystems. Als
is no longer necessary to set up pairlists for these long-ra
pairwise Coulombic interactions, so the memory requirem
is also of order ofO(N) rather thanO(N2).

To gain a deeper insight into the CPU timings and sa
ings for different forces using different methods, we list d
tailed CPU timings in Table IV for the largest protein studie
in this paper, the photosynthetic reaction center. In order
reduce computational effort, these data are collected o
only 0.1 ps MD runs. It is clear that 99% of CPU time
spent on the calculation of the nonbonded forces~vdW and
Coloumb forces! when we use standard methods, which i
dicates that more efficient methods for computing no
bonded forces are highly desirable. The r-RESPA and FM
are exactly designed for this purpose. Compared to the

FIG. 6. Spectral intensityI ( ñ) as a function of wave number for three case
~a! velocity Verlet withDt50.25 fs, ~b! velocity Verlet withDt50.50 fs,
and~c! r-RESPA/TFMM with time step 4.0 fs@combination of~2,2,2,2! with
dt150.25 fs#. Intensities are in arbitrary units.
J. Chem. Phys., Vol. 103,
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FIG. 7. Comparison of the details of the spectral intensitiesI ( ñ) in Fig. 6 in
four frequency regions, velocity Verlet withDt50.25 fs~solid line!, velocity
Verlet withDt50.50 fs~dash line!, and r-RESPA/TFMM with overall time-
step 4.0 fs@combination of~2,2,2,2! with dt50.25 fs, dotted line#. Intensi-
ties are in arbitrary units.
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9457R. Zhou and B. J. Berne: New molecular dynamics method
locity Verlet with time step 0.5 fs, the r-RESPA, with a tim
step 4.0 fs@combination~2,2,2,2!# and a comparable level o
accuracy, lowers the total CPU time from 15566 to 3489
by a factor of 4.46. The r-RESPA/TFMM further reduces th
total CPU time from 3489 to 1154 s, by a factor of 3.02, a
reduces the CPU time for the calculation of electrosta
forces from 2993 to 680 s, by a factor of 4.40. Overall, t
r-RESPA/TFMM method lowers the total CPU time by
factor 15 and lowers the CPU time for electrostatic forces
a factor of 20. Since this is for the high accuracy log(DE)
,23.0 const-energy MD simulations, the CPU time savi
is quite impressive. If some loss of accuracy can be tolera
such as in constant-temperature MD simulations where
locities are rescaled artificially, we may obtain an even larg
speedup by usingp53 ~octapole! or p52 ~quadrupole!. In
addition, the best combination of the force separation
r-RESPA is found to be~2,2,2,2! rather than~1,1,1,16!,
which could be physically reasonable, since the intrin
separation in time scales for the different forces increa
gradually.

As illustrated in Sec. IV C, it is necessary to use ve
small time steps, such as 0.25 fs, to obtain the reason
spectral densities for vibrational stretches, such as C–
O–H stretching. So, if compared to the velocity Verlet with
time step 0.25 fs and direct evaluation of Coulomb forces
CPU time speed up of;30 would be expected for r-RESPA

FIG. 8. Comparison of the performances of the convensional FMM~cubic
box!, top-down FMM with cubic-box subdivision~TFMM-C!, and top-
down FMM with rectangular-box subdivision~TFMM! in calculating the
long range electrostatic interactions for proteins. Parametersp54 and ws52
are used in fast multipole algorithm, and parametern ~total levels in the box
tree! is listed in Table I. CPU times for direct evaluation of the Coulom
interactions are also included for comparison. The CPU time~in seconds! is
for RISC6000/MODEL 590 computers.
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TFMM for a protein with 9513 atoms. Since 0.5 fs is gene
ally used for MD simulations of proteins, our comparison i
made to velocity Verlet with time step 0.5 fs. Larger time
steps, such as 0.8 fs, 1.0 fs, are also reported for MD sim
lations of proteins by using SHAKE.37,38 However, these
simulations using SHAKE will affect spectral densities, fo
example, there will be no C–H peak in spectra if C–H bon
length is constrained. Furthermore, SHAKE will affect som
other properties, such as time dependent quantities14,15 and
spectral densities associated with the main chain and s
chain torsional motion.38

Finally, since the CPU saving in r-RESPA/TFMM come
from algorithm improvements, we expect to find comparab
improvements in performance on other platforms, such
parallel machines. Parallelization of this efficient MD algo
rithm is currently under development.

V. CONCLUSION

The new MD algorithm presented here, which uses
new version of the fast multipole method~FMM! and the
reversible reference system propagator algorithm~r-RESPA!,
is a significant improvement over other algorithms in dealin
with the two main bottlenecks in simulating biosystems:~a!
calculating the full long-range Coulombic interaction and~b!
treating the intrinsic differences in timescals for various in
teractions. The improvements can be summarized as follow

b

FIG. 9. CPU times~in hours! for 1 ps MD runs for various proteins using
three different methods, direct velocity Verlet with a time step 0.5 fs
r-RESPA with direct evaluation of electrostatic forces and an overall tim
step of 4.0 fs, and r-RESPA/TFMM with an overall time step 4.0 fs@com-
bination of ~2,2,2,2! in force breakup#. The energy conservation parameter
logDE for the three methods are comparable. The CPU time~hours! is for
RISC6000/MODEL 590 computers.
No. 21, 1 December 1995



TABLE IV. Results from 0.1 ps MD runs for the protein Photosynthetic Reaction Center~9513 atoms!. Detailed CPU times in various force routines are listed
for the three different simulation methods, velocity Verlet, r-RESPA, r-RESPA/TFMM, for comparison.Dt is the overall time step, and$n% is the represen-
tation of combinations in force separation in r-RESPA, with the smallest time-stepdt50.25 fs. The asterisk indicates that the structure blows up whenDt53.0
fs in Verlet method.

Method $n% Dt log(DE) R Tstret Tbend Ttors TvdW Telec Ttotal

Verlet ••• 0.25 23.6078 0.0192 53.2 34.1 79.6 2916.5 26787.8 29932.4
••• 0.50 23.3346 0.0304 38.5 17.3 40.7 1485.9 13980.2 15566.3
••• 1.00 22.7868 0.0523 19.4 9.1 22.2 736.3 6905.3 7692.5
••• 1.50 22.0046 0.1756 15.1 6.7 17.5 583.0 4553.2 5175.5
••• 2.00 21.4190 0.3656 10.1 4.4 11.9 378.1 3424.6 3828.7
••• 3.00 •••* •••

RESPA ~1,1,1,2! 0.50 23.5960 0.0179 53.3 34.3 79.5 2920.9 13935.9 17025.3
~2,2,2,2! 4.00 23.3734 0.0327 53.0 17.3 40.8 380.0 2993.6 3489.1

RESPA/ ~1,1,1,2! 0.50 23.5170 0.0249 53.2 34.1 79.5 2907.8 4996.9 8069.4
TFMM ~1,1,2,2! 1.00 23.4027 0.0277 53.2 34.2 79.6 1462.0 2841.3 4474.4

~1,1,2,3! 1.50 23.4291 0.0248 54.1 34.8 80.6 1453.5 2330.4 3951.4
~1,2,2,2! 2.00 23.3174 0.0303 53.1 34.3 79.6 726.1 1420.8 2314.3
~1,2,2,3! 3.00 23.3812 0.0357 52.6 33.8 78.9 719.3 1199.4 2085.0
~2,2,2,2! 4.00 23.3334 0.0380 53.3 17.1 39.9 360.8 680.9 1154.8
~1,2,2,5! 5.00 22.9038 0.0593 53.1 34.2 79.6 703.9 882.4 1756.6
~2,2,1,5! 5.00 22.6762 0.0729 53.0 17.2 39.8 658.5 858.5 1607.2
~2,2,5,1! 5.00 22.3520 0.1686 53.3 17.2 39.7 189.6 557.6 856.3
~2,2,2,3! 6.00 22.6791 0.0711 53.2 17.3 39.8 371.2 604.1 1085.5
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~1! A new version of the fast multipole method~FMM! with
top-down recursive generation of the multipoles a
rectangular box subdivisions is proposed, which is 20%
40% faster than the standard FMM method for simu
tions of proteinsin vacuo. By using the new version o
FMM, the requirement for CPU time and memory sca
asO(N) instead ofO(N2), and the total CPU time is
reduced by a factor of;3 for a protein with 9513 atoms
at an efficient accuracy level.

~2! The r-RESPA method can use a time step 8–9 tim
larger than that of the standard velocity Verlet meth
~with time step 0.5 fs! with even better infrared spectr
for biomolecules, which results a 4–6 times speed up
total CPU time. It is also found that r-RESPA can ge
erate a more stable MD simulation than the frequen
used constant long-range force approximation.

~3! By using both the modified FMM and r-RESPA, th
computational task is now nearlyO(N), which makes
possible efficient MD simulations of very large biom
lecular systems.

~4! For the photosynthetic reaction center~9513 atoms!, the
new MD algorithm leads to a 20-fold CPU time speed
for electrostatic interactions, and a 15-fold speedup
the total MD simulation compared to standard metho
at the same level of energy conservation, with even b
ter spectra properties. Of course, greater speedups
expected when the algorithm is applied to larger bios
tems.

The new method presented in this paper should be v
useful for simulations of large proteins surrounded by wa
molecules, and such applications are under the way.
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