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An efficient molecular dynamicg¢MD) algorithm is presented in this paper for biomolecular
systems, which incorporates a novel variation on the fast multipole méEidi) coupled to the
reversible reference system propagator algoritRESPA. A top-down FMM is proposed which
calculates multipoles recursively from the top of the box tree instead of from the bottom in
Greengard’s original FMM, in an effort to be more efficient for noncubic or nonuniform systems. In
addition, the use of noncubic box subdivisions of biomolecular systems is used and discussed.
Reversible RESPA based on a Trotter factorization of the Liouville propagator in generating
numerical integration schemes is coupled to the top-down FMM and applied to a MD study of
proteinsin vacuq and is shown to be able to use a much larger time-step than the standard velocity
Verlet method for a comparable level of accuracy. Furthermore, by using the FMM it becomes
possible to perform MD simulations for very large biomolecules, since memory and CPU time
requirements are now nearly of order®¢N) instead ofO(N?). For a protein with 9513 atonithe
photosynthetic reaction cenjethe efficient MD algorithm leads to 20-fold reduction in CPU time

for the Coulomb interaction and approximately 15-fold reduction in total CPU time over the
standard velocity Verlet algorithm with a direct evaluation of Coulomb forcesl985 American
Institute of Physics.

I. INTRODUCTION There have been a number of efforts to solve the first
problem, i.e., to reduce the computational complexity for the

Molecular ~ dynamics  simulations of biological glectrostatic interactions. Hocknet al” proposed a
macromolecul€s® are computationally demanding, owing to particle/mesh method to address this problem by using a
the large number of particles, as well as the complex naturg,esh over the computational domain. The source density is

of their associated interactions. There are generally two aRnterpolated at the mesh points, then the Poisson equation is

proaches to simplify this enormous computational problemyggeq to obtain the potential values on the mesh, and the

Otﬂe S 'f[o chJse islmpler phf);;l.caltrtr;]odells for the prptelln, Th%rces are computed from the potential. The computational
other is to develop more efficient theories or numerical me complexity is thus reduced fro@(N2) to O(N log N). The

ods without modification of the physical model. In this paper, . provides only limited resolution and highly nonuni-

. - Rorm source distributions cause significant errors. To im-
some numerically more efficient methods to reduce the com- . . .

. prove accuracy, a particle—particle/particle—mesh method
putational burden.

The most time-consuming part of the simulation is the'V@s developedl,in which the potential arising from short-

calculation of the long-range pairwise Coulombic forces. The2n9¢ interactions is calculated directly. Apbahd Barnes

10 “ ” ; ;
computational complexity for these Coulombic interactions®! al: deyelopgd a “tree code _method In p!ace of t_he g_nd
scales aO(N?), whereN is the number of particles. Since methods, in which the computational region is organized into

the interaction decays with distance@g ~1), it is normally a tree structure. The tree structure makes it possible to de-

not appropriate to use short cutoffs for electrostatic interacY€/OP @ rapid systematic procedure to determine which par-

tions, especially for large proteins where the long-range eflicles are “distant” from each other. By exploiting the fact
fects of inhomogeneous charge distributions are thought tfhat a particle interacts with a distant group of particles much
be importanf* as if it were interacting with a single particle at the center of
The second most time-consuming part of the simulationass(monopole of the distant group, the complexity is also
arises from the small time steps required to accurately solvEeduced taO(N log N), although there is again some loss of
the equation of motion for the stiff bond stretch and bondaccuracy by using the monopole approximation.
bending vibrations, even though one may be primarily inter- ~ Greengard and Rokhifththen developed the fast multi-
ested in events that occur over a much longer time scale. Ipole methodFMM) based on the “tree code” idea, but with
standard numerical integration methods, such as those of tiiégher-order multipoles in addition to the simple monopole
Starmer—Verlet variety® one is generally required to use a approximation. The FMM method first organizes multipole
time step smaller than one femtosecond in order to maintairepresentations of charge distributions in hierarchically struc-
an acceptable level of accuracy in the integration of the equdured boxes, then transforms those multipoles into local field
tions of motion. expansions, so that each particle interacts with the local field
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generated from distant particles. The multipoles are geneMD simulations for proteingn vacuq and Sec. V contains
ated by direct calculation in the lowest level and successivéhe conclusion. It is shown that the new MD algorithm is
shifting from lower levels to upper levels. In this paper, we much more efficient than the standard methods. For a protein
propose a top-down recursive method in generating the mulwith 9513 atoms, the CPU time is reduced by a factor of 20
tipoles in the hierarchical box tree, in which the multipolesfor the electrostatic interactions, and about 15 for total MD
are calculated recursively from the top of the tree instead o$imulations with a comparable level of accuracy compared to
from the bottom as in Greengard’s FMM method. At eachvelocity Verlet method.

level of the tree, the method first looks for charged particles

in every box. If there is no charged particles in a particular

box, then the multipoles and local field expansions for thaﬁl_ THEORY

box and all its subdivided boxes, are assigned automatically

to be zero without any further calculations. This is moreA. The fast multipole method

efficient for nonuniform or noncubic systems, such as pro-  The fast multipole methodFMM) was introduced by
teins. Greengard and Rokhlit,It is an efficient method for evalu-

A variety of techniques have also been introduced toating Coulombic interactions between a large number of par-
address the second problem, i.e., to increase the time stepigles. The CPU time increases linearl®(N)] rather than
MD simulations. One common approach is to constrain bon%S square of the number of part|c|@([[\]2)] In this section,
lengths using either the SHAKE or RATTLE algorithifs®® 3 top-down recursive method is proposed for multipole gen-

Although application of these methods allow for a modesteration. The method is based on White and Head—Gordon’s
increase in time-step, time-dependent quantities may bgimp"ﬁed derivatiorf®

affected*'* Additionally, the constraint methods have been  The basic principle of FMM is rather elegant. It interpo-
shown to work poorly for bond angle degrees of freedomiates the potential and force on a particular charge due to
when applied to macromoleculés. distant charges not by direct calculation, but by using the

Another approach to increase the time step in MD simudocal expansion of fields produced by the multipoles gener-
lations is that of the multiple time-step methd@sThese ated from those distant charges. If first organizes multipole
methods are based upon integration schemes that allow feepresentations of charge distributions in hierarchically struc-
different time steps according to how rapidly a given type oftured boxes, then transforms these multipoles into local field
interaction is evolving in time. Teleman andndsont’ intro-  expansions. Each particle then interacts with the local field to
duced an algorithm whereby the slower degrees of freedomount the interaction from distant particles. In this method
are held constant for a number of smaller time steps, which ighe short-range interactions are calculated directly. The po-
usually called the long-range constant force approximationtential (and force consists of two parts:
This method has, however, been shown to lead to the accu-
mulation of numerical error in calculated quantitf&s® Al- P (%)= P mutipote X) + P direct X) @)
ternatively, Swindoll and Haif€ introduced a procedure where @y, contains the short-range interparticle interac-
which uses a Taylor series approximation for the less rapidlyions, P puiipole CONtAINS the contribution from distant par-
evolving forces. Although this algorithm has been shown tatcles.
give some improvement in CPU times for simple systems  Before giving the detailed mathematical formulas for the
such as alkane chain liquidSit is not yet evident whether it FMM, it may be useful to define some parameters and “ter-
would be computationally advantageous in the case of magninology.” Three parametert,p,ws) are used in FMMn
romolecules. In this paper, a multiple time-step algorithm isrepresents the number of levels in the box tree, where the
designed specifically for macromolecular simulation whichsystem is divided into"Blowest-level boxesp is the number
uses a combination of time steps of different lengths to inteof terms used in the multipole expansiors,g., p=2 in-
grate interactions which evolve on different time scales. Theludes contributions up to quadrupole, ape4 includes
algorithm is essentially a generalization of the previouslycontributions up to hexadecapolesws is the parameter
introduced reversible reference system propagation algowhich defines well-separated boxes, where=Wsindicates
rithm (r-RESPA,** which employs a Trotter factorizati6h  that ;.. includes the contribution from the box itself and
of the classical Liouville operator as a means to derive ats 26 nearest-neighbor boxes, and=sindicates®d o in-
numerical propagation scheme for the system. This r-RESPAaludes contributions up to the second nearest-neighbor boxes
scheme is a time reversible, symplediiceasure conserving at the lowest level in the tree. Box level 0 specifies the larg-
in phase spageand highly stable integrator. This approach est box which holds the whole system, while box lelell
has been shown to be considerably more efficient than stais obtained from level by subdivision of each box into eight
dard techniques when applied to simple systems or smafimaller equal-sized boxes. A tree structure is then imposed
proteinst®21:23.24 on this box hierarchy. The eight boxes at lev¢l1 obtained

In this paper, we will present a new efficient MD algo- by subdivision of a box will be referred to ithildren, and
rithm, which uses the top-down recursive FMM with noncu- the levell box is called theiparentbox.
bic box subdivisions and reversible RESPA. A brief descrip-  We now turn to the theory of FMM. The method is based
tion of the theories will be summarized in Sec. Il, followed on the the expansion of the Coulombic potentials in multi-
by the computational implementation in Sec. Ill. Section IV poles. For two unit charges afr,6,¢), and a(a,a,8) the
will give some results of the application of the algorithm to potential may be written as
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1 - ! -
= P/(cos M aL 6
r=a ~ &, Pi(cosy) e |,_a| IEOmZ_I im( ;@)L im(1) (63
© | —
(I-m)! & com!
=& 2 (xm T Pim(Cos@) =2 2 Min(@Lin(ar). (6b)
X Pim(cos §)e ™ MB=¢) The expansion of above equation is exact in the limit of

| an infinite sum. However, it is normally not necessary to add

(I=|mh! a up very high-order multipoles or local expansions, and a

171 Pijm|(COS @)

o m=z1 (I+[m))!r truncation ofp=3 or p=4 is usually sufficient for simula-
im(B— tions which do not require extraordinarily high
im(B—¢)
Pim((cos 0)e ’ @ accuracied?’Also, it has been shown that the same level of

wherey is the subtended angle betweeanda (a<r). The truncation is appropriate for both the multipole and the local

expansion separates the coordinates of the two particles fiPansions.

terms of associated Legendre polynomials. After redefining The esfsentllal |Tiea of FMM is to bu'ldh a hlﬁrarclhlcall
the associated Legendre polynom2ls, tructure of multipoles, a tree structure, with each multipole

containing the contribution of a subset of charges of limited

B —=(]—rml spatial extent. The smallest box on the lowest level of the
le (I m)- le (33) . . .

tree will then contain only a small number of particl&s-
. 1 20). The boxes on successively higher levglarent boxes
Pim= (I-i-—m)l Pim, (3b) are the union of eight lower level children boxes, until one

single box on the highest level contains all other boxes, and

the multipole moments and electric potentials can be extherefore all charges.

pressed more compacflyWe can now define the moments The multipoles associated with lowest level boxes are
of a multipole expansion about the origiihe box centerof ~ calculated according to Eqeta—(4c) directly. Multipoles of

a charge(or charge distributionat a as higher level boxes are calculated not from charges, but from
the shifting of lower level multipoles. This is usually called
M (@) =a'P,(cos a)e ™, (49  an “upward pass,”
|
Mim(0;8)=qMn(a), (4b) M|m(Q;A+b)=JZO k;j Thik (DM (Q:A), 7
Mlm(Q;A)ZE M (q;a), (4c)  whereb is the displacement of the multipole expansion cen-
ter andTMM 'k Is the shift translation operator for multipole to
where M,(a) are the multipole moments about an origin multipole
(such as a box cgm)efor a unit charge quated a with |ka(b) Mi—jm—k(b). (8
respect to that originM,,(q;a) are the multipole moments _
for a chargeq at a, and M,(Q;A) are the multipole mo- The new version of FMM proposed here, the top-down

ments for many charges in a box expanded around a commdgcursive FMM, however, calculates multipoles recursively
origin (box centey. We use capital letters to denote collective from the top of the tree instead of from the bottom as in
sets of charges and positions in a box. Since these multipoféipward pass” in FMM. It is a top-down recursive genera-
momentsM,,(Q:A) are all expanded with respect to the tion of the multipoles specially designed for biosystems,
same origin, they can of course be summed diré€tlphe  such as proteins, since these biomolecules are usually non-
corresponding Taylor coefficients for a local field expansionuniform and noncubic systems. By using the top-down gen-

of the potential due to a charger charge distributionat r eration scheme, it is easier to cut some “branch” of the tree
are then if there are no charges in it. At each level in the recursive

calculation, it first looks for charged particles in each box. If

1 - . the number of charges in a box is zero then it skips all mul-

Lim(r)= 7171 Pim(cOS 0)em?, (58 tipole calculations for the box, its children, grandchildren...,
as well as all the corresponding local field translations de-

Lim(a;r)=0aLim(r), (5b)  scribed below. The top-down recursive calculation allows

this pruning operation systematically, which is more efficient
for noncubic or nonuniform systems.
Lim(QiR) =2 Lim(air), (50) After the multipolesM,,, of all boxes are obtained, a
local expansiorL,,, is constructed for each box, describing
where the indices have the same meaning as those in thiae potential inside the box caused by all distant charges
multipole moments, except the charge is now located at |

respect to the origin. Then the potentialradue a charge at L A—b T bYM (O A 9
a, or vice versa, could be expressed as im(Q: )= 2 2 imiDMi(QiA). &
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and the transformation operator is

Timik(®)=Li4j mrk(b).

Another essential idea in the FMM is the efficient use of
higher-level local expansions to reduce the effort in subse-
guent transformations, since these transformations are the
most CPU time consuming calculations in the FMM. The However,
local expansions for a given leval are actually calculated d;<d,<d;, a=v3d should now be replaced by
using a=(d?+d3+d%)¥'2, andr=3d (r=5d) should be replaced
by r=3d, (r=5d,) (d, is the smallest dimension ith, d,,
andds; for a rectangular box If d; is much less than other
two dimensions, for example in linear molecules like some
polymers, the accuracy may go down when we use higher
because nova may be larger than in some particular cases.
| So for these linear molecules, it may not be appropriate to
use noncubic boxes. One way to fix this problem may be to
use several adjoining level 0 boxes to hold the whole mol-
ecule, instead of using only one level 0 box. The possibility
of using several boxes to hold one polymer molecule is un-
der investigation. Of course, the top-down recursive method
is also useful for these linear molecules.

Since the three dimensions for most proteins are nor-
mally comparabldthe difference is less than a factor of three
for all proteins studied hefeand also since we do not re-
quire very highp (as described in Sec. )yYnoncubic boxes
could be used to divide protein molecules, with a little loss
and the shift translation operator from local expansion tdf accuracy. Thus both the top-down recursive method and
local expansion is noncubic boxes are used in the following simulatidfc

simplicity, we call this new version of the fast multipole
Imjk(b) M- k-m(b).

method “TFMM” in following sections.
Once the local expansions at the lowest level are known, the
electrostatic potential and the forces are easily calculated by
using Egs(1) and(6). B. The reversible reference system propagator
As mentioned above, in the new version of the FMM, wealgorithm

have used a top-down recursive method to generate the muI
tipole expansion, in an effort to be more efficient for noncu-1
bic or nonuniform systems, such as biosystems. Another way  The reference system propagator algorittRESPA for
to save CPU time in the FMM is to use noncubic boxes tomolecular dynamics was first introduced by Tuckerman,
subdivide noncubic systems. Using noncubic boxes, such Martyna, and Berné®2l|t has been shown to be much more
rectangular boxes, may help to reduce the number of vacagfficient than standard techniques, such as the velocity Verlet
boxes in the tree, and also reduce the number of pairs ifhethod. The early applications were applied to simple sys-
neighbor boxes which need to be calculated directly. Thusiems with stiff and soft forces, short- and long-range inter-
the CPU time required can be further reduced for noncubigctions, and disparate mas$t$® Recently, this algorithm
systems. Care must be taken however when using noncubifas been successfully applied to diatomic molecules in
boxes because the accuracy of the potential goes as solution?® small organic molecules by Watanabe and

1P Karplus? the fullerene crystal by Procacci and Befand
—|q| E P,(cos 7)( ) a small protein by Humphreys and Berifdn this paper, we
a p+1

|ql

(3—v3)d (153

| q)exact_ ws= 1| =

(10

1 p+1
(73) |

‘/j)erl

|al (
(5—v3)d |

if we use rectangular boxes with sides

|(bexact_ ws:2| = (15b)

Lim =Lin"+Lim " (1)

whereL[{" is the local expansions from the present level's
(level n) multipoles which are not already contained in
L= For example, if there is a boR, at a given level,
only the multipoles in boxes at this level which are wel
separated fronB,, but are not well separated froBy’s par-
ent are transformed into local expansion®in The number
of these multipoles is never larger thai—@3=189 for
ws=1, and 16-5°=875 for ws=2.

The shift of a higher level expansion to a lower level is
done much like the multipole shifts from a lower level to a
higher level. This is usually called a “downward pass,”

Lim(QiR—b)= 2 _2 T OLKQR), (12

(13

. The Trotter expansion of the Liouville propagator

q
fr—al

D(r)—
‘ (") will couple the algorithm to the fast multipole method and

apply it to very large proteins.

The reversible RESPRis based upon the Trotter expan-
sion of the classical Liouville propagator. The Liouville op-
eratorL for a system ofN degrees of freedom in Cartesian
coordinates is defined as

J
Fi(X) —

H] z i apl

|ql
r—a

=

T , (14

wherea refers to the positions for particles inside a lowest-
level box, andr refers to the positions for particles in well-
separated boxes. It is clear that the largest error will come
from maximizing the ratio of/r. For a lowest-level cubic
box with side 2, this maximum ratio occurs foa=v3d,

xI (16)

andr =3d (for ws=2) or r =5d (for ws=2). Then, the error
bound can be expressed as

where[...,..] is the Poisson brackeH is the Hamiltonian,
(% ,p;) is the position and conjugate momentum for the co-
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ordinatei. The state of the system at a tinte I'(t), is G(At)=¢/ (M2 Mm-1071/2)lm. ..
defined as the collective set of positions and conjugate mo-
menta{x(t),p(t)}. It evolves with time as

F(H)=UMT(0), 1 Xl Inaon B, @9
The m different timescales are given byr;, n;é7m;,
Nn{N,874,..., N4N,...Ny,_187. This corresponds to a situa-
U(t)=e't. (18  tion where the innermost reference propagator is evaluated
every small time ste@r;, the second innermost correction
Since the classical Liouville operator is self-adjoidt(t) is propagator is evaluated evemy small steps, and so on, with
a unitary operator and the time evolution in above equationhe mth correction propagator evaluated only every

is reversible. nyN,...n,,_, small time-steps.
We may then choose to decompose the Liouville opera-

tor into two parts, such that

X [ei(n157'1 /2)L2[ei 67’1L1:|n1ei(n1571 /2)L2]n2_ ..

whereU(t) is the classical time evolution propagator

L=L,+L,. (199 2 Reversible reference system propagation algorithm
(r-RESPA) for biomolecules

This allows us to apply the Trotter theoréfigiving In order to apply the techniques discussed above to the

gltlbitla) =gl N)(Li+Lo) N MD simulation of biomolecules, we take the Liouville opera-

_ _ . tor for a macromoleculé vacuocontainingN atoms to be
:[el(AtIZ)LZeIAtLlel(At/2)L2]N+O(At3), (20)

3N
. . d
whereAt=t/N. In practice At is chosen small enough, i.e., ILZZ Xi — +Fi(X) | (26)
N large enough, to generate an accurate and stable MD simu- ' !
lation. One may then define a discrete time propagator as where
G(At)=U,(At/2)U;(At)U,(At/2) F(X) = Fsyre{ X) + Fpend X) + Frord X) + Fypond X)
— @l (AU2)Logi AtL 1 i (AU2)Lp (21) +Fygw(X) + Feed X), (27

Fstreta I:bendv Ftorsa FHbonda deWl and I:elec represent the
forces for stretch, bending, torsidmcluding improper tor-
sion), hydrogen bonding, van der Waals, and electrostatic
glMli=[gidorby]n interactions, respectively. Their functional forms can be
found elsewheré®®! The databases of parameters for these
functional forms are generally called force fields. There are
several force fields available for biomolecular simulations,
such as CHARMM AMBER,*! OPLS?? etc.

if Ly=x(a/dx)+F.(x)(d/dp). This provides us with a In an atomic level simulation using force fields, the
means for determining the time evolution of a system whos@retch vibrations are usually the fastest motions in the mo-
interactions evolve according to two different time scales!ecular dynamics of biomolecules, so we use the evolution of
That is, the inner propagatet*'-1 may be taken to be asso- the stretch vibration as a “reference” propagator with the
ciated with the rapidly varying interactions with a smaller Smallest time scale. The noqbonded interaction, including
time-step, which we call as a “reference” system propagatorvan der Waals and electrostatic forces, are the slowest vary-
The outer propagatorsel®2-2) are used to evolve the NG interactions, and a much larger time step may be used.
slowly varying interactions with a larger time step, which is The bending, torsion and hydrogen-bonding forces are
named as a “correction” propagator. The formal solution for freated as intermediate time-scale interactions.

The inner propagator in E§21) can be further decomposed
as

—[elon 12)F1(x)(319p) gd71X(91 %) g 67 12)F 1(X)(alap)|n

+0(67), (22)

several regions in pair distance according to their importance
T (At)=U,(At/2)U;(At)U,(At/2)T'(0)+ O(At3) and varying speeds. The near region is normally more im-

portant than the distant region because the nonbonded forces
decay with distance. Since most of the CPU time in a MD
(23 simulation is spent in the calculation of these nonbonded

. . interactions, the separation in pair distance results in valu-
This approach can be easily expanded to a general case o speedups

W|t(;1.ﬁmoretttr.1an twoleff?ctlve tm:g sicales.tSuppose Wehhave Using a three-fold distance split, the nonbonded forces

{n bl erlfrt]h 'T.e SC.‘?' es for atpa.r |;:u arsys ;f”: SO We Choosg,q separated in three regions: near, medium, and far distance

0 break the Liouville operator into a sum orterms, zones. Thus, the Liouville operator can be express as a sum
L=Ly+Lo+--+Lp. (24)  of five terms

It follows that the entire discretized propagator for a sys- L=Litlotlatlatls, (28)
tem with m time scales can be written as where

— ei(r‘lé‘r/Z)Lz[ei 5TL1]nei(n5r/2)L2F(O) + O(Ats) .
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. . d J (a)
iL=x 5+F1(X) 7’ (299 ay3d
) J .
ILiEFi(X)%, 1=2,3,4,5, (29b)
and K3
2d
F1(X)=Fge(X), (30a |
F2(X)=Fpend X) + Ford X) + Fpond X) (30b)
(b)
F3(x)=Fyaw(x) +Faadx), (300
F4(X)=FMd(x) + Fmed, (300
6v3d
Fs(X)=Fiiw(X) + Fec. (309

To separate the nonbonded forces into near, medium, and far
zones, pair distance separations are used for the van der
Waals forces, and box separations are used for the electro-
static forces since the box separation is a more convenient
breakup in the TFMM method.

The distance separation for van der Waals forces is most
easily implemented by using switching functicd$®For ex-
ample, if we want to separate the pairwise interactQpy
into m subsegments in the pair distance regions, [iGe-r 4],

[ri=rol..... and Ty =7yl we may write the van der FIG. 1. A diagram showing the box separation for the electrostatic forces.
Waals force as (@ The near zone: a lowest-level bdgenter box and its 26 nearest-
neighbor boxesb) The medium zone: its 98 second-nearest-neighbor boxes
(dashed boxes

2d

m m
Fuaw() =2, Flaw(0= 2, [Sdr) = Se1(NIFyandX),
(31)
L . . , electrostatic forces, using w2 may be a better choice than
whereS,(r) are switching functions which are defined as using ws=1, since it is more convenient to calculate the
So(r)=0; S,(r)=1.0 forces from near and medium zones directly, and forces from

the far zone by local field expansions from distant multi-

and poles, which is exactly what is done in the TFMM with
1, Osr<ry—Ary, ws=2.
S(r)=1 1- R2(3—2Ry), r—Ar<r<ry (32) A diagram for the near and medium zones for the elec-

trostatic forces is given in Fig. 1. Cubic boxes were used for
simplicity. Assuming that the side-length for the smallest box
HereRy=[r—(r —Ar )]/ Ar, r is the interatomic distance, in the tree is 2, the pair distance in the near zone, as shown
re is the kth distance cutoff, and\r, is the kth healing in Fig. 1(a), ranges from 0 to ¥Bd; the medium zone, as
length. The analytical form for the switching function is ar- shown in Fig. 1b), ranges from & to 6v3d; and the far zone
bitrary, and the only requirement is that it and its first deriva-ranges from 4l to infinity. Since these zones are constructed
tive are to be continuous, at andr,—Ar,. The reason to from cubic boxes, they are not spherical shells, therefore
use switching functions is to avoid the sudden changes ithese zones overlap in distance. The overlap region will be
forces when crossing between different distance regionswider if rectangular boxes are used. The pair numbers in the
This ensures that the force in the first regi@«<r=<r,) de-  overlap region decrease to zero slowly for the nearer zone
creases smoothly to zeroigt, and in other regions, such as since there are few pairs of atoms which are in opposing
in thekth region, it increases smoothly from zeragt; and  corners, and increase slowly from a small number for the
decreases smoothly to zerorgt Using this method, highly next zone for a similar reason. For example, in the overlap
stable molecular dynamics simulations are possible. region (4 —4v3d) of the near and medium zones, the pair
The box separation used for the electrostatic interactionaumbers for the near zone decreases slowly to zero when the
is taken to be consistent with the box division in the TFMM. pair distance goes tov&d, and the pair numbers for the
For a particular box in the lowest-level, the box and its 26medium zone increases slowly from a small number when
nearest boxes are regarded as the near zone, it5°9&°) the distance increases fromd2This means that the pair
second-nearest neighbor boxes as the medium zone, and alimbers in the overlap regions behave as a sort of switching
the other boxes as the far zone. As we will see in Sec. IVfunction, so that no explicit switching functions are used for
using ws=2 in the TFMM is even faster than wsl if a high  the electrostatic forces. The following MD simulations pre-
accuracy level is required. Thus, for the box separation of theented in Sec. IV show that we can generate very stable MD

0, r¢s=r.
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simulations using the box separation for electrostatic force$O(r ~°)), a cutoff distance of =12 A was used. The cutoff
without an explicit switching function. was made such that the forces and their first derivatives go
After separating the nonbonded forces in the three dissmoothly to zero at. by using a switching function as in Eq.
tance regions, we may write the discretized propagator as (32). The calculation results show that=12 A is large
enough for the van der Waals potentials.
Normally, molecular simulations using force fields ex-
X [ €l (Mn2d71/2)Lg[ i (N1071 12)Lo[ @i 671L1]M clude nonbonding forces between atoms that are considered
to be chemically bonded. But, as we have seen above, it is
more convenient to calculate potentials and forces for all
X @l (MN2n3d71 /2)L 4 Nagi(N1nznangd7y 12)Ls (33) point charges in the FMM, so we need to subtract the chemi-
cally bonded pair contributions from the FMM results. Usu-
wherel,, L,, L3, Ly, andLs are given by Egs(298 and gy, (1,2) stretching and1,3) bending interactions are ex-
(29b). The inner “reference” propagator in E¢33), which  ¢jyded totally in all force fields, but(1,4) torsional
contains the bond stretching vibrations evolution, is given byinteractions are treated slightly differently in various force
' 9 J fields due to different choices of parameters. In the AMBER
e ‘”lleex;{ 571(5< - TR0 (9_) . (34)  force field, only2 of the (1,4) interactions are subtracted.
P The FMM algorithm was implemented as a portable
This can be further expanded by using the following Trottermodule using the C programming language. It uses a tree

G(At) = ei(n1n2n3n45r1 /2)L5[ei(n1n2n367-1/2)L4

X ei(n1§r1 /2)L2]n2ei(n1n2¢97-1/2)L3]n3

factorization structure of boxes to handle the multipoles and Taylor expan-
P P sions. For example, a specific box in the tree can be de-
exp{ S| x X +F4(x) %” scribed as “boxp][i][j]1[K]"in C language syntax, where

is the level in the tree, anidj,k are indices of the box ix,
9 y, andz directions respectively, which can range from 0 to
9XF< O71X &) 2". Then the eight nearest neighbors can be easily accessed
by i’=i+{1,0-1}; j'=j+{1,0,-1}; andk’=k-+{1,0-1}.
Furthermore, its parent is now just baxf 1][i/2][j/2][k/
2], and its eight children are given by boxi{1][2i
) . .. +{0,1}][2j +{0,1}][2k+{0,1}]. All the multipoles and
As has been shown in Refs. 21 and 28 this factorlza‘:uon 'Sraylor expansions can be well organized through this struc-
equivalent to the velgglty/z\)/f:rlet algorithm. The outer "Cor- e for yse in the “upward” and “downward” passes. In our
rection” propagatore™*’m'“m, form=2, 3, 4, 5, are of the 145 jown FMM, the charges in each bor][i][j][k] are
form first checked during the recursive multipole calculation from
e(0mm/2)F(x)(d/dp) (36) the top of tree. If the charge is zero, then the multipole and
. . . _ corresponding Taylor expansion coefficients for this box and
After acting to the right on an arbitrary stafe,p}, one find all its children and grandchildren are assigned to be zero
that without any further calculations.
OTm d The FMM module is then called by a MD module which
eXF{(T) Fm(X) o {x,pt={x,p+(87m/2)Fn(X)}. is written in FORTRAN. The implementation of the r-RESPA
(37)  algorithm in the MD module is quite straightforward, and a
. . . _schematicFORTRAN code can be found elsewhéreAll
Thus, the evplutlon of the systgm 1S determmgd NUMeNlsimulations were performed on IBM RISC 6000/model 580
cally by acting with the propagator in EB3J) to the right on
2 . and 590 computers.
the initial state{x(0),p(0)}, using Eqs(37) and(35).
. In the following sectiqns we apply the new MD algo- IV. RESULTS AND DISCUSSIONS
rithm based on the combination of TFMM and r-RESPA to
simulations of proteingn vacuo We use the TFMM to cal- Six protein systemén vacuoare used in this paper to
culate electrostatic interactions for large protein moleculegest the new MD algorithm: a 292-atom fraction of insulin
and we use the propagator in E&3) to generate the inte- (4insb, crambin(655 atoms, 1cm interleukin 8(1144 at-
gration scheme, with a reference propagator of the form i®ms, 3il8, ribonuclease-H (2470 atoms, 2m2 L-*
Eq.(35). The results are discussed and compared with that cdrabinose-Binding Protei674 atoms, 8ahpand the Pho-
the standard velocity Verlet integrator. tosynthetic Reaction Centdlincluding the active branch
only, i.e., subunit C and L, 9513 atoms, 1prc
Before performing a production MD simulation, we need
to apply some primary “treatments” to the initial structure—
The potential parameters used in this paper are adoptedray structure from Brookhaven PDB file, with addition of
from the AMBER force field, although our program is de- explicit H atoms. First, we minimize the x-ray structure us-
signed to be capable of using various force fields. The fuling the conjugate gradient method to obtain a minimum en-
long-range Coulomb potential®O(r ~1)) were used in the ergy structure. This is necessary because AMBER and other
simulation by taking advantage of the fast multipole algo-available force fields, while reasonable, are not sufficiently
rithm. For the short-range van der Waals potentialsaccurate to give exact structures, and the explicit H atoms

:exf{(57'1/2)|:1(x) %

+0(87). (35

Xexp{(57'1/2)|:1(x) %

IIl. COMPUTATIONAL IMPLEMENTATION
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TABLE I. Tree leveln and the average particle numbers in the finnest-level = int(logh ©), (38)
box Ny used in FMM for various proteins with total atom numidér 8

where the int function returns the integer paitis the num-

ber of total atoms, andN, is the desired average particle

N 292 655 1144 2470 4674 9513 number in the finest-level box. Generally, using a larygr

n 2 2 3 3 3 4 requires more multipole terms to obtain a given level of ac-
No 4.56 1023 2.24 4.82 913 2.32 curacy, and thus more CPU time; on the other hand, using a
smaller Ny may result in more tree levels, and thus more
CPU overheads in FMM as well. Various simulations have

: ; : :44,25,27,33
added by the program may not in correct positions. Typically,s'hOWn that settingl, to 216 is an optimum choice:

it takes several thousand iterations to minimize a 1000-atort§'m'||ar rtlasultsdatrﬁ found by ourtf:(':lllculatlc:)n. 'I_'hethop:cl_murP
protein, and tens of thousands of iterations to minimize ree levein and the average particie number in the finest-

5000-atom protein. The rms deviation for the minimized evel boxN, for various proteins are listed n Table I
structure compared to the initial x-ray structure is usually Fo_r the well-separated parameter ws, it is obvious that
very small, only 0.5-1.0 A. The initial velocities are then ws=1 is faster but less accgrat_e thanw@fpr_ the samep
sampled from a Maxwell-Boltzmann distribution at a given level. Thus, we may ask Wh'Ch_ IS more efficient for a given
initial temperature, such as 100 K. In order to avoid havingle.vel of accuracy: to use wsl with a h|gherp oruse ws=2 .
the structure blow up, the minimized structure is sIowaWIth a lowerp. In order to addresg this quest_lon, we dgflne
heated up to 300 K from 100 K over a 10 ps MD run. This istW0 measures of accuracy. One IS the_ relative err9r in the
then followed by a 20 ps MD run at 300 Kanonical en- potential, the other is the relative error in the forces:
semble for equilibration. During the equilibration the ve-

Protein  4insb lcrn 3il8 2rn2 8abp 1prc

_ | D gireci— (DTFMM|

locities are resampled from a Maxwell-Boltzmann distribu- ~A®= T [ ged (399
tion periodically if the average temperature over the previous direc
0.5 ps deviated from 300 K by more tharb K. E|F&ii?ect— F(Ti%MM|2
AF= m |2 (39D
E|Fdirect|

A. Optimum parameters for TFMM Some numerical results for both w& and ws=2 are listed

As we discussed in Sec. Il A, three parametersp,ws)  in Table Il. For ws=1, AF is 10 >—10 3 for p=4; while for
are used in the FMM. In this section, we will determine thews=2, AF is about 10°—10* for p=4. Thus, ws=2 is
optimum values for these parameters in our MD simulationapproximately ten times as accurate as=#is To reach the

The total number of tree levels is determined by same accuracy as that in w2 with p=4, multipoles up to

TABLE Il. Accuracy and speed up of the new version of the fast multipole method for various proteins in both
ws=1 and ws=2 cases. The CPU time of the direct method is also included for comparison. For each column,
the three numbers are CPU timep andAF,,, respectively. All CPU timegsecondsare obtained from IBM
RISC6000/MODEL 590 machines.

ws=1 ws=2
Protein Direct p=2 p=4 p=8 p=2 p=4 p=8
4insb 0.06 0.08 0.14 0.42 0.10 0.14 0.26
(292 8.74CE-3 3.04%-3 4.26€E-4 3.92&-4 6.22E-4 3.16%E-5
2.132%&-2 1.10&-2 6.284-3 2.54F-4 7.04€E-4 7.39F-5
lcrn 030 024 0.31 0.74 0.38 0.44 0.65
(655 5.318-4 4.69€-5 5.75%-6 3.48&-4 4.021E-6 1.20%€-7
1.067E-2 3.03%-3 4.70E-4 1.05%-3 1.521FE-4 4.57E-6
3il8 1.02 0.64 0.72 1.13 1.01 1.09 1.46
(1144 3.52(E-4 7.19%&-5 2.64&E-5 6.29(E-5 7.497E-6 1.624-7
9.914E-3 3.56€E-3 1.371E-3 9.69&-4 1.78%E-4 9.96&-6
2rn2 4.98 1.42 2.55 8.32 2.50 3.48 8.24
(2470 1.05%&-4 6.79&-5 4.93£-5 2.03%E-4 1.70FE-5 1.487E-6
2.507E-2 1.02E-2 3.27%E-3 7.89&-3 2.32F-3 3.74E-5
8abp 1748 281 3.99 10.29 7.05 8.04 13.13
(4679 1.095%-4 9.06E-5 2.84F-5 1.39&-4 2.83E-5 2.22%E-6
2.155%-2 8.34%-3 2.367E-3 6.93FE-3 1.82F-3 2.53&-4
1prc 76.13  7.32 14.37 52.52 13.06 20.26 60.03
(9513 1.720E-4 1.167E-4 1.60€-5 2.07&-4 8.47&-6 8.17E-6

3.491E-2 1.78E-2 9.65%-3 1.32&-2 4.31FE-3 1.12%-3
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. ' . . . ' lomb forces. The result for the direct electrostatic calculation
is also included for comparison. It is found that4, which
includes contributions up to hexadecapoles, is sufficient for a
stable constant-energy MD simulation. So in the following
1 simulations,p=4 is used.

. At this point, the three parameters used in TFMM have
i been optimized for our MD simulation. The tree levelfor
various proteins are listed in Table(N, equals to 2—10
The other two parameters are setpg4 and ws=2 for all
proteins studied.

20 F

22k
Verlet/TFMM
-24
logAE -2.6
-28

30+

-32 Verlet

-3.4 q
L ' 1 1 L 1

PARAMETER p IN TEMM ALGORITHM B. Energy conservation comparison

FIG. 2. Dependence of energy conservation on the pararpateed in the In this ;ection, we will compare the energy conservation
FMM algorithm which is now incorporated in MD modulg=2, includes ~ for three different methods, r-RESPA, velocity Verlet, and

contributions up to quadrupol@=4, to hexadecapolgs constant long-range force approximatiGbLFA).

In r-RESPA, we separate forces according to their intrin-
sic different time scales to increase the overall time step. We
use the notationr(;,n,,n3,n,) to indicate different combi-
nations of time-scale separation. That is, if the time stefi is
for stretching forces, then time step is

n, 6t for bending, torsion and H-bond forces,
n,n,ét for near zone van der Waals and electro-

p=4, multipoles up tg=8 should be used in wsl, which
requires more CPU time. This is consistent with
Greengard’s' and Head-Gordor®s results. Both of them
claimed that ws-2 was the optimum choice. Also, we note
from Table Il that the crossover point for the TFMM vs
direct evaluation is about 1000 atoms for=a at an accu- .
racy level of Ad~10%—10"° andAF~103-10"% which static forces,

: . n,n,n; 8t for medium zone van der Waals and elec-
is comparable or even better than previously reporte(% :
11,25,27,33 rostatic forces,

results. n,n,nsn,ét for far zone van der Waals and electro
In addition, since we may use distance separations in the 17277874

-RESPA algorithm, ws2 is the better choice for our MD St2UC forces.

. . . . In dividing the near, medium, and far zones, we use pair
simulations because we can easily use the nearest-neighbar g the P
Istance separations for van der Waals forces and box sepa-
boxes as the near zone, the second-nearest shell of box as

. ra%ons for electrostatic forces, as described in Sec. Il. The
medium zone and all the other boxes as the far zone.

To address the parametgr we need to determine what results of the calcglatlon show thqt 7-9 A (with healing .
. - : - 7" length 1.5-2.0 Ais a good choice for the near zone in
p level is sufficient to generate a stable MD simulation, i.e., . = : . .
) . . . dividing the van der Waals forces using a switching function.
to avoid possible accumulation of errors in MD runs. Two

. A value ofr;=8.0 A is used in the following simulations.
energy conservation parameters are commonly used to d‘?"he pair distance regiof8—12 A is defined as the medium
scribe the stability of a constant-energy MD simulatid?®

: . . zone, and no far zone of van der Waals forces is actually
One is the total energy fluctuatiahE defined by included here because of the cutoff at 12.0 A, which is suf-
Einitias — Ei ficiently large for van der Waals forces.

—’ (40) Box separation for the electrostatic forces is more con-
venient within the FMM(ws=2 is usedl. For simplicity, we
where E; is the total energy at step Eja iS the initial  consider a cubic-box subdivision. The side lengthl) Zor
energy, and\ is the total number of time steps. This quan- the smallest box in the tree, which contains 2 to 10 atoms on
tity has been shown to be a reasonable measure of accuragyerage, is from 4at 6 A for all proteins studied here, i.e.,
in previous simulation$?*and a value oAE<0.003, i.e., d=2.0 to 3.0 A. Using an average value d&2.5 A for
log(AE)<—2.5, gives an acceptable numerical accuracyestimation, the pair distance for the electrostatic near zone,
Another common measure of the accuracy is the ratio of thgvhich includes the smallest box and its 26 nearest-neighbor
rms deviation of the total energy to the rms deviation of thepoxes, ranges from 0 tovad (0 to 17.3 A. The medium

1 M

EN_TE

i=1

AE

Einitial

kinetic energy’’ zone encompasses the second nearest-neighbor boxes, rang-
AE ing from 2d to 6v3d (5.0 to 26.0 A, and the far zone from
R= AKéms . (41)  4d to infinity (=10.0 A). The electrostatic forces in the near
rms

and medium zones are evaluated directly, while the contribu-
A value of R<0.05, can be used as an alternate criterion fotions from the far zone are evaluated by local field expan-
stability in MD simulations->% sions from distant multipoles. No explicit switching func-
The protein ribonuclease-f2rn2) is used as an example tions are used for electrostatic forces, as has been mentioned
to perform constant energynicrocanonical ensembléviD before, since these zones overlap in distance and the pair
simulations to determine the necessarylevel. Figure 2 numbers in the overlap region behave as a sort of switching
shows the dependence of lagE) with p for 1 ps of MD  function.
simulation using the standard velocity Verlet integration Physically, the separation of nonbonded forces on the
scheme with the new version of FMM implemented for Cou-basis of the pair distance is a kind of “short/long” range

J. Chem. Phys., Vol. 103, No. 21, 1 December 1995



R. Zhou and B. J. Berne: New molecular dynamics method 9453

T T —T T TABLE IIl. Comparison of energy conservation and associated CPU times
for velocity Verlet, constant long-range force approximati@LFA), and
r-RESPA/TFMM. Here At (fs) is the overall time stefithe smallest time
Verlet step is 0.5 fs for CLFA and 0.25 fs for rRESPA/TFMNh} represents the
combinations of separations in CLFA and r-RE$PR, is the total CPU
time spent(in secondsin all force routines. All data are collected from 1 ps
MD runs for protein ribonuclease-H in IBM RISC6000/MODEL 590 ma-
4 chines. The asterisk indicates that the structure blows up her8.0 fs in
Verlet method.

30 w 1 Method {n} At log(AE) R Tootal

-2.0 |
logAFE
-2.5

35 L 1 I I I I L L Verlet 0.50 —3.2861 0.0374 16776.7
05 1.0 15 20 25 30 35 40 45 1.00 —2.8746 0.0715 8363.9
150  —2.2127 0.0934 6401.7
2.0 T | T T 2.00 —1.5436  0.2966 4218.6

a9 b | 300 vk
24 4 CLFA 1 050 —3.2861 0.0374 16776.7
asl | 2 1.00 —3.0181 0.0574 9386.8
: 3 150 —2.5984  0.1708 6753.3
logAE , g - 4 200 -2.3232  0.1885 5514.8
o0l | 6 3.00 —2.0180  0.4415 4495.4
8 400 —1.8654  0.8730 3651.5

a2l RESPA/TFMM |

M RESPA/ (1,1,1,2 050 —3.4171 0.0247 14575.2
34 . , , , , , , L TEMM (1,1,2,2 1.00  —3.3592 0.0371 9281.6
05 10 15 20 25 30 35 40 45 1,1,2,3 1.50 —3.3100 0.0343 8285.4
Time-Step (fs) (1,2,2,2 2.00 —3.2962 0.0330 4895.0
(1,2,2,3 3.00 —3.2690  0.0329 3977.9
(2,222 400 —3.1980  0.0378 2520.7

FIG. 3. Comparison of the energy conservation for various methods in a
1 ps constant-energy MD runs for the protein ribonucleaséeH-RESPA/
TFMM vs the velocity Verlet.(b) -RESPA/TFMM vs the constant long-
range force approximatio(CLFA).

choose the near zone as “short” range<8.0 A for vdWw,

breakup, the separation of bonded forces from nonbondegnd nearest-neighbor boxes for electrostatic foraad me-

forces is an “internal/external” force breakup, and the sepa’ ium and far zones as “long” range. In both region there are

ration of stretching vibrations from other bonded interactions(?OntrIbUtlons from vdW and electrostatic forces. The overall

is a “stiff/soft” force breakup. These three separations havd!Mme step for CLFA, is themét. The energy conservaf[ion
been shown to be ideal for the application of the r-RESpAParameter log 4E) is plotted as a function of overall time
method?®? It is the difference in intrinsic time scales in St€P in Fig. 80) for both CLFA and r-RESPA/TFMM. The

these breakups that make the r-RESPA algorithm valuabIEeSUItS indicate that the constant long-range approximation
and powerful leads to very poor energy conservations in this case, whereas

Figure 3a) shows the energy conservation performancesrfRESPA/TFMM remains quite stable to significantly larger

of velocity Verlet and r-RESPA/TFMM. Here, again, we time steps. i

studied protein ribonuclease-H as an example, with 1 ps MD_Furthermore, our -RESPA/TFMM is even faster than
runs for both methods. The curve for r-RESPA/TFMM is C,LFA for time steps ]arger than 2.0 fs. It should be men-
obtained from various combinations oh, n,, ns, n,) tioned that log AE) will decrease to some extent for CLFA

with smallest time ste@t=0.25 fs. The overall time step is if we use a small ti_me-step Qﬁ:?'% f? in CLFA, or use
then given byAt=n,n,nsn,st. For example(1,1,2,3 gives both near and medium zones as “short” range, but IA&)

atime step of 1.0 fs, an@,2,2,3 gives a time step of 4.0 fs. still increases mL_Jch fa_ster with the overall time step than
The results indicate that for a similar accuracy level, the"RESPA/TFMM, i.e., it is not as stable as r-RESPA/TFMM.
r-RESPA/TFMM method is able to use a time step nearl)/o‘nd’ of course, thq CF_’U time required in C_LFA increases at
8-9 times larger than that of velocity Verlet. For velocity ("€ Same time, which is absolutely not desired. _
Verlet, E.,, Starts drifting to higher energies with time when Table 11l summarizes some results from the three differ-
the time step exceeds 1.0 fs, whereas r-RESPA/TFMM ient methods velocity Verlet, CLFA, and r-RESPA/TFMM for
quite stable even for an overall time step as large as 4.0 fscomparison.

It is also interesting to compare r-RESPA/TFMM with a
frequently used approximation whereby one treats the Ion% S | densi .
range force as effectively constant over a number of time™ pectral density comparison
stepsn while a standard integrator such as velocity Verletis  To explore the question of whether r-RESPA/TFMM
used. We denote this method as the constant long-range fordees indeed generate the correct dynamics for the system, we
approximation(CLFA). In order to make the comparison, we compare a spectral densitf7) as a function of the fre-
choose to employ the identical “short/long”-range force quency in wave numbers, obtained from the two methods,
breakup for nonbonded forces in two methods. That is, wevelocity Verlet and r-RESPA/TFMM, where
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FIG. 4. The velocity autocorrelation functi@,(t) as a function of time for
three cases(a) velocity Verlet with At=0.25 fs, (b) velocity Verlet with

At=0.50 fs, andc) rRESPA/TFMM with time step 4.0 ficombination of
(2,2,2,2 with 6t,=0.25 .

andC,(t) is the normalized velocity autocorrelation function
of the system,

(SLvi(D)-vi(0))
(ZILvi(0)-vi(0))
Herec is the speed of lighty;(t) = (vy(t), vy(t), v (1)) is
the velocity of atoni at timet, andN is the total number of

atoms. As an example, we use protein interleuk{BitB) for
the spectrum simulation. The velocity autocorrelation func

C,(t)cog2mcwt)dt (42)

Cut)= (43

tion and its infrared spectrum are obtained from 5 ps MD

runs for three different cases:

(1) velocity Verlet with time step 0.25 féverlet_0.25 f9

(2) velocity Verlet with time step 0.50 féverlet_0.5 fg

(3) rRESPA/TFMM with time step 4.0 f92,2,2,2 combi-
nation (RESPA/TFMM_4.0 f9.

We assume the Verlg0.25 fs case represents the “ex-

act” result. Figure 4 shows the autocorrelation functions for

the three casefonly 2 ps is plottegl They look similar in

R. Zhou and B. J. Berne: New molecular dynamics method

Fig. 4, but the details shown in Fig. 5 indicate that the auto-
correlation function of Verlet0.50 fs actually differs from
the Verlet 0.25 fs after 0.5 ps. On the other hand, RESPA/
TFMM_4.0 fs stays very close to Verldd.25 fs for 1.2 ps.
These differences in autocorrelation functions result in the
differences between the three corresponding spectral profiles
given in Fig. 6. The sharp peak at 2955-2985 ¢iis due to
the C—H stretch vibrations, and the small peak near 3320
cm ! are due to the hydrogen-bonded O—H stretches, while
the small shoulders around 600—1200 ¢rand small peaks
around 1500 cm' belong to various bending modes, as well
as C-C and €=0 stretch vibrations.

In order to establish a quantitative estimate of the accu-
racy of the resulting spectral densities, we congftier

_ _32)
D—arcco%ISIIISZI , (44)
where

S=(s1,...,5,), (45)

and thes; are the spectral components at frequencyhe
quantityD in the above equation can be viewed as the angle
between the vectorS, andS,. If the two spectra are identi-
cal, thenD =0, whereas, if they are uncorrelatdd=7/2.
We take as a reference, the “exact” spectral density to be
defined as that obtained from a MD simulation using the
velocity Verlet integrator with a time step of 0.25 fs. We then
calculateD with respect to this reference spectral density for
the other two cases. We obtdin=0.549 for that of velocity
Verlet using a time-step of 0.5 fs, anB=0.109, for
r-RESPA/TFMM with an overall time step 4.0 fs. Thus,
r-RESPA/TFMM not only reduces the CPU time, but also
gets better spectra compared to the velocity Verlet integrator
using a time step of 0.5 fs.

The poorD value for the velocity Verlet wittAt=0.5 fs
can be attributed to a numerically induced “blue shift” evi-
dent at the higher frequencies of the spectral deh3fTo
illustrate this, Fig. 7 shows the detailed spectra for the three
cases in four different frequency regions. The differences
between the three cases are small in the frequency region
600-1600 cm?, but the Verlet0.50 fs spectrum starts to
differ from Verlet_0.25 fs at higher frequencies. The sharp
C—H stretch peak at 2954 crh shifts to 2961 cm?, the
hydrogen-bonded O—H stretch shifts from 3321 to 3332
cm !, and the free O—H stretch shifts from 3728 to 3745
cm L. The RESPA/TFMM4.0 fs spectrum agrees with
Verlet_0.25 fs very well, and no evident shifts are found for
these peaks. This indicates that the smallest time step for
_stretching is critical in generating the correct infrared spec-
tra. Also, the fact that Verle0.50 fs agrees well with
Verlet_0.25 fs at low frequencies, but differs at higher fre-
quenciesthe higher the frequency, the larger the blue $hift
indicates that for high-frequency vibrations, such as C—H,
O—H stretch, a time step of less than 0.50 fs is necessary.

D. CPU timing comparison

To our knowledge, in all the FMM work previously
reported!?>27:3336 the space was subdivided into cubic
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FIG. 5. Comparison of the velocity autocorrelation functions in detail: velocity Verlet with0.25 fs(solid line), velocity Verlet withAt=0.50 fs(dash
line), and r-RESPA/TFMM with overall time step 4.0 fflsombination of(2,2,2,2 with §t=0.25 fs, dotted ling

boxes. This subdivision of space makes it simpler to contimes larger than that of velocity Verlet for the far region
struct the FMM algorithm and easier to determine the errononbonded forcegvhich are usually the most CPU consum-
bounds(Sec. Il A). The use of rectangular boxes instead ofing interactions Figure 9 shows plots of the total CPU times
cubic boxes will further reduce the number of vacant boxesfor 1 ps MD runs using velocity Verlet with a time step 0.5 fs
and will also reduce the set of pair numbers in the neaand r-RESPA with an overall time step 4.0 &@mbination of
region which must be evaluated directly. Although using(2,2,2,2 in force separatioh It is clear that r-RESPA is
rectangular boxes may lower the accuracy for systems witlabout 4—6 times faster than velocity Verlet for various pro-
very high aspect ratios, for most proteins the accuracies ateins with the same level of accuracy.
perfectly acceptablésee discussions in Sec. I)A Implementation of the TFMM for electrostatic interac-
Figure 8 shows the CPU times for the calculation of thetions in r-RESPA will further reduce the CPU time for Cou-
electrostatic potential and the forces in one MD time-step fotomb interactions compared to the direct evaluation. The to-
FMM (cubic box, the top-down FMM with cubic box tal CPU times for -RESPA/TFMM are also shown in Fig. 9
(TFMM-C) and the top-down FMM with rectangular boxes for comparison. It is found that for a protein larger than
(TFMM). The optimum paramete(s, p,ws) obtained in Sec. ~1000 atoms the TFMM is faster than the direct evaluation,
IV A are used here. The top-down FMM with cubic boxes isindicating that the crossover point of is about 1000 atoms.
found to be up to 15% faster than the conventional FMMFor the protein 1 prc, the TFMM further reduces the total
depending on the inhomogeneity of the proteins. The per€PU time by a factor of 3, i.e., the rRESPA/TFMM 4s3
centages of the vacant boxes for these proteins are from 14%mes faster than r-RESPA for a protein with 9513 atdins
(1crn to 37% (1pro when using cubic boxes, and this per- fact, the CPU saving for electrostatic forces is about 4-5, the
centage may be a normal range for most proteins. Howevefactor 3 is for total CPU saving This CPU saving is from
it must be pointed out that the percentage of the vacant boxdke elegant use of the multipoles and local field expansions
depends on the tree levels used; the higher the tree level, tiie FMM as discussed in Sec. Il A, as well as the top-down
larger the percentage. Here, we have used optimum tree levecursion and noncubic box separation.
els listed in Table I; that is, the average atom number in the It is of interest to replot the CPU time in Fig. 9 on a log
smallest box is roughly 2—10. The TFMM, using both top- scale, logTpy) vs log(N), and fit it with a straight line,
down recursion and rectangular boxes, however, is found to log(Tepy) = Co+ ¢4 l0g(N) (46)
be 20%-40% faster than the normal FMM, indicating that it 90 Tepu) = Com €1 10O,
may be useful for noncubic inhomogeneous systems, such #en we find that the CPU time scales withas:

proteins. Velocity Verlet:  Tepy~N2-90
The CPU saving of r-RESPA vs velocity Verlet springs y Coc
from the fact that in r-RESPA one can use a time steép -RESPA: Tcpy~NY7°
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FIG. 6. Spectral intensiti(7) as a function of wave number for three cases: .

(@) velocity Verlet with At=0.25 fs, (b) velocity Verlet with At=0.50 fs, 1)
and(c) r-RESPA/TFMM with time step 4.0 ficombination 0f(2,2,2,2 with 4
8t;=0.25 fd. Intensities are in arbitrary units.

-RESPA/ITFMM:  Tepy~ N*-32 0 . : . ' !
3200 3250 3300 3350 3400 3450 3500
Wave number (cm-1)

It is clear that the CPU time scales nearlyN&in the ve-
locity Verlet integration method. The r-RESPA method re-

duces CPU time by a factor of 4—6 for various proteins, and 12 T T T —
reduces the order from 1.90 to 1.79. After applying TFMM L (d) x:{::zg:ggf -
in -RESPA, the CPU time scales almost linearly with the . RESPA/TFMM_4.0fs - --- |
number of atoms, which is also clear in Fig. 9. Thus, we 0.8 N

expect an even larger speedup for larger biosystems. Also, it
is no longer necessary to set up pairlists for these long-range 1(7)06
pairwise Coulombic interactions, so the memory requirement

is also of order ofO(N) rather tharO(N?). o4 —

To gain a deeper insight into the CPU timings and sav- 02k - ]
ings for different forces using different methods, we list de-
tailed CPU timings in Table IV for the largest protein studied 0 ! y ! »
. . . . 3700 3720 3740 3760 3780 3800
in this paper, the photosynthetic reaction center. In order to Wave number (cm-1)

reduce computational effort, these data are collected over
nly 0.1 MD runs. It is clear that 99% of CPU time i T

only O DE | ul S. Sf Che Etl) 93 (:j? U S s FIG. 7. Comparison of the details of the spectral intensit{e$ in Fig. 6 in
spent on the calculation of the nonbonded foroesV a_n _four frequency regions, velocity Verlet witht=0.25 fs(solid line), velocity
Coloumb forceswhen we use standard methods, which in-verlet with At=0.50 fs(dash ling, and r-RESPA/TEMM with overall time-
dicates that more efficient methods for computing non-step 4.0 ff{combination of(2,2,2,2 with 5t=0.25 fs, dotted ling Intensi-
bonded forces are highly desirable. The r-RESPA and FMMes &€ in arbitrary units.

are exactly designed for this purpose. Compared to the ve-
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FIG. 8. Comparison of the performances of the convensional Heibic FIG. 9. CPU timegin hourg for 1 ps MD runs for various proteins using
box), top-down FMM with cubic-box subdivisiof TFMM-C), and top- three different methods, direct velocity Verlet with a time step 0.5 fs,
down FMM with rectangular-box subdivisioffFMM) in calculating the  r-RESPA with direct evaluation of electrostatic forces and an overall time
long range electrostatic interactions for proteins. Paramptesand ws-=2 step of 4.0 fs, and r-RESPA/TFMM with an overall time step 4.0cfsm-

are used in fast multipole algorithm, and parametétotal levels in the box  bination of (2,2,2,2 in force breakup The energy conservation parameter
tree is listed in Table I. CPU times for direct evaluation of the Coulomb log AE for the three methods are comparable. The CPU finoairy is for
interactions are also included for comparison. The CPU fimeecondsis RISC6000/MODEL 590 computers.

for RISC6000/MODEL 590 computers.

TFMM for a protein with 9513 atoms. Since 0.5 fs is gener-
locity Verlet with time step 0.5 fs, the -RESPA, with a time ally used for MD simulations of proteins, our comparison is
step 4.0 f{combination(2,2,2,3] and a comparable level of made to velocity Verlet with time step 0.5 fs. Larger time
accuracy, lowers the total CPU time from 15566 to 3489 ssteps, such as 0.8 fs, 1.0 fs, are also reported for MD simu-
by a factor of 4.46. The -RESPA/TFMM further reduces thelations of proteins by using SHAKE:*® However, these
total CPU time from 3489 to 1154 s, by a factor of 3.02, andSimU|ati0nS using SHAKE will affect spectral densities, for
reduces the CPU time for the calculation of electrostatic€xample, there will be no C—H peak in spectra if C—H bond
forces from 2993 to 680 s, by a factor of 4.40. Overall, thelength is constrained. Furthermore, SHAKE will affect some
r-RESPA/TFMM method lowers the total CPU time by a Other properties, such as time dependent quarfittésnd
factor 15 and lowers the CPU time for electrostatic forces byspectral densities associated with the main chain and side
a factor of 20. Since this is for the high accuracy lag) chain torsional motiof?
<—3.0 const-energy MD simulations, the CPU time saving  Finally, since the CPU saving in -RESPA/TFMM comes
is quite impressive. If some loss of accuracy can be toleratedfom algorithm improvements, we expect to find comparable
such as in constant-temperature MD simulations where vdmprovements in performance on other platforms, such as
locities are rescaled artificially, we may obtain an even largeparallel machines. Parallelization of this efficient MD algo-
speedup by using=3 (octapolé or p=2 (quadrupole In  rithm is currently under development.
addition, the best combination of the force separation in
r-R.ESPA is found to_be(2,2,2,2 rather than(l,l,l,.lﬁ,. V. CONCLUSION
which could be physically reasonable, since the intrinsic
separation in time scales for the different forces increases The new MD algorithm presented here, which uses a
gradually. new version of the fast multipole methd#MM) and the

As illustrated in Sec. IV C, it is necessary to use veryreversible reference system propagator algori(hRESPA,
small time steps, such as 0.25 fs, to obtain the reasonabls a significant improvement over other algorithms in dealing
spectral densities for vibrational stretches, such as C—Hyith the two main bottlenecks in simulating biosysterts:
O-H stretching. So, if compared to the velocity Verlet with acalculating the full long-range Coulombic interaction gbg
time step 0.25 fs and direct evaluation of Coulomb forces, dreating the intrinsic differences in timescals for various in-
CPU time speed up of30 would be expected for rRESPA/ teractions. The improvements can be summarized as follows:

J. Chem. Phys., Vol. 103, No. 21, 1 December 1995



9458 R. Zhou and B. J. Berne: New molecular dynamics method

TABLE IV. Results from 0.1 ps MD runs for the protein Photosynthetic Reaction C&8&8 atoms Detailed CPU times in various force routines are listed
for the three different simulation methods, velocity Verlet, -RESPA, r-RESPA/TFMM, for comparddois. the overall time step, anh} is the represen-
tation of combinations in force separation in r-RESPA, with the smallest timessteP.25 fs. The asterisk indicates that the structure blows up wher8.0

fs in Verlet method.

Method { n} At loQ(A E) R Tstret Tbend Ttors TchW Telec Tlolal
Verlet 0.25 —3.6078 0.0192 53.2 34.1 79.6 2916.5 26787.8 29932.4
0.50 —3.3346 0.0304 385 17.3 40.7 1485.9 13980.2 15566.3
1.00 —2.7868 0.0523 19.4 9.1 22.2 736.3 6905.3 7692.5
1.50 —2.0046 0.1756 15.1 6.7 17.5 583.0 4553.2 5175.5
2.00 —-1.4190 0.3656 10.1 4.4 11.9 378.1 3424.6 3828.7
RESPA (1,1,1,2 0.50 —3.5960 0.0179 53.3 34.3 79.5 2920.9 13935.9 17025.3
(2,2,2,3 4.00 —3.3734 0.0327 53.0 17.3 40.8 380.0 2993.6 3489.1
RESPA/ (1,1,1,2 0.50 —-3.5170 0.0249 53.2 34.1 79.5 2907.8 4996.9 8069.4
TFMM (1,1,2,2 1.00 —3.4027 0.0277 53.2 34.2 79.6 1462.0 2841.3 4474.4
(1,1,2,3 1.50 —3.4291 0.0248 54.1 34.8 80.6 1453.5 2330.4 3951.4
1,2,2,2 2.00 -3.3174 0.0303 53.1 34.3 79.6 726.1 1420.8 2314.3
(1,2,2,3 3.00 —3.3812 0.0357 52.6 33.8 78.9 719.3 1199.4 2085.0
(2,2,2,2 4,00 —-3.3334 0.0380 53.3 17.1 39.9 360.8 680.9 1154.8
1,2,2,5 5.00 —2.9038 0.0593 53.1 34.2 79.6 703.9 882.4 1756.6
(2,2,1,5 5.00 —2.6762 0.0729 53.0 17.2 39.8 658.5 858.5 1607.2
(2,2,5,3 5.00 -2.3520 0.1686 53.3 17.2 39.7 189.6 557.6 856.3
(2,2,2,3 6.00 —2.6791 0.0711 53.2 17.3 39.8 371.2 604.1 1085.5
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