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In molecular dynamics simulations of systems with very hot particles in contact with a bath of cold
particles one must choose a very small time step dictated by the fast~hot! particles. This requires the
recalculation of all the forces after each of these small time steps. We show how reference system
propagator algorithms~RESPA! can be used to speed up these simulations, and also comment on
some interesting physical phenomena involved in these nonequilibrium systems. ©1996
American Institute of Physics.@S0021-9606~96!50125-X#

I. INTRODUCTION

In this paper we consider the problem of simulating a
nonequilibrium condensed system in which one or several
particles are initially very hot compared to all of the other
particles in the system. These hot particles could be the result
of radiation damage or highly exoergic chemical
reactions.1–3 The aim of the simulation would be to see how
the hot particles perturb the many body system. These very
hot particles produce local defects. In solids this can result in
local melting. As the initial hot spot cools off, the remaining
system heats up and after sufficient time the excess energy
will equipartition leading to a new, higher ambient tempera-
ture.

The simulation of such systems poses certain interesting
problems. Even though the very hot particles might contrib-
ute a very small fraction of the particles in the system they
move so rapidly that the force exerted by them and on them
by neighboring atoms will be a rapidly and strongly varying
function of time. In order to avoid instabilities in the numeri-
cal integrator, it will be necessary to choose a very small
time step for the integration even when the vast majority of
the other atoms are moving slowly with respect to each
other. Were there no hot particles a much larger integration
time step could be used for the cold system. This problem
has been addressed in the literature.4 Here we show that a
variant of r-RESPA5–7 ~reversible reference system propaga-
tor algorithm! can be used to treat this problem cleanly and
can greatly increase the efficiency of such simulations.

II. THEORY

The reversible reference system propagator algorithm
~r-RESPA!5,6 is based upon the reversible Trotter factoriza-
tion of the classical Liouville propagator. The Liouville op-
eratorL for a system ofN degrees of freedom in Cartesian
coordinates is defined as
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where$...,H% is the Poisson bracket with the Hamiltonian,H
and (r i ,pi) are the position and conjugate momentum for

atomi . The state of the system at a timet, G(t), is defined as
the collective set of positions and conjugate momenta
(r (t),p(t)). It evolves with time as

G~ t !5eiLtG~0!, ~2!

whereeiLt is the classical time evolution propagator. Since
the classical Liouville operator is self-adjoint,eiLt is a uni-
tary operator and the time evolution generated by the above
equation is reversible. And, for any system whose Hamil-
tonian is an even function of the momenta, this also implies
reversibility under momentum reflection.

For systems with two different time scales, we reversibly
Trotter factorize8 the propagatoreiLt into a reference system
propagator with a smaller time-stepdt and a correction
propagator with a larger time stepDt. Decomposing the total
Liouvillian as

iL5 iL h1 iL c , ~3!

whereLc and Lh denote the Liouvillians corresponding to
the cold and hot particle subsystems, the Trotter factorization
then becomes,

eiLDt5eiLcDt/2eiLhDteiL cDt/21O~Dt3!

5eiLcDt/2@eiLhdt#neiLcDt/21O~Dt3!. ~4!

To partition the system into hot and cold subsystems, we
need some criterion to distinguish the hot atoms from the
cold ones. This is done by defining a velocity threshold. We
define an instantaneous ‘‘temperature’’ of a particle such that
3kT/25mv2/2 wheremv2/2 is the kinetic energy of the par-
ticle and we define a threshold temperatureT* . Then the hot
subset will be all those particles which have, at a given time,
a temperature greater thanT* , and the cold subset contains
the remaining particles.

It is important to recognize that as the velocities change,
particles will switch between the hot and cold subsets. We
choose to update the definition of the hot and cold particles
at the end of each large timestep,Dt. The effect of this
choice of algorithm is discussed in more detail below.

Although the very hot particles might be only a small
portion of the whole system, they move so rapidly that the
force exerted by them and on them by neighboring atoms
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will be a rapidly and strongly varying function of time. Thus,
an obvious and straightforward subdivision of the Liouville
operator could be selected as follows:
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and
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Here,Lh only propagates the positions and momenta of at-
oms in the hot subset, andLc propagates positions and mo-
menta of atoms in the cold subset. However, we found that
this subdivision gives poor energy conservation. The reason
is that when we propagate the motion of the hot atoms, all
the cold bath atoms are treated as ‘‘frozen’’ particles, which
is not true in reality. The cold atoms that suffer collisions
with the hot atoms need to be able to move quickly, since
they have rapidly and strongly varying forces acting on
them. This is different from the previous RESPA application
to the disparate mass system,6 where some particles have
mass m51 ~reduced unit! while the others have mass
M5100. The motion of the light particles can be separated
from the heavy particles by a similar propagator subdivision,
because the intrinsic time scales, which scale asAm, differ
by a factor of 10 for the light and heavy particles. However,
in the present case, the masses are the same for both hot and
cold atoms, and it results a bad approximation. A more de-
tailed analysis of this effect is presented elsewhere.9

The solution is to pull out thevc•(]/]r c) term from the
Lc propagator and put it into theLh propagator, instead. Fur-
thermore, we need to differentiate the force terms more care-
fully to include the rapidly changing forces exerted by hot
atoms in theLh propagator. Then, a more reasonable and
accurate subdivision of the Liouvillian will be:
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HereFhh denotes the force on a hot particle from all other
hot particles,Fch denotes the force on a hot particle due to
all cold particles,Fhc denotes the force on a cold particle due
to all hot particles, andFcc denotes the force on a cold par-
ticle due to all other cold particles. The notation used here is
a short hand for sums over the hot and cold particles. For
example,

iL c5 (
iPcold. jPcold

Fi j •
]

]pi
.

It should be noted thatiL h propagates both hot and cold
particles under a force field with the forces between cold
particles removed.

With this subdivision we can write the propagator as:

eiLDt5e~Dt/2!Fcc~]/]pc!eDt@v~]/]r !1F* ~]/]p!#e~Dt/2!Fcc~]/]pc!
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Breaking the hot factors into small time steps and further
factorizing the ‘‘hot’’ propagatoreiLhdt then gives:

eiLDt'e~Dt/2!Fcc•~]/]pc!
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These propagators instruct us to:

~i! First propagate the cold system by one half of a large
time stepDt. Remember that the ‘‘cold’’ propagator
involves only the cold–cold force part of the Liouvil-
lian, and that this propagator affects only the mo-
menta of the cold particles without changing their po-
sitions.

~ii ! Next propagate the hot system byn small time steps
dt(ndt5Dt) using the velocity Verlet integrator. Re-
member that the ‘‘hot’’ propagator is really the whole
system with the cold–cold forces,Fcc , turned off. In
this step the positions and momenta of all the particles
change.

~iii ! Finally, propagate the ‘‘cold’’ system by one half of a
large time stepDt as in step~i!.

The hot propagation generated by exp(iL hdt) includes
the hot–cold forces and thus takes into account the fact that
when a cold particle collides with a hot particle it experi-
ences a very rapidly varying force, thus requiring a small
time step. We note that when the system has equipartitioned
such that there are no more hot particles the propagator be-
comes identical to the velocity Verlet propagator.6,7

This approach, based on the Trotter factorization of the
Liouville propagator, is more efficient than the straightfor-
ward integration of the equations of motion using the small
time stepdt because the hot system involves the calculation
of far fewer forces than the cold subsystem and the cold–
cold forces are computed only every large time step instead
of every small time step. The exact savings in CPU time will
depend on the relative sizes of the hot and cold subsystems,
and the difference in their associated time scales. Although
we do not illustrate it here, as the system cools off one could
make use of a smallern and thereby increase the size of the
small time stepdt.

The algorithm, as described above and implemented in
the simulations described below, is not time reversible. This
is in stark contrast to all other published r-RESPA
studies,6,7,10,11and is a consequence of the decision to update
the hot/cold subsets only once per large timestep. It is pos-
sible to make the current algorithm reversible, by updating
the hot/cold subsets within the smaller time stepsdt
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5Dt/n. Since these subsets can change as often as the ve-
locities are modified, however, a total of 2n12 updates
would have to be performed, incurring substantially more
overhead than with the single update used here. Furthermore,
a fairly convoluted algorithm is required in the reversible
version of the method in order to avoid either storage or
recomputation of the expensiveNc3Nc force array. In light
of these observations, we opted for the simplicity and speed
of the nonreversible algorithm. It needs to be mentioned,
however, that this nonreversibility will induce an energy drift
at long times. This drift, which is not observed to be a prob-
lem for the nonequilibrium processes reported here, can be
eliminated through the use of a splined cutoff between hot
and cold velocities, or with an explicitly reversible RESPA
propagator. This and related r-RESPA subtleties will be dis-
cussed in a forthcoming paper.9

III. RESULTS AND DISCUSSION

To compare RESPA with the standard velocity Verlet
integrator for nonequilibrated systems, we treat a Lennard-
Jones~LJ! system with 4000 atoms at a reduced density
r̂[rs351.0. Periodic boundary conditions are used in the
simulation. A cutoff distance ofRcut53.0s is used for poten-
tial and force calculations and a neighbor list is set up for
each atom for efficiency in these calculations.12 All neigh-
bors within a distance ofRneigh53.5s of an atom are in-
cluded in the neighbor list of that atom. The neighbor list is
updated12 whenever the maximum displacement of a particle
since the last update is larger than~Rneigh2Rcut!.

The LJ system is first equilibrated to a reduced tempera-
ture ofT50.1, then the velocity of one particle is scaled to
give it a very high ‘‘temperature’’Ti . The very hot particle
then participates in a cascade of collisions producing second-
ary, tertiary,...hot offspring. After a sufficient time, the ex-
cess kinetic energy of the very hot atom equipartitions with
the cold bath, leading to a new higher equilibrated tempera-
ture. To have a clear picture of how the hot atoms~defined as
those with temperature greater than a thresholdT*52.5! are
generated and annihilated during the equipartition process,
we examine a system with an initial very hot particle with
Ti51000. This system equilibrates to a final temperature of
T50.35.

In Fig. 1 we plot the number of hot atoms in the hot
subset as a function of time. A single time step ofDt50.001
~reduced units! is used in the integration of Newton’s equa-
tions of motion. The number of hot atoms~T>T*52.5! in-
creases in the beginning of the simulation due to the colli-
sions of the very hot particle. At;200 MD time steps, the
number of the hot atoms reaches a maximum,;50 atoms~or
1.2 % of the system! in this case. After approximately 1500
MD time steps, the number of hot atoms decreases gradually
from the maximum to near zero because they equipartition
with the large cold bath. It should be noted that the peak
number of hot atoms, as well as the time taken for them to
cool off, depends on the thresholdT* and the initial very hot
particle’s temperatureTi . In the following we will use two
different approaches to address this nonequilibrium problem.

To compare the efficiency of two different methods con-
sidered here, it is necessary to compare them at the same
level of accuracy. In constant-energy MD simulations, the
energy conservation parameterDE is commonly used to as-
sess the accuracy of the simulation. This is defined as

DE5
1

NT
(
i

NT UE02Ei

E0
U, ~11!

whereEi is the total energy at stepi , E0 is the initial total
energy, andNT is the total number of time steps. This quan-
tity has been shown to be a reasonable measure of accuracy
in previous simulations.6,7 It has been found that a value of
logDE<23.0 gives rise to a stable MD integration.6,7,13 In
the following simulations, we use logDE;24.0 as the ac-
curacy criterion.

In Fig. 2 we show the performance with respect to en-
ergy conservation@defined in Eq.~11!# of the velocity Verlet
and RESPA integrators when used to simulate the nonequi-
librium relaxation of systems with one initial very hot atom
havingTi51000. TheDE is evaluated over 1.0 reduced unit
of time in the MD simulation. In the RESPA method, the
inner loop, which propagates the hot subset, uses a small
time step ofdt50.001; while the outer loop, the correction
propagator, uses a large time step ofDt5ndt ~n51,2,3..., as

FIG. 1. Number of hot atomsNhot in the hot subset vs MD time steps. The
temperatureTi51000 for the initial very hot particle and the threshold
T*52.5 for the hot subset are used in simulation.

FIG. 2. Comparison of energy conservation as defined by Eq.~11! for ve-
locity Verlet and RESPA vs the overall time stepDt used in integration of
Newton’s equation of motion.
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described in Sec. II!. The time step plotted in Fig. 2 for
RESPA is the large time step, or the overall time step. The
results show that for the velocity Verlet integrator, log(DE)
increases dramatically with the increase of time step. Even a
small increase in the time step,Dt from 0.001 to 0.002, will
induce a big error in the integration of the motion of the hot
atoms. However, the RESPA method separates the ‘‘fast’’
motions from the ‘‘slow’’ motions systematically, so that
large overall time step~Dt;0.008–0.010! can be used with a
satisfactory accuracy. For a particular level of energy conser-
vation, log(DE)524.0, RESPA can use a time step;6
times larger than that of the velocity Verlet.

The overhead associated with the smaller number of
forces in the hot loop is small, but not zero. Thus, it is also
useful to compare CPU times for the two methods. In this
comparison, we used the CPU time for the velocity Verlet
with time step ofDt50.001 as a benchmark. The CPU time
for a single step of RESPA withDt50.001 is about 1.04
times longer than the single step of the benchmark due to the
bookkeeping costs of in updating the hot and cold subsets.
Figure 3 shows the CPU time for 1000Dt vs the level of
energy conservation logDE. To obtain an energy conserva-
tion level of logDE;24.0, for example, we may either use
velocity Verlet with time stepDt50.0015, which gives a
speedup of 1.4, or use RESPA with an overall time step
Dt50.008 ~or n58! which gives a speedup of 5.3. This
means that RESPA is approximately a factor of four times
faster than standard velocity Verlet for a comparable level of
accuracy.

It is worth noting that when the hot particle is very hot,
as it is, for example, in radiation damage, where a particle
can receive 500 eV of kinetic energy,4 or T55.83106 K ~as
comparison,e/k5120 K for argon!, the Liouville propagator
can be subdivided further corresponding to a ‘‘very hot’’
subset, ‘‘hot’’ subset and ‘‘cold’’ subset, thereby permitting
the use of a multiplicity of time scales, with further CPU
savings.

It is of interest to determine whether local melting is
generated in a cold solid bath when a very hot atom is pro-

duced. The RESPA method is used to speed up the calcula-
tions. When a very hot atom withTi53600 is introduced into
a cold bath atT50.1 the final temperature of the system after
equipartition is found to beT51.0, leaving the fully equili-
brated system in the crystalline phase.14,15 The simulation
starts with an fcc crystal structure. Two parameters are used
to describe ordering and possibility of local melting. One is
the structure factorrk(t), is defined by

rk~ t !5
1

N (
i51

N

ueik–r i ~ t !u5(
i51

N

cos~k–r i~ t !!, ~12!

where N is the number of particles~N54000!, k5~2p/
l !~1,1,1! is the reciprocal wave vector of the fcc structure,
l5L/(N/4)1/3, andL is the length of the simulation box. For
the unperturbed fcc crystal structure,rk51.0. If rk(t) stays
close to 1.0 over time, the solid remains an fcc crystal; if it
decays to zero, the solid melts.

Another parameter of interest is the atomic mean-square
displacement̂Dr 2(t)&,

^Dr 2~ t !&5K 1N (
i51

N

~r i~ t !2r i~0!!2L , ~13!

where r i~0! is the crystal lattice position of atomi at time
zero, andr i(t) is the position at timet. In a liquid, after an
initial quadratic rise,

^Dr 2~ t !&→6Dt,

whereD is the self diffusion coefficient. In a solid or meta-
stable glass,̂Dr 2(t)& rises to a constant value.

In Fig. 4 the evolution of the structure factorrk(t) with
time is plotted for the nonequilibrium system. For compari-
son,rk(t) of the corresponding equilibrated system with the
same final temperatureT51.0 ~called the conjugate system!
is also plotted in this figure. It can be seen thatrk(t) for the
conjugate system decreases from 1.0 to 0.9 quickly and stays
at this equilibrated value with only very small fluctuations.
The decrease ofrk(t) from 1.0 to 0.9 is simply due to the
thermal fluctuations of the atomic positions around their
crystal lattice points. However, for the nonequilibrated sys-

FIG. 3. Comparison of CPU time speed up vs energy conservation for
velocity Verlet and RESPA. The CPU time of velocity Verlet with time step
of Dt50.001 is used as a benchmark. The figure shows that RESPA can
save CPU time by a factor of;4 with comparable accuracy.

FIG. 4. Change of the structure factorrk(t) as defined by Eq.~12! vs the
MD run time in the nonequilibrium process~dashed line!. The structure
factor of the conjugate equilibrated system with same final temperature
T51.0 is also plotted as comparison. The deep dips in the structure factor
for the nonequilibrium system indicates the possible local melting or disor-
ders.
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tem, large amplitude fluctuations resembling damped sinu-
soidal oscillations are observed inrk(t). We find that these
oscillations correspond to the transit time of a sound or
shock wave through the walls of the periodic box that leads
to significant compression and rarification of the system.
This is confirmed by a visual inspection. Therk(t) plot also
shows that most of the disorder induced by the very hot atom
recovers after a long equipartition process. The finalrk(t)
values of the equilibrated system and nonequilibrium system
are almost the same, which indicates that the final structure
of the nonequilibrium system is also an fcc crystal structure
and not a structure with glassy regions. However, this does
not rule out temporary dislocations and atom exchanges.

To see whether any atoms exchange positions during the
relaxation around the hot atom,^Dr 2(t)& was calculated for
both the nonequilibrium and the conjugate equilibrium sys-
tems. The results are shown in Fig. 5. The value of^Dr 2(t)&
increases from zero to 0.014s2 quickly for the conjugate sys-
tem due to the thermal fluctuations~Debye Waller factor!,
while it increases to 0.085s2 ~;6 times larger! in 0.95 re-
duced time units for the nonequilibrated system and fluctu-
ates several times@following the compressions and rarifica-
tions of the structure factorrk(t)#. However, unlike the
structure factorrk(t) which is the same for both systems
after equipartition of the nonequilibrium system, the final
^Dr 2& for the nonequilibrated system is still approximately
three times larger than in the conjugate equilibrium system,
or 0.041s2. This is consistent with the exchange of atoms
during the equilibration phase of the system. Using the
simple approximation that atoms exchange positions only
with their nearest neighbors, we can estimate that the number
of atoms which have switched lattice positions is;130.
Movies of the relaxation confirm that there are a significant
number of particle exchanges during equilibration. Thus we
observe that local melting does occur during equilibration.
After this relaxation regime, the high kinetic energy of the
very hot atom equilibrates, and the system relaxes to an fcc
structure.

IV. SUMMARY

The reference system propagator algorithm~RESPA! has
been shown to be more efficient than standard Verlet meth-
ods in simulating the kinds of nonequilibrium systems dis-
cussed here. For a 4000 atom LJ solid with one very hot
atom ~Ti51000!, RESPA can use a time step;6 times
larger than velocity Verlet for an MD simulation of the non-
equilibrium process, which speeds up the simulation by a
factor of;4.

Even larger speedups in CPU time could be achieved in
certain other situations: For example:

~1! In radiation damage very much hotter particles are gen-
erated than we simulate here. In this case one can define
different time scales for very hot particles, hot particles,
somewhat hot particles etc. In this way, more subsets are
used in the subdivision of the Liouville propagator. This
technique is simple to implement in an MD program:
Whenever a hot spot is detected in the system, the pro-
gram calls the RESPA subroutine, which subdivides the
Liouville propagator as appropriate for efficiency. When
the system reaches a more homogeneous distribution of
velocities, the integrator would revert back to velocity
Verlet. This can be useful in simulations of chemically
reacting systems in which the reactions are highly exo-
ergic. In this way one can dynamically change the time
steps used as the system relaxes.

~2! In previous work,6 it has been shown that, even for such
simple force fields as the Lennard-Jones force field, us-
ing r-RESPA with the forces subdivided into short and
long range parts defined by a switching function, leads to
speedups as large as a factor of five over standard inte-
grators. This type of force breakup can also be intro-
duced into the current simulation for even larger speed-
ups. Systems with long-ranged interactions will show
even greater savings in CPU time by further breaking the
forces into different regions of pair distances.
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