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A dielectric continuum theory for the solvation of a polar molecule in a polar, polarizable solvent is
tested using computer simulations of formaldehyde in water. Many classes of experiments, for
example those which measure solvent-shifted vertical transition energies or electron transfer rates,
require an explicit consideration of the solvent electronic polarization. Due to the computational
cost of simulating a polarizable solvent, many simulation models employ non-polarizable solute and
solvent molecules and use dielectric continuum theory to relate the properties of the non-polarizable
system to the properties of a more realistic polarizable system. We have performed simulations of
ground and excited state formaldehyde in both polarizable and non-polarizable water, and the
solvation energies and solvent-shifted electronic spectra we obtained are used to test dielectric
continuum, linear response predictions. Dielectric continuum theory correctly predicts that free
energy differences are the same in polarizable and non-polarizable water. The theory wrongly
predicts that the reorganization energy in a polarizable solvent is 30% smaller than the
reorganization energy in a polar, non-polarizable solvent; in the simulations, the reorganization
energies differ by only 6%. We suggest that the dielectric continuum theory fails because it assumes
that both solute electronic states exist in the same size cavity in the solvent, whereas in the
simulation the cavity radius increases by 20% after the electronic transition. We account for the
change in the cavity size by adding a non-linear solute–solvent coupling to the dielectric continuum
theory, and find that the resulting predictions are just outside the error bounds from the simulation.
The cavity size corrections have the undesired and incorrect side-effect of predicting fluctuations far
smaller than seen in the simulations. This reveals the inherent difficulty in devising a simple, fully
self-consistent dielectric continuum theory for solvation. ©1996 American Institute of Physics.
@S0021-9606~96!50604-4#

I. INTRODUCTION

In solution state electronic spectroscopy, a solute mol-
ecule immersed in solvent is excited by a photon from its
ground electronic state to an excited electronic state. An ex-
ample of this is then→p* transition of formaldehyde in
water. The ground and excited states of the formaldehyde
molecule have different electronic structure and thus have
different interactions with the solvent. The vertical transition
energy reflects the difference in the energy of interaction
between the ground and excited state electronic distributions
with the instantaneous configuration of the solvent mol-
ecules. The absorption line shape will then be given by the
distribution function of the vertical transition energies found
when the solvent molecules can sample all of the configura-
tions in equilibrium with the ground electronic state of form-
aldehyde. The fluorescence spectrum can likewise be related
to the distribution of vertical transition energies when the
solvent configurations are sampled from a distribution in
equilibrium with the excited state.

In modeling the photophysics of solvated molecules it is
common to treat the solvent as non-polarizable. Of course
real solvents are polarizable, and the issue we address here is
the importance of considering the electronic polarizability
explicitly. For example, a comparison of gas phase properties
to liquid phase properties demonstrates the importance of
including induced electric polarization. Water, for instance,
has a gas phase dipole moment of 1.85 D.1 In liquid water,
however, the dipole moment is enhanced. The exact magni-
tude of the dipole is unknown, but is thought to be close to
2.4 D based on the known dipole moment of 2.6 D for mol-
ecules in ice.2 Thus, there are two contributions to the instan-
taneous dipole moment of a molecule in the liquid state: first,
a permanent dipole characteristic of the gas phase; second, a
fluctuating induced dipole due to collective effects from the
surrounding molecules.

One aim of this paper is to understand the contribution to
the solvent shift that is made by solvent polarizability arising
from the fluctuating, induced dipoles of solvent molecules.
The induced polarization responds instantly during an elec-
tronic transition, and the solvent shift should be different
from the shift obtained in a non-polarizable solvent. In Sec.
II, we present a simple theory for relating solvent shifts in
polar, polarizable and polar, non-polarizable solvents. This
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theory is based on the Marcus picture of electron transfer
reactions, in which solute electronic states are coupled lin-
early to a harmonic solvent,3–6 and is in fact a spin-Boson
model.7 The theory is patterned after recent advances which
explicate the role of solvent electronic polarization in charge
transfer reactions.8–14The theoretical model we employ per-
mits us to predict the contributions of orientational polariza-
tion and of induced electronic polarization to the solvent
shifts for absorption or fluorescence lines, to equilibrium free
energies of solvation, and to non-equilibrium solvent reorga-
nization energies. Furthermore, the linear nature of the
theory implies that it is equivalent at a fundamental level to
a dielectric continuum treatment of the solvent, which also
assumes linear response.15–20Dielectric continuum theory is
also the basis of the Poisson and Poisson–Boltzmann equa-
tions for the response of a continuum solvent to a solute.
Various methods for obtaining numerical solutions to these
equations have found widespread use as substitutes for mo-
lecular solvents in computational studies.21–25 Although
other studies have focused on the quantitative accuracy of
these methods per se,26–30 our interest here is in the funda-
mental adequacy of this approach when it is used to treat the
electronic polarization of the solvent.

Simulation studies using polarizable solvent molecules
have offered valuable insight to the contribution of the elec-
tronic polarization modes to the solute–solvent
interactions.31–38Here we use simulations to test the predic-
tions of a linear response, dielectric continuum model for the
formaldehyde-water system. We used four different models
of water in the simulations: the TIP4P-FQ~fluctuating
charge!,39 MQ ~mean charge!, FQ/MQ ~a hybrid in which
solvent conformations are taken from FQ simulations but
solute-solvent interactions are evaluated using the fixed MQ
charges!, and TIP4P~Ref. 40! models. The FQ model is po-
larizable; the MQ and TIP4P models are not polarizable. As
will be described in Sec. III A, the MQ model is derived
from the FQ model by replacing the fluctuating charges with
fixed charges characteristic of bulk TIP4P-FQ water. Our
model for formaldehyde, based on the work of Levy and
coworkers,41–43 is non-polarizable. The formaldehyde model
is discussed in Sec. III B.

Our simulation results for absorption and fluorescence
line shapes are presented and discussed in Sec. IV, and com-
pared to dielectric continuum theory predictions. The param-
eters used in the dielectric continuum theory are the high-
frequency and low-frequency limits of the solvent dielectric
constant, the dipole moment of the solute in each electronic
state, and the effective radius of the solute molecule. The
free energy changes predicted by dielectric continuum theory
agree with the simulation results, but the predicted reorgani-
zation energies are 30% smaller than the simulation results.

One important source of the disagreement between
theory and simulation is the theoretical assumption that the
effective radius of the solute is identical in the ground state
and the excited state. In the simulations, however, this radius
is seen to increase by about 20% following equilibration of
the water to the excited state formaldehyde molecule. It is
possible to allow the effective radius to depend on the solute

electronic state by introducing a non-linear solute–solvent
coupling to the dielectric continuum theory. This theory is
described in Sec. II E. The predictions of the non-linear
theory for the reorganization energy are greatly improved
and lie just outside the statistical error bars of the simulation
results. The non-linear theory is also applied to calculate
spectral linewidths, which characterize the solvent fluctua-
tions. Unlike the linewidths from the fully linear theory,
which are in good agreement with simulation results, the
linewidths from the non-linear theory are far narrower than
the simulation results. This seems to point out a basic incon-
sistency in the dielectric continuum theory.

II. THEORY

A. The ubiquitous spin-boson Hamiltonian

A simplified description of the solute–solvent system be-
gins with a model for the pure solvent. Here we assume that
the solvent can be represented as a dielectric continuum. A
standard assumption in most applications of dielectric con-
tinuum theory is that the dielectric responds linearly to an
applied field. Linear response implies that the effective
Hamiltonian for a dielectric continuum solvent can be repre-
sented as a collection of harmonic oscillators chosen at a
spectrum of frequencies to reproduce the frequency-
dependent dielectric constant. Instead of a full frequency
spectrum, we will partition the solvent response into two
frequency regimes: low frequency~classical! and high fre-
quency~quantum mechanical!. The Hamiltonian for the pure
bath is therefore

HB5
1

2a0
E0
21

1

2
a0v0

2P0
21

1

2a`
E`
2

1
1

2
a`v`

2P`
22

1

2
\v` . ~1!

The coordinate of the slow mode isE0 , its polarizability is
a0 , the momentum conjugate toE0 is P0 , and the fre-
quency of the mode isv0 . SinceE0 represents classical
modes, the frequencyv0 is much smaller than the thermal
energykBT. The induced polarization is represented by the
effective coordinateE` . This mode is high frequency,
v`@kBT. The polarizability ofE` is a` , and the conjugate
momentum isP` . The zero-point energy of the modeE`

has been taken as the zero of energy. In terms of a molecular
solvent,E0 corresponds to the polarization of slow, orienta-
tional modes, andE` corresponds to fluctuations of the in-
duced polarization of the electron charge density of solvent
molecules.

The ground and excited electronic states of the solute are
represented by a two level system~TLS! which couples lin-
early to the bath:

H5HB1HTLS1V; ~2a!

HTLS5u1&E1^1u1u2&E2^2u2K~ u1&^2u1u2&^1u!; ~2b!

V52~E01E`!•~ u1&Q1^1u1u2&Q2^2u!. ~2c!
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The energiesE1 andE2 are the gas-phase, unsolvated ener-
gies of the solute ground and excited states. The two states
are coupled by the term inHTLS proportional toK, allowing
non-adiabatic transitions to occur. The termsQ1 andQ2 rep-
resent the solute coordinate which couples to the solvent. For
the case of formaldehyde,Q1 andQ2 represent the ground
and excited state dipoles of the formaldehyde molecule.

The generic form of the Hamiltonian in Eq. 2 is that of a
two level system coupled to a bath of harmonic oscillators.
This is, of course, the well-known spin-Boson Hamiltonian
which serves as the basis for most theories in which two
different electronic states are allowed to interact with a sol-
vent. Here our solvent has only two modes, a slow classical
mode representing orientational polarization of solvent mol-
ecules, and a fast quantum mechanical mode representing the
electronic polarization of the solvent molecules. The spin-
Boson model has had wide use as a model for charge transfer
reactions, particularly in understanding effects due to the
quantum nature of solvent modes.10–14,44–50

Because the frequencyv` is very large, a Born–
Oppenheimer separation is valid for the modeE` . We as-
sume that this mode remains in its ground state. The adia-
batic separation of the fast modeE` yields a pair of adiabatic
states with renormalized energies:

H5u1&H1^1u1u2&H2^2u2K~ u1&^2u1u2&^1u!; ~3a!

H15E12
1

2
a`Q1

21
1

2a0
E0
22E0•Q11

1

2
a0v0

2P0
2 ;

~3b!

H25E22
1

2
a`Q2

21
1

2a0
E0
22E0•Q21

1

2
a0v0

2P0
2 .

~3c!

The two diabatic states are coupled by the term proportional
to K.

The bath HamiltonianHB we used in obtaining the
Born–Oppenheimer states is very similar to model Hamilto-
nians which have been used previously in a similar
context.10,11 In some formulations,HB contains a term
2kE0•E` linearly coupling the fast and slow modes. In Ap-
pendix A we show that the two formulations are equivalent
for our purposes. Including a term which linearly couples
E0 andE` serves to shift the equilibrium position ofE` , to
rescale the polarizabilitya0 , and to rescale the terms
2E0•Q1 and 2E0•Q2 . In taking E0 and E` to be un-
coupled normal modes of the solvent, we have included this
renormalization as a first step.

The potential energy curves for the two diabats,V1 and
V2 , are shown in Fig. 1 as functions of the solvent coordi-
nate E0 . These are the standard intersecting parabolas of
Marcus theory. The difference in free energy between the
two states,DG21, is marked on the curve, as is the solvent
reorganization energyl. As will be shown below, the free
energy difference includes contributions from polarizable
and non-polarizable modes, but the reorganization energyl
only contains contributions from non-polarizable modes. The
center of the absorption band,DE21, is shown, as is the

center of the fluorescence band,DE12. These quantities will
be related to parameters appearing in the spin-Boson Hamil-
tonian. But first, we will make a few phenomenological con-
nections between the Hamiltonian parameters representing
the polarizability and the physical quantity which character-
izes equilibrium solvation, i.e. the individual solvation ener-
giesDG1 andDG2 .

B. Solvation free energies

The solvation energyDGi for electronic statei51 or 2
corresponding to the transition CH2O

(g)→CH2O
~aq! is de-

fined as

DGi52kBT ln$Tre2bHi/Tre2b~HB1Ei !%. ~4!

The trace is over the modes of the bath, and the solute is held
fixed in electronic statei . The fast modes of the bath are
included in the trace overHB , but have already been inte-
grated over in the diabatic HamiltonianHi . As before, the
gas-phase energy of the solute in statei is Ei . It is a simple
matter to use Eqs. 1 and 2 to evaluateDGi , yielding the
result

DGi52
1

2
~a`1a0!Qi

2 . ~5!

Using this expression forDGi , we can relate the polarizabil-
ities a0 and a` to well-defined physical properties of the
solvent.

The solvent properties which we consider are the~low
frequency! static dielectric constant,e0 , and the~high fre-
quency! optical dielectric constant,e` . The precise relation-
ship between the polarizability and the dielectric constant
also depends on the type of electrostatic moment that is rep-
resented by the solute parametersQ1 andQ2 , and on the
shape of the cavity representing the solute. Suppose, for ex-

FIG. 1. The potential energy surfacesV1 andV2 for two diabatic electronic
states are shown as a function of the solvent coordinateE0 . The free energy
difference between the states, which includes contributions from polarizable
solvent modes, isDG21 . The solvent reorganization energy, which only
includes contributions from the classical modeE0 , is l. The center of the
absorption band isDE21 and the center of the fluorescence band isDE12 .
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ample, that the solute is a spherical molecular monopole of
radiusR immersed in a dielectric continuum, and thatQi

represents a charge on the molecule. In this case, the solva-
tion energy is given by the Born equation15,20

DGi52
1

2
R21@~e021!/e0#Qi

2 ~6!

indicating from Eq. 5 that

a01a`5R21@~e021!/e0#. ~7a!

This response represents the equilibrium solvation of a
charge distribution. In order to calculate absorption and fluo-
rescence line shapes, we also need to understand the instan-
taneous response of the solvent which arises from the modes
contributing toa` .

We can separate the contributions of the fast modes from
those of the slow modes by imagining a solute which oscil-
lates rapidly between the charges1Qi and 2Qi . In this
case, the modeE0 cannot respond to the solute charge and
makes no contribution to the solvation energy. The fast mode
E` is assumed to provide full solvation at each instant, from
which it follows that

a`5R21@~e`21!/e`#, ~7b!

and

a05R21@~e021!/e02~e`21!/e`#. ~7c!

The low frequency polarizability has been obtained by sub-
traction.

Similar equations are obtained when eachQi represents
a point dipole in a spherical cavity of radiusR:20

a01a`5R23@2~e021!/~2e011!#; ~8a!

a`5R23@2~e`21!/~2e`11!#; ~8b!

a05R23@2~e021!/~2e011!22~e`21!/~2e`11!#.
~8c!

It is possible to continue the analysis ofa0 anda` for the
response to higher moments in the multipole expansion, and
to more complicated solute geometries. This is typically ac-
complished by solving the Poisson or Poisson–Boltzmann
equation for the response of a continuum solvent to the
charge distribution and geometry of an immersed solute.51

We have applied these methods to our model of formalde-
hyde in water.52 We do not report the quantitative results of
continuum theory here because our present interest is to un-
derstand the qualitative difference between solvation with
and without electronic polarizability.

The above equations can be summarized by introducing
a function f (e) defined as

f n~e!5H ~e21!/e, monopole solvation~n51!;

2~e21!/~2e11!, dipole solvation~n52!.
~9!

With this definition, the polarizabilities are given by

a tot[a01a`5R2~2n21! f n~e0!; ~10a!

a`5R2~2n21! f n~e`!; ~10b!

and

a05R2~2n21!@ f n~e0!2 f n~e`!#. ~10c!

The cavity radius isR and the indexn is 1 for monopole
solvation and 2 for dipole solvation.

C. Line shapes and energies with the linear coupling
Hamiltonian

The mean energy for a vertical transition from state 1 to
state 2 is termedDE21,

DE215^H22H1&1 ~11a!

52
1

2
a`~Q2

22Q1
2!2a0Q1•~Q22Q1!1E22E1 .

~11b!

The subscript ‘‘1’’ on the average indicates that the average
is taken in diabatic state 1, and we have used the fact that
^E0&15a0Q1 . We have also assumed that the couplingK is
small compared toDE21 and can be ignored. The gas-phase
transition is at constant energyE22E1 , and the remainder of
DE21 represents the solvent shift in the observed transition.

Since the modeE0 is harmonic, the shift due to the
solvent is governed by a Gaussian distribution. The absorp-
tion line shape is also a Gaussian,

P2←1~E!5~2ps0
2!21/2exp@2~E2DE21!

2/2s0
2#. ~12!

The width of the line iss0 ,

s05AkBTa0uQ22Q1u. ~13!

An analogous result is obtained for the mean energy
DE12 for the fluorescence back to state 1, assuming that
equilibration has occurred on surface 2:

DE125^H12H2&2 ~14a!

52
1

2
a`~Q1

22Q2
2!2a0Q2•~Q12Q2!1E12E2 .

~14b!

Correspondingly, the fluorescence line shape is

P1←2~E!5~2ps0
2!21/2exp@2~E2DE12!

2/2s0
2#. ~15!

From Eqs. 12, 13, and 15 we see that the solvent shifts in
the absorption and emission lines depend on botha` and
a0 , but the widths of the spectral lines depend only on
a0 . Furthermore, the widths of the absorption and fluores-
cence are the same. This behavior is depicted in schematic
form in Fig. 2. The absorption spectrum for a solute mol-
ecule in the gas phase is represented as ad-function in the
figure. Next, we imagine that the solute is immersed in a
solvent with total polarizabilitya tot . Furthermore, the entire
solvent response is assumed to arise from electronic polariz-
ability, so a` /a tot51. In this solvent, the absorption line
shape remains ad-function, but it is shifted from the gas
phase line. The direction of the shift is towards higher energy
if the excited state is less polar than the ground state, and it
is towards lower energy if the excited state is more polar
than the ground state. Keeping the total polarizabilitya tot
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constant, we reduce the contribution ofa` and increase the
contribution of slow modesa0 to the solvent response. As
the contribution of the slow modes increases, the center of
the absorption line continues to shift with a corresponding
broadening of the line shape from ad-function to a Gaussian.
As is seen clearly in the figure, the width of the Gaussian
increases as the contribution of the slow modes increases.
This is because the width is proportional toAa0.

The vertical transition energiesDE21 andDE12 measure
the sum of a gas-phase energy difference and a non-
equilibrium solvation energy difference. InDE21, for ex-
ample, the energy of state 2 is measured with the slow coor-
dinateE0 in equilibrium with state 1. It is also possible to
measure a free energy difference at full equilibrium in both
states. This free energy difference is denotedDG21,

DG2152kBTln$TrE0exp@2bH2#/TrE0exp@2bH1#%

5DG22DG11~E22E1!. ~16!

One finds that

DG2152
1

2
~a`1a0!~Q2

22Q1
2!1E22E1 ~17a!

5
1

2
~DE212DE12!. ~17b!

The equilibrium response is determined bya tot[a01a` ,
the sum of the response of the fast and the slow modes.

The difference betweenDE21, the non-equilibrium dif-
ference in energy, andDG21, the fully equilibrated free en-
ergy difference, is termed the reorganization energyl:

l5DE212DG21 ~18a!

5
1

2
~DE211DE12! ~18b!

5
1

2
a0~Q22Q1!

2. ~18c!

From Eq. 13, the spectral line widths0 is related to the
reorganization energy by

s0
252lkBT. ~19!

It is seen explicitly in Eq. 18c that the reorganization energy
depends only on the slow modes. The fast modes contribute
to DE21 and toDG21, but the contributions are identical and
cancel whenl is calculated as their difference. The gas-
phase contribution toDE21 andDG21 also cancels whenl is
calculated. The reorganization energy is seen to be a positive
quantity and is the same for both the 2←1 transition and the
1←2 transition.

This definition ofl is entirely consistent with the con-
ventions of electron transfer theory. The activation energy for
a thermal transition from state 1 to state 2, for example, is

Eact5~DG211l!2/4l, ~20!

assuming that the couplingK is small and the reaction is in
the non-adiabatic regime.5

D. The difference between polarizable and non-
polarizable solvents

We will assume the existence of two hypothetical sol-
vents which share the same equilibrium response, i.e. the
samee0 and a tot , but different values fora0 and a` . In
particular, we will compare a polarizable solvent with non-
zeroa` to a non-polarizable solvent witha`→0. These hy-
pothetical solvents can be modeled by computer simulations.
The polarizable TIP4P-FQ model of water and various non-
polarizable water models, including the models which we
consider here~MQ, FQ/MQ, and TIP4P!, typify a collection
of solvents with a similar equilibrium response but with dif-
ferent high-frequency response. All four of these solvents
have a static dielectric constant close to the experimental
value e0580. Sincea tot depends only one0 , these models
share the samea tot . BecauseDG21 depends only ona tot ,
these models should both produce the same estimates for
differences in solvation free energy.

The four models have very different high frequency re-
sponses, however. The TIP4P-FQ model has an optical di-
electric constant of 1.59, indicating that it has an instanta-
neous polarization response. The fixed-charge models, MQ,
FQ/MQ, and TIP4P, are all non-polarizable. For these three
models,a`50, ande` has the trivial value of 1. Because the
short-time response of the polarizable water model is differ-
ent from the short-time response of the non-polarizable mod-
els, we would expect that an experiment which probes short-
time dynamics~such as the instantaneous solvent response
during an electronic transition of a solute molecule! should
reveal differences between the behavior of polarizable versus
non-polarizable solvent models.

Furthermore, when the reorganization energyl is con-
sidered, a clear difference arises between the polarizable and
non-polarizable solvents in the dielectric continuum theory.
The total polarizability of the two solvents is assumed to be
the same,a tot

(pol)5atot
(non-pol). For the non-polarizable solvent,

a`
(non-pol)50 and hencea0

(non-pol)5a tot
(non-pol). For the polariz-

able solvent,a`
(pol) is non-zero anda0

(pol),atot
(pol) . Since the

reorganization energy depends on the value ofa0 , the polar-
izable and non-polarizable solvents have different reorgani-
zation energies. The ratio of reorganization energies is

l~pol!

l~non-pol! 5
a0

~pol!

a0
~non-pol)512

a`
~pol!

atot
512

f n~e`!

f n~e0!
. ~21!

This equation reflects that a mean field parameterization for a
non-polarizable model of a polarizable solvent implicitly in-
cludes the contribution of electronic polarizability in order to
produce accurate results for equilibrium solvation,
a0
(non-pol)5a0

(pol)1a`
(pol) . Thusa0

(non-pol) is parameterized for
a non-polarizable solvent to include the effects of electronic
polarizability. As a result, when a reorganization energy is
predicted using a non-polarizable solvent model, it implicitly
and incorrectly includes a contribution from the high fre-
quency polarization modes.

The factorl (pol)/l(non-pol) is presented in Table I for the
TIP4P-FQ model of water. The ratiol (pol)/l (non-pol) depends
on the values of the static and optical dielectric constant of
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the solvent. We have used values appropriate for the
TIP4P-FQ model in constructing Table I,e0580 and
e`51.59. The ratio also depends on whether the electrostatic
moment that is changing in the solute is a monopole, a di-
pole, a quadrupole, etc.; these relationships are described for
monopole solvation in Eq. 7 and for dipole solvation in Eq.
8. We have reported results for both monopole and dipole
solvation in Table I. The relationships assume that the radius
of the solvent cavity is identical for the ground state and the
excited state of the solute molecule. This assumption, which
can lead to significant error, is discussed in Sec. II E.

In the context of electron transfer reactions,a0
(pol)/atot is

termed the Pekar factor. It is used to rescale the reorganiza-
tion energyl between a reactant state,DA, and a product
state,D1A2 (D signifies donor andA acceptor! to account
for solvent polarizability. According to Marcus theory, the
activation energy for an electron transfer reaction~ignoring
quantum effects due to solvent librations and vibrations! is

Eact5~DG1l!2/4l, ~22!

whereDG5GD1A22GDA .
3,4 Rescaling the reorganization

energy changes the height of the activation barrier. For long-
range electron transfer, in which a charge is transferred over
a distance of a several Å’s, the factor for monopole solvation
is often used. The value of this factor is 0.62 for reactions in
TIP4P-FQ water.

In the simplified model we have been describing, the
charges are taken to be at the centers of spherical cavities,
and the polarization induced by one redox site on the solvent
cavity around the other the redox site is neglected. More
sophisticated treatments which address these restrictions pro-
duce correspondingly more complicated expressions for the
Pekar factor.53 The precise value of the Pekar factor depends
on the solute and solvent geometry, but it is independent of
the magnitude of the charge transfer between donor and ac-
ceptor. This constancy of the Pekar factor is simply a mani-
festation of the linear response inherent in a dielectric con-
tinuum formulation for the solvent.

The formaldehyde1A1→1A2 transition results in a
change of the dipole moment of the formaldehyde molecule.
The dielectric continuum theory developed here indicates
that the solvent reorganization energy for the transition
should be a factor of 0.71 smaller in polarizable TIP4P-FQ
water than in non-polarizable TIP4P water.

We note from the values in Table I that as the electro-
static moment changes from monopole to dipole, the ratio of
reorganization energies in polarizable and non-polarizable
solvents becomes closer to 1. For electronic transitions in-
volving higher multipoles, the ratio will become even closer
to 1. We assume that the lowest non-vanishing term in the

multipole expansion for the electrostatic potential outside the
solute will have the dominant effect on determining the re-
organization energy. We therefore use the dipole result to
analyze formaldehyde solvation.

E. Introducing non-linearity in the solute–solvent
coupling

Although the linear coupling model expressed in Eq. 2
should explain most of the solute–solvent interactions,
higher order, non-linear effects are also possible. An impor-
tant source of non-linearity is the difference between the ef-
fective radius of the solute in the ground state and the excited
state. In a study of the hydration of water, Rick and Berne
found that it was necessary to use a charge-dependent radius
in a continuum model to obtain good agreement with simu-
lation results.27 Similar non-linear effects due to dielectric
saturation and electrostriction were observed in a study of
the solvation of spherical cations.54

In another context, Chandler has shown that the non-
linear coupling describing the exclusion of solvent from a
spherical solute cavity yields the Percus–Yevick equation if
the solvent fluctuations are Gaussian.55–57Excluding the sol-
vent from the region of space occupied by the solute has the
effect of renormalizing the solvent fluctuations~see Eq. 4.1
of Ref. 57!:

x~r 1 ,r 2!5xb~r 1 ,r 2!

2E
in
drE

in
dr8xb~r 1 ,r !x in

21~r ,r 8!xb~r 8,r 2!.

~23!

In this equation,r 1 andr 2 are any two positions in the fluid,
the fluctuations in solvent density in the presence of a solute
are

^dr~r !dr~r 8!&5x~r ,r 8!, ~24!

the fluctuations in the bulk solvent arexb(r ,r 8), and
x in

21(r ,r 8) is the functional inverse ofxb(r ,r 8) in the interior
volume ‘‘in’’ of the solute. Since bothx and x in

21 are by
necessity positive definite, the solvent fluctuations in the
presence of the solute are strictly less than the fluctuations
with no solute, i.e.

Tr@x#2Tr@xb#52Tr@xbx in
21xb#<0. ~25!

The equality holds only if the interior region vanishes and
the solute disappears. The renormalization ofx is equivalent
to modifying the force constantsa` anda0 in our model,
resetting the scales for the fluctuations of the solvent polar-
ization modes.

We proceed by describing a distinct radius for each sol-
ute state. For a spherical solute, the cavity radius can be
defined from a thermodynamical perspective by using a
Born-type formula. For example, for a spherical ion, the ra-
dius can be related to the mean potential at the solute due to
the solvent, which in turn can be obtained from solute-
solvent radial distribution functions.58 A second method re-

TABLE I. The factorl (pol)/l (non-pol) for TIP4P-FQ water is calculated using
e0580 ande`51.59.

Solute l (pol)/l (non-pol)

Monopole 0.62
Dipole 0.71
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lates the radius to the fluctuations in the electric potential at
the solute.59 This method leads to a concise approximation,

1/R5E
0

`

dr g~r !/r 2, ~26!

whereR is the effective radius andg(r ) is the radial distri-
bution function between a spherical solute and a spherical,
dipolar solvent; a similar formula can be obtained for a di-
polar solute in a dipolar solvent.59

For the non-spherical formaldehyde solute, the cavity
radius has been defined here as the first maximum in the
radial distribution functiong(r ) between the oxygen site of
the formaldehyde and the oxygen sites of water molecules.
The radial distribution function is defined by

N~r !54pr 2rg~r !dr , ~27!

wherer is the bulk number density of water molecules and
N(r ) is the number of oxygen sites in a spherical shell of
radiusr and thicknessdr centered on the oxygen of formal-
dehyde. Distribution functions from simulations of the
ground state and the excited state of formaldehyde in polar-
izable TIP4P-FQ water are shown in Fig. 3. Correlations for
the other solvents are similar and will be reported
elsewhere.58 From these correlations, we find thatR152.65
Å andR253.25 Å.

The method we have used to determineR1 andR2 is
certainly not unique. Indeed, it is unclear that a precise value
can be assigned to the cavity radius for anything other than a
hard sphere solute. Our choice has the virtue of being related
directly to the solvation structure. It would not be correct, for
instance, to equate the values ofR1 andR2 with the Lennard-
Jones radii for the ground and excited states: in our model
the Lennard-Jones radii do not change~electrostriction in
response to different solute charges causes the change in the
cavity radius!, nor are Lennard-Jones radii necessarily repre-
sentative of the excluded volume of the solute.

The fluctuations ofE0 andE` , characterized bya0 and
a` , can be related to the size of the solute cavity. Such a
relationship between cavity size and the parametersa0 and

a` is provided by Eqs. 7 and 8. We proceed by allowing
each solute state to have its own effective radius, and by
using these distinct radii to obtain the parametersa0 and
a` appropriate for each solute state.

Let R1 be the effective radius of the solute in electronic
state 1. The corresponding solvent polarizabilities area0

(1)

and a`
(1) . Similarly, the effective cavity radius for solute

state 2 is termedR2 , and the corresponding polarizabilities
area0

(2) anda`
(2) . According to Eq. 10, the solvent polariz-

abilities for each electronic state can be related very simply
to the solute radii:

a`
~ i !5Ri

2~2n21! f n~e`!,

and

a0
~ i !5Ri

2~2n21!@ f n~e0!2 f n~e`!#,

where the functionf n(e) is given in Eq. 9. The exponent
n51 for monopole solvation andn52 for dipole solvation.
According to these equations, ifR2.R1 , then a0

(2),a0
(1)

and a`
(2),a`

(1) . This implies that solvent fluctuations are
larger for smaller cavity sizes, in accord with the generic
prediction of Eq. 25.

The effective solvent frequenciesv0 and v` can also
depend on the cavity size. Thus we introduce the solvent
frequenciesv0

(1) andv`
(1) for first solute electronic state and

the frequenciesv0
(2) andv`

(2) for the second electronic state.
The diabatic Hamiltonians of Eq. 3 are now

Hi5Ei1
1

2
\v`

~ i !2
1

2
a`

~ i !Qi
21

1

2a0
~ i !E0

22E0•Qi

1
1

2
a0

~ i !v0
~ i !2P0

2 ~28!

for i51 and 2. Unlike Eq. 3, we have explicitly included the
zero-point energy of the modeE` as part of the diabatic
HamiltonianHi . This is because the zero-point energy de-
pends on the solute electronic state—each cavity size defines
its own set of solvent normal modes. The free energy of
solvation for speciesi is

FIG. 2. The electronic absorption line shape of a solute changes as a func-
tion of the solvent polarizability. The gas phase line is assumed to be a delta
function. In a solvent with purely electronic polarizability, the line shape
remains a delta function but is shifted from the gas phase line. If the solvent
polarization is due to slow orientational modes, the line shifts further and
acquires a width.

FIG. 3. The radial distribution functiong(r ) is shown for the distancer
between the oxygen site of formaldehyde and the oxygen site of water
molecules in the solvent. Theg(r ) for ground state formaldehyde is the
solid line, and theg(r ) for excited state formaldehyde is the dashed line.
The position of the first maximum ing(r ) is representative of the effective
cavity size for each electronic state of the solute.
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DGi5
1

2
\v`

~ i !2
1

2
@a0

~ i !1a`
~ i !#Qi

2 ~29!

as calculated from Eq. 4.
The free energy differenceDG21 can be calculated from

the definition in Eq. 16,

DG215
1

2
~\v`

~2!2\v`
~1!!1kBTln~v0

~2!/v0
~1!!

2
1

2
@~a0

~2!1a`
~2!!Q2

22~a0
~1!1a`

~1!!Q1
2#1~E22E1!.

~30!

The shift of the frequencies of the solvent modes is a non-
linear effect which contributes to the free energy difference
DG21.

The vertical excitation energyDE21 can be calculated
from Eq. 11. At the moment of the excitation from state 1 to
state 2, the solvent cavity is characteristic of electronic state
1. Thus it seems appropriate to use the bath parameters cor-
responding to state 1 when calculating the excitation energy
DE21. The bath parameters only reach the values character-
istic of solute state 2 when solvation cage has relaxed, which
takes place on the timescale of molecular translation. Note,
therefore, that the vertical energy difference is not simply
H22H1 , becauseH2 represents the Hamiltonian for cavity
size 2 rather than for cavity size 1. Instead, the vertical en-
ergy difference isH1(Q2)2H1(Q1), whereH1(Q1) isH1 as
before, andH1(Q2) is H1 with Q1 replaced with the new
chargesQ2 . This time lag in the parameters of the Hamil-
tonian should be correct because our entire solute–solvent
coupling is electrostatic in nature. If we included a parameter
in the Hamiltonian to represent non-electrostatic interactions,
such as Van der Waals terms dependent on the solute elec-
tronic state, then we might expect the parameters represent-
ing these interactions to change instantaneously, and the en-
ergy differenceH22H1 might be more appropriate.

Bearing the above discussion in mind, we find that the
vertical excitation energy is

DE2152
1

2
a`

~1!~Q2
22Q1

2!1^2E0•~Q22Q1!&11E22E1

52
1

2
a`

~1!~Q2
22Q1

2!2a0
~1!Q1•~Q22Q1!1E22E1 .

~31!

The averagê•••& i is defined as

^•••& i[
TrE0e

2bHi~••• !

TrE0e
2bHi

~32!

for electronic statei51 or 2. Similarly, the vertical energy
for the reverse transition is

DE1252
1

2
a`

~2!~Q1
22Q2

2!2a0
~2!Q2•~Q12Q2!

1E12E2 . ~33!

In Eq. 18, the reorganization energyl was defined as the
energy differenceDE212DG21. Furthermore,l was also
given by the symmetrical differenceDE122DG12. This
definition of the reorganization energy produces different
values ofl for each transition:

l~1![DE212DG21

5
1

2
a0

~1!~Q12Q2!
22

1

2
~a0

~1!1a`
~1!2a0

~2!2a`
~2!!Q2

2

1
1

2
~\v`

~1!2\v`
~2!!1kBTln~v0

~1!/v0
~2!!;

l~2![DE122DG12

5
1

2
a0

~2!~Q12Q2!
22

1

2
~a0

~2!1a`
~2!2a0

~1!2a`
~1!!Q1

2

1
1

2
~\v`

~2!2\v`
~1!!1kBTln~v0

~2!/v0
~1!!. ~34!

The absorption line shape,P2←1(E), and the fluorescence
line shape,P1←2(E), have different widths. Each line shape
remains a Gaussian, however:

P2←1~E!5@2pkBTa0
~1!~Q22Q1!

2#21/2

3exp@2~E2DE21!
2/2kBTa0

~1!~Q22Q1!
2#;

P1←2~E!5@2pkBTa0
~2!~Q22Q1!

2#21/2

3exp@2~E2DE12!
2/2kBTa0

~2!~Q22Q1!
2#.

Thus, the widths of the absorption and fluorescence lines,
which we define ass0

(1) ands0
(2) , are given from the spectral

line shapes as

s0
~1!5AkBTa0

~1!uQ22Q1u; ~35a!

s0
~2!5AkBTa0

~2!uQ22Q1u. ~35b!

These equations, simply the generalization of Eq. 13 to dif-
ferent size cavities, indicate that the relative width of the
fluorescence spectrum to the absorption spectrum should be
Aa0

(2)/a0
(1). Thus, a change in relative widths of the fluores-

cence and absorption line shapes signals a non-linear cou-
pling between the solute and solvent.

A symmetrized form ofl, which we terml1 , can be
defined:

l1[
1

2
~DE121DE21!

5
1

2
~l~1!1l~2!!

5
1

4
~a0

~1!1a0
~2!!~Q12Q2!

21
1

4
~a tot

~1!2a tot
~2!!~Q1

22Q2
2!.

~36!

The definition ofl1 corresponds to the operational defini-
tion we used to extract reorganization energies from our
computer simulations.
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Now we concentrate on the quantityl1 . We imagine
two solvents, one polarizable, i.e.a` is non-zero, and the
other non-polarizable in the sense thata 8̀ for that solvent is
zero. ~Quantities corresponding to the non-polarizable sol-
vent are primed (8) and quantities corresponding to the po-
larizable solvent are unprimed.! We assume that the two sol-
vents have the same total polarizability,a01a`5a081a 8̀ .
We wish to calculate the ratiol1 /l18 . To simplify our
evaluation of this ratio, we write l15A1B and
l18 5A81B8, where

A5
1

4
~a0

~1!1a0
~2!!~Q12Q2!

2,

A85
1

4
~a0

~1!81a0
~2!8!~Q12Q2!

2,

B5
1

4
~a tot

~1!2a tot
~2!!~Q1

22Q2
2!,

and

B85 1
4~atot

~1!82a tot
~2!8!~Q1

22Q2
2!.

In these equations,a tot
( i )5a0

( i )1a`
( i ) for i51 and 2, and like-

wise a tot
( i )85a0

( i )81a`
( i )8. Furthermore, our assumption that

the two solvents have the same total polarizability implies
thatB85B. We find that

l1

l18
5

r1@12 f n~e`!/ f n~e0!#~Q12Q2!1r2~Q11Q2!

r1~Q12Q2!1r2~Q11Q2!
,

~37!

where r65R1
2(2n21)6R2

2(2n21) , and n51 for monopole
solvation and 2 for dipole solvation.

First we note that if there is no change in the cavity
radius, thenr250 andl1 /l18 512 f n(e`)/ f n(e0). The po-
larizable TIP4P-FQ model of water hase0580 and
e`51.592, implying for dipole solvation thatf 2(e0)50.98
and f 2(e`)50.28. As before, the ratiol1 /l18 50.71.

Using R152.65 Å andR253.25 Å, as well as the pa-
rametersQ153.97 D andQ252.49 D consistent with the
simulations, we find thatl1 /l18 changes from 0.71 to 0.86.
We see that the non-linear effects due to changes in the cav-
ity size of the solute molecule reduce the differences be-
tween the reorganization energy measured in a polarizable
versus a non-polarizable solvent.

It is also possible to define a quantity similar toDG21

which we terml2 :

l2[
1

2
~DE212DE12!

5
1

4
~a tot

~1!1a tot
~2!!~Q1

22Q2
2!1

1

4
~a0

~1!2a0
~2!!~Q12Q2!

2.

~38!

The quantityl2 corresponds to our operational definition for
obtainingDG21 from simulation results. We now investigate
the extent to which changes in the cavity size affect the value
of DG21 measured in polarizable versus non-polarizable sol-
vents.

To estimate these non-linear effects, we calculate the ra-
tio l2 /l28 , where the8 again signifies a quantity measured
in a non-polarizable solvent withe 8̀ 51. We find that

l2

l28
5

r1~Q11Q2!1r2@12 f n~e`!/ f n~e0!#~Q12Q2!

r1~Q11Q2!1r2~Q12Q2!
.

~39!

With the previous choices for the quantities which appear in
this expression, we find that the ratiol2 /l28 50.98. We
conclude that the value forDG21 obtained in a simulation
using a polarizable solvent should be indistinguishable from
the value ofDG21 obtained using a non-polarizable solvent.
This can occur even if the solute radii are substantially dif-
ferent in each state.

III. MODEL

A. Water

Four treatments of water were used in simulations. The
parameters for the water models are presented in Table II.
The first model, TIP4P, is a standard non-polarizable model
for water.40 It has a static dipole moment of 2.18 D and a
dielectric constant of 5362.61 This model has charge inter-
actions on the hydrogen sites and on a site known as the M
site displaced 0.15 Å from the oxygen site. There is also a
Lennard-Jones interaction between oxygen sites.

The polarizable model we use is the fluctuating charge
model, TIP4P-FQ.39 This model shares the rigid geometry of
the TIP4P model. Instead of having fixed charges, however,

TABLE II. Parameters and properties are shown for three water models:
non-polarizable TIP4P, non-polarizable TIP4P-MQ, and polarizable TIP4P-
FQ.

Water model

TIP4P TIP4P-MQ TIP4P-FQa

Parameter
ROH ~Å! 0.9572 0.9572 0.9572
ROM ~Å! 0.15 0.15 0.15
/HOH ~degrees! 104.52 104.52 104.52
sLJ ~Å! 3.154 3.159 3.159
eLJ ~kcal/mol! 0.1550 0.2862 0.2862
m ~D! 2.18 2.625 2.625b

QH (ueu) 0.52 0.627 0.619i

Property
e0

c 5362d 7968
e`

e 1 1 1.59260.003
Diffusion constantf

~1025cm2/sec)
3.660.2g 6.060.1 1.960.1

tNMR
h ~ps! 1.460.2g 7.360.2 2.160.1

aFrom Ref. 39.
bThe thermal averagêumu& is reported for bulk TIP4P-FQ water. The aver-
age dipole projected along theC2V axis is 2.59 D.
cThe experimental value is 78~Ref. 81!.
dFrom Ref. 61.
eThe experimental value is 1.79~Ref. 81!.
fThe experimental value is 2.331025cm2/s ~Ref. 82!.
gFrom Ref. 84.
hThe experimental value is 2.1 ps~Ref. 83!.
iThe thermal averagêQH& is reported for bulk TIP4P-FQ water.
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the charges on the FQ molecule are allowed to redistribute in
response to the local electrostatic environment. Thus an iso-
lated FQ water molecule has a dipole moment of 1.85 D,
characteristic of the gas phase, while in the bulk the mol-
ecules polarize each other and the mean dipole moment in-
creases to 2.625 D. The parameters for the Lennard-Jones
interactions for the FQ model differ slightly from the param-
eters for TIP4P water. The FQ model has a dielectric con-
stant of 7968.39

The MQ model is a non-polarizable model identical to
the FQ model, except that the charges on the interaction sites
are held fixed. The charges were obtained by requiring the
permanent dipole moment on an MQ water molecule to be
the same as the mean dipole moment on an FQ water mol-
ecule in bulk water,̂ umu&52.625 D. This corresponds to a
hydrogen charge of 0.627ueu. Another method for obtaining
a fixed-charge analog for the FQ model is to choose fixed
charges to yield the same permanent dipole as the mean di-
pole along theC2V axis of a bulk FQ water,̂mz&5 2.59 D.
However, the difference between this method and the method
we used is very small and changes the charges by only about
1%.

Differences between the FQ and MQ models can arise
from at least two sources: 1! the FQ and MQ models can
produce different solvent configurations; 2! for the same sol-
vent configuration, the FQ and MQ models can produce dif-
ferent results because the FQ solvent is polarizable and the
MQ solvent is non-polarizable. In order to discriminate be-
tween these two possible sources of differences, we per-
formed simulations with a hybrid solvent we termed FQ/
MQ. For this solvent, the solvent configurations are taken
from a simulation employing FQ water, i.e. the configura-
tions are consistent with a polarizable model for water. How-
ever, the fixed MQ charges are employed when absorption
and fluorescence energies are calculated. Thus, differences
between the FQ and FQ/MQ models are due solely to the
effects of polarizability because the solvent structures for the
two models are identical.

B. Formaldehyde

We have based our model for formaldehyde on a model
developed by Levy and coworkers.41–43The fixed geometry
has RCO51.184 Å, RCH51.093 Å, and/HCH5115.5°.
The Lennard-Jones parameters for formaldehyde, which we
have adopted from Ref. 43, are listed in Table III. These
parameters are standard literature values.62 Identical
Lennard-Jones parameters were used for the ground and ex-
cited states of formaldehyde. Combining rules were used to
obtain the Lennard-Jones interactions between the formalde-

hyde sites and the oxygen site on water:s5(s11s2)/2 and
e5Ae1e2. Because the Lennard-Jones parameters for TIP4P
water differ from the parameters for FQ~and MQ! water, the
Lennard-Jones interactions between a TIP4P water and form-
aldehyde differ from the interactions between an FQ water
and formaldehyde. It might have been more appropriate to
use the same Lennard-Jones interactions rather than to use
combining rules. Previous studies of hydrophobic hydration
of methane in polarizable and non-polarizable water have
shown that the difference in Lennard-Jones interactions can
have a significant effect.38,63 These effects due to Lennard-
Jones interactions, observed in the solvation of non-polar,
hydrophobic molecules such as methane, might not be as
significant in solvation of a polar molecule like formalde-
hyde.

We employed a charges set introduced by Levy and
coworkers.41 These charges produce a ground state dipole of
3.97 D and an excited state of 2.49 D. The charges, listed in
Table IV, are much too large for a realistic model of form-
aldehyde. The gas phase dipole moments are known from
experiment to be 2.3 D~Refs. 64, 65! and 1.57 D.66,67As we
discuss elsewhere,ab initio calculations suggest that the
ground and excited state dipole moments of formaldehyde in
water are enhanced to 2.91 D and 1.88 D.29When this set of
ab initio charges is used,29 or whenab initio methods are
used to calculate the transition energy directly,41 the agree-
ment with the experimental absorption spectrum is quite
good.

C. Simulation method

We performed simulations to probe the solvent-induced
frequency shift of the electronic transition between the form-
aldehyde ground state and the formaldehyde excited state.
The system simulated consisted of a periodically replicated
box 18.6 Å on a side containing 209 water molecules and a
single formaldehyde molecule. A timestep of 1 fs was used,
and the solvent and solute molecules were kept rigid using
the algorithm RATTLE.68–70 Ewald sums were used to
evaluate the electrostatic interactions. We have checked for
finite size effects by measuring the contribution of solvent
molecules to the vertical transition energy for the formalde-
hyde solute as a function of the distance between the solute
and solvent molecules. We find that water molecules beyond
7.5 Å make virtually no contribution to the energy of the
vertical transition, indicating that our results are converged
with respect to system size.

In the simulations employing the non-polarizable TIP4P
and MQ models of liquid water, the solvent shift for the

TABLE III. Lennard-Jones parameters for formaldehyde.

Site s ~Å! e ~kcal/mol!

O 2.85 0.20
C 3.296 0.12
H 2.744 0.01

TABLE IV. Charge set for formaldehyde.

Electronic state m ~D!

Charges (ueu)

O C H

1A1 3.97 20.577 0.331 0.123
1A2 2.49 20.280 20.040 0.160

1302 J. S. Bader and B. J. Berne: Solvation energies and electronic spectra

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996



electronic transition was calculated as follows. The electro-
static interactions between the solvent molecules and the
ground and excited states of the solute are

V05VLJ1VWW1(
a

Qa
0(

i
Qi /uRa2Ri u, ~40a!

V*5VLJ1VWW1(
a

Qa*(
i
Qi /uRa2Ri u. ~40b!

The term VLJ contains the solute–solvent and solvent–
solvent Lennard-Jones interactions, and the termVWW con-
tains the electrostatic interactions between different water
molecules. The indexa runs over the formaldehyde sites,
Qa
0 is the ground state charge for sitea, and Qa* is the

excited state charge. The indexi runs over charge sites on all
of the water molecules. The difference in energy for the ver-
tical transition isV*2V0 . BothVLJ andVWW are unchanged
during the transition and drop out ofV*2V0 .

The solvent shift for the electronic transition in the po-
larizable FQ solvent is slightly more complicated to calcu-
late. The part of the potential energy due to charge interac-
tions between water molecules is different for each of the
electronic states of the solute because the ground and excited
state solute charge distributions induce different charges on
the polarizable solvent molecules. The ground state and ex-
cited state energies are

V05VLJ1Vpol
0 1VWW

0 1(
a

Qa
0(

i
Qi
0/uRa2Ri u, ~41a!

V*5VLJ1Vpol* 1VWW* 1(
a

Qa*(
i
Qi* /uRa2Ri u,

~40b!

where $Qi
0% are the water charges in the ground state and

$Qi* % are the water charges in the excited state. The polar-
ization self-energy for the ground state charges isVpol

0 , and
the polarization self-energy for the excited state charges is
Vpol* . The water–water interactions inVWW

0 are determined
using the set of charges$Qi

0%, and the water–water interac-
tions in VWW* are determined using the set of charges
$Qi* %. Thus, in addition to the direct solute–solvent interac-
tions, the energy differencesVpol* 2Vpol

0 andVWW* 2VWW
0 also

contribute to the vertical energy differenceV*2V0 for a
polarizable solvent. The Lennard-Jones interactionsVLJ are
the same for each state and do not contribute to the energy
difference.

We focus attention now on differences between the en-
ergy gapDE21 measured in a non-polarizable solvent~such
as TIP4P or MQ! and in a polarizable solvent~such as FQ!.
One source contributing to differences is that the solvation
structures generated using a polarizable solvent model might
differ from those generated using a non-polarizable solvent.

As we mentioned in Sec. III A, a second source of dif-
ferences between the results for polarizable and non-
polarizable solvent models is that the charges induced on a
polarizable solvent molecule by the formaldehyde solute will
deviate from the charges induced on a water molecule in the
bulk. To reiterate, we focused on this second contribution to

differences by performing a set of simulations which we
have termed FQ/MQ. In this set of simulations, we obtained
fixed molecular configurations using the polarizable FQ wa-
ter model. To calculate the energy gap, however, we replaced
the polarizable FQ charges with the fixed MQ charges and
then used Eq. 40. In this respect we can discriminate to
changes to the solvation energy due solely to the induced
charges and changes due to differences in the solvation struc-
ture itself.

When performing the simulations for each of the charge
sets and each of the solvents, we used at least 40 ps. Data
collection lasted 100 ps.

The simulations were all performed on a 16 node parti-
tion of a CM5 from Thinking Machines Corporation. For a
system consisting of 216 water molecules, each simulation
step took approximately 0.3 CPU seconds. When the form-
aldehyde molecule was added, the CPU time per step in-
creased to 0.5 CPU seconds. The marked increase in com-
puter time is a consequence of the parallel nature of the
molecular dynamics algorithm we employed and the archi-
tecture of the CM5. Much of the increase in the time per step
reflects overhead required for the calculation of solute–
solvent interactions. This overhead should be almost inde-
pendent of the number of solute molecules. Therefore, we
suspect that the CPU time per step would remain close to 0.5
seconds even if we added many more solute molecules.

In comparing the CM5 timings to timings on other com-
puters, it is important to note that our implementation for a
single solute molecule has not been optimized for the parallel
architecture. The simulation of pure solvent, which requires
0.3 CPU seconds per step, has been optimized. On an IBM
370, a single step of molecular dynamics for 216 TIP4P-FQ
water molecules requires 1.5 CPU seconds. This comparison
for our code indicates that a 16 node partition of a CM5 is
equivalent to 5 IBM 370’s.

IV. RESULTS AND DISCUSSION

Below, we present results for the absorption and fluores-
cence maxima, the widths of the spectral peaks, and the free
energies and reorganization energies for the two electronic
states of formaldehyde in the simulations. The gas-phase
contributionsE1 andE2 have been removed from the ener-
gies in order to focus entirely on solvent contributions.

A. Absorption line shapes

Absorption line shapes for the transition from the solute
ground state to excited state are shown in Fig. 4. It is impor-
tant to remember that, for a polarizable solvent, the solvent
shift consists of a part due to the direct water–formaldehyde
interactions and a part due to the change in water–water
interactions which represents a many-body polarization en-
ergy. The water–water interactions are included when the
total shift is calculated. Results are presented for four sol-
vents: polarizable FQ~solid lines!; non-polarizable FQ/MQ
~dot-dash lines!; non-polarizable MQ~dashed lines!; and
non-polarizable TIP4P~dotted lines!. These lineshapes rep-
resents the solvent shift from the gas phase formaldehyde
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transition. All of the solvent models produce a similar ab-
sorption band with a maximum close to 10 kcal/mol~0.43 eV
or 3500 cm21) and a root mean square width of 2 kcal/mol
~0.087 eV or 700 cm21).

The non-polarizable FQ/MQ and MQ solvents have
peaks which are at slightly higher energies than the polariz-
able FQ solvent, 10.6–10.7 kcal/mol versus 10.3 kcal/mol.
The widths of the peaks are also slightly larger for the non-
polarizable solvents, 2.1–2.2 kcal/mol for FQ/MQ and MQ
versus 2.0 kcal/mol for FQ. These differences are consistent
in general with the dielectric continuum theory. The peak for
the TIP4P simulation is at 10.3 kcal/mol, and the width is 1.9
kcal/mol. Thus, there is general agreement between the re-
sults from simulations employing quite different models for
water.

B. Fluorescence shifts

The fluorescence shifts for vertical transitions returning
to the ground state surface from the excited state surface are
shown in Fig. 4. Results are shown for four solvent models:
FQ ~solid lines!; FQ/MQ ~dot-dash!; MQ ~dashed!; and
TIP4P ~dotted!. The fluorescence energy is defined as
E*2E0 , whereE* is the energy on the initial~excited state!
surface andE0 is the energy on the final~ground state! sur-
face following the vertical transition. The peaks for the po-
larizable FQ and non-polarizable FQ/MQ and MQ solvent
models are all very close, roughly24.3 kcal/mol (20.19 eV

or 21500 cm21). The peak for the TIP4P solvent is at
24.7 kcal/mol, slightly shifted from the other simulations.

The fluorescence shifts are smaller than the absorption
shifts because the water molecules are less ordered around
the less polar excited state solutes. The widths of the fluo-
rescence peaks are smaller than the widths of the absorption
peaks by about 0.3 kcal/mol. The only exception is the width
of the peak for TIP4P water, which is only 0.1 kcal/mol
smaller than the width of the absorption line. In comparison,
the experimental line width is close to 4400 cm21 or 12–13
kcal/mol, althoughab initio studies indicate that much of the
broadening is due intramolecular distortion of the solute and
the solvent contribution is only 1100 cm21 or about 3
kcal/mol.41

As we will discuss below, the width of the peaks are
related to the reorganization energy. A difference between the
absorption and fluorescence peak widths indicates that a
single reorganization energy cannot characterize the solvent
response, and the free energy surfaces have different curva-
tures. Based on Sec. II E, this difference can be related to the
difference in the effective radius of the solvent cavity for the
ground state and the excited state solute. We can use Eq. 35
to predict that the ratio of the width of the fluorescence spec-
trum to the width of the absorption spectrum should scale as
(R1 /R2)

(2n21)/2. In our case, with R152.65 Å and
R253.25 Å, this ratio of widths is predicted to be 0.74. The
ratio from the simulations is 0.8 for the FQ solvent, 0.86 for
the FQ/MQ and MQ solvents, and 0.95 for the TIP4P sol-
vent.

The line shape for the fluorescence is asymmetric with a
skew toward solvent shifts which are more negative and
larger in magnitude. The statistical uncertainties in the fluo-
rescence spectra are indicated by the noise in Fig. 4. It is
evident from the figure that the absolute error is relatively
constant over the entire range of the spectra, and is quite
small relative to the spectral widths. Thus the widths and
centers of the spectra are known quite accurately, and the
skew is indeed statistically significant.~If we were to com-
pute the free energy surface near the wings, which requires
taking the logarithm of the absorption spectra, the absolute
error in the free energy would be proportional to the relative
error of the absorption spectra. The relative error of an ab-
sorption spectrum is quite large at the wings, and umbrella
sampling is required to obtain good statistics for the free
energy.71!

We attribute the skew in the spectral lines to interactions
with water molecules that are very close to the formalde-
hyde. Occasionally, a water molecule will be very close to
the formaldehyde molecule during the electronic transition
and there will be a large contribution to the solvent shift.
These infrequent conformations produce the skew in the line
shape. The skew in the fluorescence spectra is larger than the
skew in the absorption spectra. Presumably, the absorption
line shape is more symmetric because, by the central limit
theorem, independent contributions from many solvent mol-
ecules add to form a Gaussian line. In the fluorescence spec-
tra, contributions from only a few water molecules are domi-

FIG. 4. Top panel: The absorption spectra for the solute transition 3.97 D
→ 2.49 D and the fluorescence spectra for the solute transition 2.49 D→
3.97 D are shown for four solvent models: FQ~solid!; FQ/MQ ~dot-dash!;
MQ ~dashed!; TIP4P~dotted!. The absorption peak is near 10.5 kcal/mol and
the fluorescence peak is near24.3 kcal/mol. Bottom panel: The absorption
and fluorescence spectra from the polarizable FQ solvent simulations~solid
lines! are compared with theoretical predictions~dashed lines! based on
non-polarizable simulation results (DG57.4 kcal/mol, l53.2 kcal/mol!
and the cavity-radius-corrected ratiol (pol)/l (non-pol)50.86.
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nant, and lines are no longer Gaussian. Thus, the free energy
surface is non-parabolic.

C. Free energies and reorganization energies

We report in Table V the results for the calculations of
s0 , DE21, DE12, DG21, andl for the four solvent models
we have considered: FQ, FQ/MQ, MQ, and TIP4P. The re-
organization energyl is calculated in three different ways:
first from the average ofDE12 andDE21, and again from the
widthss0

(1) ands0
(2) of the absorption and fluorescence lines.

We first describe the simulation results, starting with the sol-
vent shift for the electronic transition from ground state to
excited state,DE21. The experimental shift for formalde-
hyde in water has not been measured because of oligomer
formation. The experimental value for the shift for acetone in
water is 1900 cm21, or 5.4 kcal/mol.72 We find a solvent
shift of about 10 kcal/mol from simulation. This agrees very
well with the previous simulation results of Levy and
coworkers,41,43 but is almost twice as large as the shift mea-
sured experimentally for acetone. As mentioned in Sec. III B,
the transition energy is too large because the solute charges
are unrealistically large. When the charges are fit by electro-
static fitting one finds charges that give much better agree-
ment with experiment.60

The solvent shift in the excited state fluorescence line,
DE12, is generally smaller in magnitude than the shift in the
absorption line. This is because the excited state is less polar
than the ground state and there is less order in the solvent.
We also note that in the simulations there is little difference
between the value ofDE12 in the polarizable FQ solvent and
the value ofDE12 in the non-polarizable solvents. Also, little
difference is seen in the values ofDE21 in the polarizable
and non-polarizable solvents. Furthermore, the values calcu-
lated for the solvation energy differenceDG21 and the reor-
ganization energyl ~being related to sums and differences of
DE12 andDE21) are nearly identical for the two solvents.

As expected, the equilibrium solvation free energy dif-
ferences DG21 are similar for polarizable and non-
polarizable solvents:DG21 depends only on the static dielec-

tric constant, and the static dielectric constants of all the
water models are similar. Furthermore, the change in the cav-
ity size does not greatly affectDG21.

It is surprising, however, that the values obtained forl
from the definitionl5(DE121DE21)/2 are similar for po-
larizable and non-polarizable solvent. For the FQ model,
l53.0 kcal/mol, and for the MQ and FQ/MQ models,
l53.2 kcal/mol. The high-frequency optical dielectric con-
stants are different for the polarizable and non-polarizable
models. Since the reorganization energyl should depend on
both the static and the optical dielectric constants, we would
have expected that the reorganization energyl was different
in the different solvents. We see from Table I that the differ-
ence, expressed as the ratiol (pol)/l (non-pol), should be a fac-
tor of 0.71 for FQ relative to MQ water. Accounting for
changes in the size of the solute cavity yields a ratio of 0.86,
as discussed in Sec. II E. Using the valuesl (pol)53.060.1
kcal/mol andl (non-pol)53.260.1 kcal/mol from the simula-
tions, we obtain a ratio of 0.9460.05. The theoretical pre-
diction lies just outside the one standard deviation error
bounds of the simulation results.

We note finally that there is a self-consistency check to
perform involving the reorganization energyl and the line-
width s0 , namely thatl can be obtained from the peak
width s0 ass0

2/2kBT. We have used the absorption linewidth
s0
(1) and the fluorescence linewidths0

(2) to compute values
for l. These values are also shown in Table V. The reorga-
nization energies obtained from the linewidths bracket the
values ofl calculated from (DE121DE21)/2, indicating that
the peak widths are indeed consistent with the reorganization
energy.

The peak widths for the TIP4P model are consistently
smaller than the widths for the other non-polarizable models.
This indicates that solvent fluctuations are smaller for TIP4P
than for the other models and is consistent with TIP4P hav-
ing the smallest dielectric constant of all the models.

Finally, we have used the simulation results for the non-
polarizable FQ/MQ and MQ models to predict the absorption
and fluorescence line shapes for the FQ solvent. The pre-
dicted lines are determined by four parameters: the peak cen-
tersDE21 andDE12 and the peak widthss0

(1) ands0
(2) . We

have obtained these parameters from the non-polarizable
simulations as follows. We start withDG2157.4 kcal/mol
and l53.2 kcal/mol from the simulations with non-
polarizable solvent. The free energy differenceDG21 is used
without any change, butl is rescaled by the factor 0.86
derived in Sec. II E to subtract the contribution of the elec-
tronic polarization modes. The rescaled value ofl is 2.75
kcal/mol. The absorption peak centerDE21 is l1DG21, and
the fluorescence peak centerDE12 is l2DG12. The widths
of the spectral lines are determined froml. We now describe
four methods of estimating these widths.

The first method is appropriate when the solute cavity
does not change its size, implying that the absorption and
fluorescence lines have identical widths. In this case,

s0
~1!5s0

~2!5A2kBTl. ~42!

TABLE V. Table of energies, all in kcal/mola

Solvent Model

FQ FQ/MQ MQ TIP4

e0 80 ;80 ;80 53
e` 1.592 1 1 1

s0
(1) 2.0 2.2 2.1 1.9

s0
(2) 1.6 1.9 1.8 1.8

DE21 10.3 10.7 10.6 10.3
DE12 24.3 24.3 24.2 24.7
DG21 7.3 7.5 7.4 7.5
l from (DE121DE21)/2 3.0 3.2 3.2 2.8
l from (s0

(1))2/2kBT 3.4 4.1 3.7 3.0
l from (s0

(2))2/2kBT 2.2 3.0 2.7 2.7

aOne standard deviation uncertainty is about60.1 kcal/mol for each of the
reported energies.
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This method yields linewidths of 1.8 kcal/mol based on
l52.75 kcal/mol. The widths from this method are very
close to the widths seen in the simulation.

In the second method, we account for the difference in
the cavity sizes of the ground state and excited state by as-
sumings0

(2)/s0
(1)5(R1 /R2)

3/2. ~See Sec. II E for the reason-
ing behind this choice.! We rewrite Eq. 36 as

l5@~s0
~1!!21~s0

~2!!2#/4kBT1
1

4
~a tot

~1!2a tot
~2!!~Q1

22Q2
2!.

~43!

If the total polarizabilitiesa tot
(1) anda tot

(2) are similar, the sec-
ond term on the right-hand-side of this equation can be ig-
nored. In this case, we find that

s0
~1!5A4kBTl/@11~R1 /R2!

3#, ~44a!

and

s0
~2!5A4kBTl/@11~R2/R1!

3#. ~44b!

This method predicts the widthss0
(1)52.05 kcal/mol and

s0
(2)51.5 kcal/mol, which we used in constructing Fig. 4.

The agreement with the simulation results is very good.
We note, however, that the above treatment is inconsis-

tent because of the term in Eq. 43 that was ignored. We can
include the term in Eq. 43 which involves the total polariz-
ability a tot by using the relationship from Eq. 10 that
a tot /a05 f n(e0)/@ f n(e0)2 f n(e`#, and again assuming that
s0
(2)/s0

(1)5(R1 /R2)
3/2. A bit of algebra yields

s0
~1!5A4kBTl/H 11~R1 /R2!

31@12~R1 /R2!
3#

f n~e0!

f n~e0!2 f n~e`!

Q11Q2

Q12Q2
J . ~45!

Using the same values forf n(e0) and f n(e`) as in Sec. II E,
we find that the widths ares0

(1)51.2 kcal/mol and
s0
(2)50.9 kcal/mol, much narrower than the widths observed

in the simulations.
The term in Eq. 43 involving the total polarization can

be included by relating its value to that ofDG21. We rewrite
Eq. 38 as

DG215
1

4kBT
@~s0

~1!!22~s0
~2!!2#1

1

4kBT
@~s0

~1!!2

1~s0
~2!!2#

f n~e0!

f n~e0!2 f n~e`!

Q11Q2

Q12Q2
. ~46!

We have used Eq. 10 to relatea tot to a0 , and Eq. 34 to relate
a0 to the cavity sizes. After a little algebra, we find

s0
~1!5A2kBT~l1DG21!/S 11

f n~e0!

f n~e0!2 f n~e`!

Q11Q2

Q12Q2
D

~47a!

and

s0
~2!5A2kBT~l2DG21!/S 12

f n~e0!

f n~e0!2 f n~e`!

Q11Q2

Q1-Q2
D .

~47b!

Using the same values forf n(e0) and f n(e`) as before, these
equations predicts0

(1)51.3 kcal/mol ands0
(2)51.0 kcal/mol.

These widths are also far narrower than the widths observed
in the simulations.

It seems that it is not possible to use the simple dielectric
continuum theory we have described to predict spectral line
shapes in accord with simulation results. We need to employ
a non-linear cavity size correction to account for electrostric-
tion of the solvent by the solute molecule. Thus, the cavity
radius decreases when the solute is made more polar. When
we are consistent in the calculation of solvent fluctuations,

however, the fluctuations predicted by the theory with the
cavity size corrections are smaller than the fluctuations ob-
served in computer simulations. Thus, the dielectric con-
tinuum theory seems to predict a greater degree of dielectric
saturation than is actually observed.

V. CONCLUSION

In this paper we have explored the implications of a
simple linear response, dielectric continuum for the depen-
dence of absorption and fluorescence spectra on the polariz-
ability of the solvent. The theoretical predictions have been
tested using simulations of two electronic states of formalde-
hyde in polarizable and non-polarizable water. An important
parameter describing the solvation is the reorganization en-
ergy, which measures the difference in the solvation of the
two solute states. In the simulations, we found that the ratio
of reorganization energies in polarizable versus non-
polarizable solvents was 0.9460.05. The theoretical predic-
tion, based on the assumption of a common cavity size for
the ground and excited states of formaldehyde, is a ratio of
0.71.

We have reformulated the theory to allow for changes in
the effective solute radius. When this is done, and the cavity
radii are obtained from the solvation structure in the simula-
tion, the theoretical prediction for the ratio of reorganization
energies is 0.86, much closer to the simulation results. We
are confident that even better agreement would be obtained if
we extended our theory to include a coupling between the
solvent and the quadrupole moment of the solute and used
realistic nonspherical cavity geometries. This is because the
difference between reorganization energies in polarizable
and non-polarizable solvents becomes less pronounced as in-
teractions with higher order multipoles are considered.

We find, however, that the non-linear corrections needed
to obtain good results for reorganization energies have an
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undesired effect on the linewidths predicted for the absorp-
tion and fluorescence spectra. The lines turn out to be far
narrower than seen in the simulations, indicating that the
dielectric continuum theory underestimates the solvent fluc-
tuations. Therefore, it does not seem possible for a single,
self-consistent dielectric continuum theory to describe prop-
erly all aspects of solvation.

Our work has a clear implication for simulation studies
of related processes, such as charge transfer reactions, in
non-polarizable solvents. In a charge transfer reaction, the
activation energy is given in the Marcus picture by
Eact5(DG1l)2/4l, whereDG is the free energy difference
between reactant and product andl is the reorganization
energy for the reaction. It seems clear that ifl is measured in
a simulation using a non-polarizable solvent, then it must be
reduced by some scaling factor to account for the implicit
~and incorrect! contributions from high-frequency electronic
polarization modes. Such a rescaling has been attempted, for
instance, in a recent large-scale simulation study of the pho-
tosynthetic reaction center.12 Our work indicates, however,
that the exact value of the scaling factor might be quite dif-
ficult to estimate.

In contrast to predictions for the reorganization energy,
which required different cavity sizes for the two solute elec-
tronic states, our results indicate that predictions for solva-
tion free energies can be accurate with just a single cavity
radius. This is an interesting point because the Poisson and
Poisson–Boltzmann equations, which are mathematical for-
mulations of dielectric continuum theory, are often used to
mimic the effects of a real, molecular solvent. The con-
tinuum solvent in these applications is parameterized by a
dielectric constant and the solute is represented as a charge
distribution inside an excluded volume. Our results indicate
that a parameterization based solely on equilibrium proper-
ties might fail when predicting properties such as reorgani-
zation energies. Furthermore, our results seems to indicate
that it might be essential to allow the cavity describing a
solute to depend on the charge distribution inside, resulting
in a type of non-linear coupling between solute and solvent.

In a forthcoming work,29 we describe the results of just
such a study using PBF,25 a program which provides a nu-
merical solution for the Poisson–Boltzmann equation. The
program was specially modified to allow the calculation of
absorption and fluorescence peaks for a polarizable con-
tinuum solvent with the dielectric properties of TIP4P-FQ
(e0580, e`51.592).71 The simulation results described in
this paper serve as a basis for judging the performance of the
dielectric continuum solvent model. We found that PBF pro-
vided very good results for free energy differences, but the
non-equilibrium reorganization energies did not agree with
the simulation results.

It is interesting to note that there exists a continuum
solvent model which in fact includes just this type of non-
linear coupling between solute and solvent, namely the
RISM model with HNC closure which bears a strong resem-
blance to the Gaussian field theory described in Sec. II E. In
the RISM/HNC method, the solute–solvent distance correla-
tions depend self-consistently on the interaction potential.

Thus RISM/HNC predictions automatically include non-
linear effects due to cavity size changes. Although the RISM/
HNC equations can be difficult to solve, these integral equa-
tion methods have been applied in the context of charge
transfer reactions.74–76 A promising avenue is explored in
Ref. 77, in which the full three dimensional geometry of the
solute is maintained during the solution of the HNC equa-
tions ~albeit with a fixed solute–solvent direct correlation
function!.

Finally, we note that the polarizability of the solute itself
can also be important in understanding the energetics of sol-
vation, as well as the dynamics.78 The fluctuating charge
method used here to simulation polarizable water is very
well suited for simulation studies of polar molecules30 and
ions79 in solution. Treatments of solute polarizability based
on dielectric continuum theories are also possible.80
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APPENDIX: COUPLING E0 TO E`

The termsE0 andE` in Eq. 1 represent solvent polar-
ization arising from slow modes and fast modes. In a phe-
nomenological model of the solvent polarization, these
modes are coupled and a term2kE0•E` is included in
HB . In this Appendix, we show that the coupling serves only
to redefine certain terms in the diabatic Hamiltonians of Eq.
3. Thus, including the coupling term does not alter any of our
subsequent analysis.

Our starting point is the diabatic Hamiltonian for solute
electronic stateQi wherei5 1 or 2:

Hi5Ei2~E01E`!•Qi1
1

2a0
E0
21

1

2
a0v0

2P0
2

2kE0•E`1
1

2a`
E`
21

1

2
a`v`

2P`
22

1

2
\v` . ~A1!

Sincev`@v0 , we can perform a Born–Oppenheimer sepa-
ration. We assume that the modeE` remains in its ground
state. The diabatic Hamiltonian for the modeE0 is

Hi5Ei2~11a`k!E0•Qi2
1

2
a`Qi

2

1
1

2a0
~12a0a`k

2!E0
21

1

2
a0v0

2P0
2 . ~A2!

Now we make the substitutions (11a`k)E0→E08 and
a0(11a`k)

2/(12a0a`k
2)→a08 . The new momentumP08

is ]H/]E085P0 /(11a`k). The frequency is also rescaled,
v0
2(12a0a`k

2)→v08
2. With these substitutions, the diaba-

tic Hamiltonian is
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Hi5Ei2E08•Qi2
1

2
a`Qi

21
1

2a08
E08

21
1

2
a08v08

2P08
2.

~A3!

Because we are treating the modeE0 classically, the fre-
quency renormalization has no effect on any of the energies
which are to be calculated. The effective Hamiltonian we
have obtained is therefore identical with the diabatic states of
Eq. 3.
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