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The maximum entropy analytic continuation method, to determine the dynamical properties of a
solvated electron from equilibrium path integral Monte Carlo data, is applied to the calculation
of the optical absorption spectra, real time correlation functions, and transport coefficients of
an excess electron in water, supercritical helium, and supercritical xenon. Comparisons with
experiments and with analytical theories are presented. ©1996 American Institute of Physics.
@S0021-9606~96!51540-0#

I. INTRODUCTION

In many condensed phases, ranging from ionic liquids to
polar and nonpolar molecular liquids, and under a broad
range of thermodynamic conditions it is possible to observe a
stable low-energy electron in thermal equilibrium with the
surrounding solvent. Such excess electrons can be introduced
into a liquid either by photoionization or by injection by a
low-energy electron beam. Once thermalized, the excess
electron can be in a localized or extended state and often
behaves differently than the valence electrons of the solvent
molecules.

Excess electrons can be monitored by a number of dif-
ferent techniques most of which, such as optical absorption,
photoelectric spectroscopy, and photoconductivity, probe the
dynamics of thermalized solvated electrons.1 These quanti-
ties, however, are also the most difficult to determine from
realistic many-body theoretical models and, consequently,
several of the experimental findings cannot be used to quan-
titatively test and improve our present theoretical under-
standing of the phenomenon of electron solvation.

Path integral Monte Carlo~PIMC! methods2 have been
extensively used to determine the equilibrium structure and
solvation energies of excess electrons in various fluids.
These methods allow accurate numerical determination of
equilibrium properties and time correlation functions as a
function of imaginary time. Although important in elucidat-
ing some of the properties of the excess electron, these nu-
merical studies have not given accurate information about
dynamical properties like the electron conductivity, the opti-
cal absorption coefficient, and the behavior of real-time cor-
relation functions. Besides, the direct real-time Monte Carlo
simulation of these quantum dynamical quantities is not fea-
sible because of the phase cancellation problem.3

There has been considerable progress in simulating the
dynamics of solvated electron systems by quantum molecu-
lar dynamics~QMD!, both for the adiabatic4 and nonadia-
batic regime,5,6 however, such methods may be impractical
for the determination of equilibrium dynamical properties
derived from time correlation functions because they require
averaging over a large number of trajectories and they do not
efficiently sample high-energy states, giving rise to the tail of

the absorption spectrum. In their present form, besides, these
methods cannot go beyond the classical treatment of the sol-
vent degrees of freedom.

A different approach to this problem is based on the
Baym and Mermin theorem7 that shows that real-time quan-
tum correlation functions are analytical continuations of
imaginary time correlation functions to the real-time axis
~Wick rotations!. Although the imaginary time correlation
functions are readily available from PIMC calculations, even
for fairly complex systems, in practice, the numerical ana-
lytic continuation operation has to be carried out with great
care because it is known to be very unstable and capable of
enormously amplifying the unavoidable statistical errors of
the imaginary-time correlation function. In recent years,
however, maximum entropy image enhancement techniques8

have been successfully applied to solve a variety of ill-
conditioned problems9,10 and, in particular, to effect a stable
numerical analytical continuation of imaginary-time correla-
tion functions of several systems.11–3 We have recently
tested this methodology on a simple, exactly solvable, model
system related to the self-trapped electron in a fluid and we
have applied it to the calculation of the optical absorption
spectrum of an excess electron in supercritical helium.14

One of the strengths of this method is that, for its imple-
mentation, no approximations are required. In particular, the
method allows the study of electron dynamics in quantum
solvents, thereby including nonadiabatic effects, and, thus,
allowing simulations to go beyond the mixed quantum-
classical ensembles.

In this paper we apply the maximum entropy analytic
continuation method to the study of the adiabatic dynamics
of an excess electron in various solvents. The methodology
used in the previous study14 has been extended to include
recent developments in the maximum entropy algorithms8,15

and we also present a scheme for the determination of the
real-time correlation function and transport coefficients omit-
ted in the previous work14 that was focused mainly on the
calculation of the optical absorption spectra.

In the next section we derive an analytic continuation
scheme for the displacement correlation function
^ur (t)2r ~t8!u2& by means of an integral equation that relates
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the imaginary-time displacement correlation function to the
optical absorption cross section. In Sec. III we outline the
maximum entropy method and its application to the numeri-
cal solution of the integral equation derived in Sec. II. In
Sec. IV we review the PIMC method used to obtain the
equilibrium quantities and the imaginary-time correlation
function needed as input to the analytic continuation scheme.
In Sec. V we apply the proposed method to estimate the
optical absorption cross section, the real-time displacement
correlation function, and the real-time velocity autocorrela-
tion function of an excess electron in liquid water at different
thermodynamic conditions; we compare the calculated ab-
sorption spectra in water to the available experimental find-
ings and we find good agreement. In Sec. VI we calculate the
absorption spectra, real-time displacement correlation func-
tions, and diffusion constants of an excess electron in super-
critical helium at medium and low densities, we compare our
calculations with analytical results for the associated hard
sphere model and we find reasonable agreement. In Sec. VII
we investigate the possibility, using the proposed method, to
reproduce the experimental conductivity data of excess elec-
trons in xenon; we find only qualitative agreement with the
experiments, we propose an explanation for the observed de-
viations, and we discuss the implications for future applica-
tions of the method. In Sec. VIII we finally present some
concluding remarks.

II. OPTICAL ABSORPTION AND REAL-TIME
DYNAMICS

The dipole time autocorrelation function of a system
with HamiltonianH at the inverse temperatureb51/kBT ~kB
is the Boltzmann constant! is

C~ t !5^m~ t !–m~0!&5
Tr~e2bHeitH /\m–e2 i tH /\m!

Tr~e2bH!
, ~1!

wherem is the dipole operator of the system. The dipole
spectral density functionI ~v! is defined as the Fourier trans-
form of C(t), namely

I ~v!5E
2`

1`

dt eivtC~ t !, ~2!

and the absorption cross section,

s~v!5
4p

\c
v~12e2b\v!I ~v!, ~3!

describes the absorption of a monochromatic radiation of
frequencyv due to the interaction with the dipole of the
system.16

The dipole moment of the solvated electron ism52ueur ,
wheree is the electron charge andr the electron position, so
that

C~ t !5e2^r ~ t !–r ~0!&. ~4!

Inverting Eq.~2!, expressing the dipole autocorrelation func-
tion in terms of the time-ordered displacement correlation
function for t>0,

RT
2~ t !5^T̂~ ur ~ t !2r ~0!u2!&5

2

e2
@C~0!2C~ t !#, ~5!

whereT̂ is the time-ordering operator, one finds

e2RT
2~ t !5E

2`

1` dv

p
I ~v!~12e2 ivt!. ~6!

Finally, introducing the detailed balance relation
I (2v)5e2b\vI (v) and the absorption cross section in Eq.
~3!, Eq. ~6! can be written in the form

4p2e2

\c
RT
2~ t !5E

0

`

dv s~v!

3
cosh~b\v/2!2cosh@b\v~ 1

22 i t /b\!#

v sinh~b\v/2!
.

~7!

A time-ordered correlation function is an analytic func-
tion in the complex plane; thus, it can be expressed in Eu-
clidean timet by performing the substitutiont→2 i t, where
0<t<b\.7 Applying this to Eq.~7!, we obtain

4p2e2

\c
RT
2~2 i t!5E

0

`

dv s~v!K~v,t!, ~8!

where

K~v,t!5
cosh~b\v/2!2cosh@b\v~ 1

22t/b\!#

v sinh~b\v/2!
. ~9!

Equation ~8! is an integral equation that relates the
Euclidean-time displacement correlation function and the ab-
sorption cross section,s~v!, through the kernel function
K~v,t! defined in Eq.~9!.

In the following we will omit the time-ordering subscript
T when it refers to the Euclidean-time correlation function
RT
2(2 i t) with the convention that the imaginary-time pa-

rametert is real and positive.
The numerical calculation of the imaginary-time dis-

placement correlation functionR2(2 i t) is feasible, even for
fairly complicated systems while the calculation of the cor-
responding real-time function is often infeasible because of
the phase cancellation problem,3 thus, in principle, the inver-
sion of the integral equation~8! provides a method for ob-
taining dynamical information, like the absorption spectrum,
inaccessible by other means. It should be noted, however,
that the numerical inversion of Eq.~8! is a very unstable
operation—the systematic and the unavoidable statistical er-
rors on the imaginary-time displacement correlation function
R2(2 i t) are enormously amplified in the absorption spec-
trum s~v!—and therefore the inversion must be performed
very carefully. The numerical inversion method we have
chosen to use is described in Sec. III.

It should be noted that the kernel functionK~v,t! in Eq.
~9! is proportional to the imaginary-time displacement corre-
lation function of a harmonic oscillator of frequencyv and
massm
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R2~2 i t!h.o.5
3\

mv sinh~b\v/2! H coshS b\v

2 D
2coshFb\vS 122

t

b\ D G J . ~10!

Thus, Eq.~8! states thatR2(2 i t) can be expressed as a
linear superposition of harmonic components. In this inter-
pretation, therefore, the differential absorption intensity
dv s~v! measures the contribution of the harmonic compo-
nent of frequencyv to the total imaginary-time displacement
correlation function. By the inverse argument, therefore, the
solution of Eq.~8! for a harmonic oscillator of frequencyv0
must be, as expected, proportional to ad function atv0. It
can be also noted that the singularity ofK~v,t! at v50 can
be easily removed by observing that

lim
v→0

K~t,v!5
t~b\2t!

b\
, ~11!

which is proportional to the imaginary-time displacement
correlation function of a free particle, i.e., of a harmonic
oscillator of infinitely small frequency.

The first and second derivatives of the imaginary-time
displacement correlation functionsR2(2 i t) at t501 can be
related, respectively, to the initial values of the velocity–
position and velocity–velocity correlation functions

dR2~2 i t!

dt U
t501

52i ^v–r & ~12!

and

d2R2~2 i t!

dt2 U
t501

522^v–v&. ~13!

By differentiating Eq.~8! with respect tot and using the
relations above, we have

\c

4p2e E0
`

dv s~v!52i ^v–r & ~14!

and

\c

4p2e E0
`

dv
vs~v!

tanh~b\v/2!
52^uvu2&, ~15!

which are two sum rules for the absorption cross section
s~v!.

Once the absorption cross section is known by inverting
Eq. ~8!, the analytic continuation ofRT

2(t) from the negative
imaginary axis to the positive real-time axis can be com-
pleted by performing the integration in Eq.~7!. The real-time
displacement correlation functionR2(t)5^ur (t)2r ~0!u2& is
equal to the real part ofRT

2(t). Other real-time correlation
functions can be extracted froms~v!, for instance the veloc-
ity autocorrelation function fort>0 can be calculated using
the relation

^v~ t !–v&52
d2

dt2
^r ~ t !–r &, t>0, ~16!

and Eqs.~4!, ~5!, and~7!, obtaining

8p2e2

\c
^v~ t !–v&5E

0

`

dv vs~v!

3
cosh@b\v~ 1

22 i t /b\!#

sinh~b\v/2!
. ~17!

The diffusion coefficientD of the electron is defined as17

D5 lim
t→`

R2~ t !

6t
~18!

5 lim
s→0

1

3 E
0

`

dt e2st^v~ t !–v&. ~19!

By substituting either Eq.~7! or Eq. ~17! and using the fact
that18

1

p
lim
t→`

12cosvt

v2t
5
1

p
lim
s→0

1

s~11v2/s2!
5d~v!, ~20!

it can be shown that the diffusion coefficient is proportional
to the zero-frequency absorption, namely

D5
\c

4p

s~0!

6e2b\
5

c

24pe2b
s~0!. ~21!

III. THE MAXIMUM ENTROPY INVERSION METHOD

In order to perform the analytical continuation of the
imaginary-time displacement correlation function, the nu-
merical solution of the integral equation~8! is required. The
inversion of this integral equation is like the inversion of a
Laplace transform because it basically involves the problem
of resolving a noisy signal that is composed of a sum of
exponential decays: a well-known ill-conditioned problem.
As a consequence,R2(2 i t) is rather insensitive to the de-
tails ofs~v! so that it is always possible to adjust amplitudes
and frequencies to obtain virtually perfect fits to the calcu-
lated data, but often these amplitudes and frequencies are far
from being unique. The severity of this problem means that
the noisy datasets contain limited amounts of information
about the spectrum. It is necessary, therefore, to incorporate
prior knowledge to limit the range of possible solutions.

A variety of numerical inversion methods based on this
principle are available.19–23In these methods the least-square
deviation of the fit is minimized subject to a number of con-
straints that contain information about such known properties
of the spectrum as positivity and sum rules or assumptions
about smoothness. Each constraint is then associated with an
undetermined Lagrange multiplier. Such methods are all
implementations of the basic concept ofMaximum
Likelihood.24 The maximum entropy method~MEM!25,26 is
based on the complementary concept ofMaximum Entropy.24

The maximum entropy method approaches the problem of
data analysis from information and probability theory and is
based on well-established mathematical axioms. While the
maximum likelihood method approach selects the spectrum
that has the largest probability of reproducing the data, the
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maximum entropy method, instead, selects the positive spec-
trum to which is associated the largest number of ways of
reproducing the data, i.e., the one that maximizes the
information-theory definition of the entropy of the spectrum
subject to the given constraints.

The inversion problem is reduced by the maximum en-
tropy method to finding the maximum of the entropy given a
constraint on the value of the least-square deviation from the
data. In this paper the resulting Lagrange multiplier is se-
lected according to the classic maximum entropy8,15 scheme
in which the Lagrange multiplier is determined self-
consistently, and therefore the method has no adjustable pa-
rameters. The most important feature of the maximum en-
tropy approach is the fact that, since the solution has the
minimum information content, any structure present in the
spectrum must be due to the data. Another useful feature of
the method is that it allows the introduction of prior known
information about the solution through a default spectrum.
Last, the method is able to estimate the reliability of the
inversion.13

The following is a brief account of the maximum en-
tropy method in its application to the analytic continuation
method; for a more detailed description the reader is referred
to existing publications.27

The maximum entropy inversion method is applicable to
the general problem of evaluating a set of unknowns from a
dataset, knowing only the rule that generates the data from
the unknowns. The inverse operation is never invoked and it
can be assumed unavailable. We will focus on the numerical
solution of the integral equation,

D~t!5E dv K~t,v!A~v!, ~22!

whereD~t! represents the calculated or measured data,A~v!
is a positive unknown function called themap, andK~t,v! is
a regular kernel function. In practice,D~t! is known only on
a discrete set of pointsDi5D(t i), i51,...,M . To everyDi

is also assigned an uncertaintysi . Analogously, we look for
the values ofA~v! on the set of pointsvj , j51,...,N and we
carry out the integration in the finite intervalvmin<v<vmax,
implicitly assumingA~v!50 outside this interval. We also
assume for the moment that the data are uncorrelated, i.e.,
that theDi ’s can be considered independent variables. Later
we will drop this assumption.

The maximum entropy method assigns to the mapA~v!
a probability distribution that is dependent on the data avail-
able, and defines the solutionA~v! of Eq. ~22! as the most
probable map. LetP (AuD) be the probability of the mapA
given the dataD. By Bayes theorem

P ~AuD !}P ~A!P ~DuA!; ~23!

whereP (A) is the so-calledprior probability forA, i.e., the
probability distribution we assign toA before acquiring the
data, andP (DuA) is thelikelihoodprobability, i.e., the prob-
ability of obtaining the dataD by the transformation~22!
with the given mapA.

The prior distribution for the map is taken to be

P ~Aua,m!}eaS, ~24!

wherea is an arbitrary positive parameter,S is the entropy
function,

S5(
j51

N SAj2mj2Aj ln
Aj

mj
D , ~25!

where

A15A~v1!~v22v1!/2,

Ai5A~v i !~v i112v i21!/2, i52,...,N21, ~26!

AN5A~vN!~vN2vN21!/2,

are the integrated values of the map in each grid spacing
according to a trapezoidal rule of integration and themj ’s are
positive parameters derived in analogy with Eq.~26! from
the so-calleddefault map m~v!. The unconstrained maxi-
mum of the entropy occurs atÂi5mi for which Ŝ50. The
default mapm~v! is chosen to be consistent with any prior
information about the map that is available, we will illustrate
its role in the analytic continuation problem later in this sec-
tion. The form~25! for the entropy has been shown to be the
most general form consistent with the axioms of the MEM
formalism.8

Now we turn to the problem of defining the likelihood
probability distributionP (DuA). In the variablesAj that de-
fine aN-dimensional map space and the frequency discreti-
zation given above, Eq.~22! assumes the form

D5KA, ~27!

whereA and D are vectors with componentsAj and Di ,
respectively, and the kernel matrixK, defined as
Ki j5K(t i ,v j ), is a linear transformation from the
N-dimensional map space to theM -dimensional data space.
From a mapA we can, therefore, predict what the data~KA!i
should be and get the residuals from the actual data given. If
we exclude the possibility of systematic error, the residuals
are due to statistical noise in the data; if we then suppose the
errors have Gaussian distributions described by standard de-
viationssi , we have

P ~DuA!})
i51

M

expH 2
@Di2~KA! i #

2

2s i
2 J [expS 2x2

2 D .
~28!

Combining Eqs.~25! and~28! we see that theposteriorprob-
ability whose maximum is the Maximum Entropy solution to
the integral equation~22! is

P ~AuD !}exp~aS2x2/2!, ~29!

so that we are left with the problem of maximizing the func-
tion of N variables

Q~A!5aS~A!2x2~A!/2. ~30!

A. Selection of the Lagrange multiplier

The arbitrary parametera in Eq. ~24! is interpreted as
the inverse Lagrange multiplier in the constrained maximi-
zation ofS with a fixed value ofx2. If a is large, the maxi-
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mum ofQ~A! is dominated by the entropy function, i.e., by
the prior information available. Thus, the MEM solution
A~v! of the integral equation~22! would deviate only
slightly from the default map. If, instead,a is small,A~v! is
determined only by thex2 function, and it would then repre-
sent very well, in ax2 deviation sense, the data. It would
also, however, represent any random error present in the
data. ThusA~v! would be too sensitive to errors in the data,
would suffer high oscillations, and it would have little re-
semblance to the true solution of the integral equation. In the
old form of the maximum entropy method, historic maxi-
mum entropy, it is a common practice to seta so that, at the
maximum ofQ~A!, x25M5the number of observations. In
the most recent form, classic maximum entropy, the best
value fora is also derived from Bayesean logic, estimating
the maximum ofP ~auD,m!, the conditional probability of
a given the data and the model map. This is achieved
by integrating outA, in a steepest descent approximation,
from the expression of the compound probability
P (A,auD,m)}P (DuA)P (Aua,m)P ~a! and finding the
maximumâ of the logarithm of the resulting distribution,

ln P ~auD,m!5const1
1

2 (
i

lnS a

a1l i
D1Q~Âa!

1 ln P ~a!, ~31!

whereÂa is the maximum ofQ~A! for the given value ofa,
P ~a! is the prior probability assigned to the Lagrange mul-
tiplier a ~usually taken to be proportional to 1/a in some
finite interval15!, andli is the i th eigenvalue of the matrix

G i j5AAi

]2~x2/2!

]Ai ]Aj
AAj , ~32!

evaluated atA5Âa . The maximum of Eq.~31! is approxi-
mately given by the equality15

22âS~Ââ!5(
i

l i

â1l i
. ~33!

The results shown above and the ones to follow have
been obtained assuming, as has been suggested by Skilling,8

that the metricG of the map space is the one for which the
curvature of the entropy is a constant, i.e.,G i j 5 d i j /AAiAj ,
called theentropic metric. In this metric a differential vol-
ume isDA 5 P i dAi /AAi , the components of a gradient are
multiplied by AAi and the elements of a matrix of second
derivatives are multiplied byAAiAj .

B. Error rescaling

Often the uncertaintiessi of the data are harder to esti-
mate than the data itself. Since the parameterâ depends
indirectly onsi through the eigenvalues of the curvature ma-
trix of x2, it is useful to introduce an additional parameterg
that multiplies eachsi and then estimate its best valueĝ
using similar techniques used to estimateâ. The result is two
simultaneous equations for the (â,ĝ) pair

22âS~Ââ!5(
i

l i

ĝ2â1l i
,

~34!
x2~Ââ!

ĝ2 1(
i

l i

ĝ2â1l i
5M ,

where theli are the eigenvalues of the matrix~32!. This
procedure, called error rescaling,15,13 is important to perform
correctly the maximum entropy inversion and to assess the
quality of the data. In the applications presented in this work
we found 1.1,ĝ,1.6.

C. Selection of the default map

Often, the prior information on the map is available in
the form of a certain numberNB of sum rules that can be
expressed as

Bq5(
k
bqkmk , q51,...,NB . ~35!

If B̄q are the known numerical values of the sum rules and
dBq the correspondent uncertainties, we can apply the maxi-
mum entropy formalism to obtain the unique default map
m~v! that satisfies the sum rules~35! within specified error
level. Thex2 deviation to be used is

x25 (
q51

NB ~Bq2B̄q!
2

dBq
2 . ~36!

This procedure would seem to require that we specify a de-
fault map form~v!. To avoid this we use a normalized form
of the entropy

S52E dv
m~v!

M
ln
m~v!

M
.2(

i
pi ln

pi
Dv i

, ~37!

whereM5*dvm~v!.( imi andpi5mi /( imi .
Often NB is a small number~in the applications pre-

sented here we identified two or three useful sum rules! and,
for such small dataset, the classic maximum entropy method
cannot be used because the best value for the Lagrange mul-
tiplier a would be poorly defined. We used instead the his-
toric maximum entropy selection criterion wherebya is cho-
sen to achieve the conditionx25NB . We observed that the
default maps derived in this way are nearly independent on
the particular value ofa selected as long as it is reasonably
chosen.

D. Estimation of integrals of the map

The width of posterior probability at its maximum, quan-
tified by the Hessian matrix]2Q/]A ]A for the mapA, pro-
vides information on the uncertainty associated with the
maximum entropy inversion. We are often interested in
quantities that are related to integrals ofA~v!. Such quanti-
ties can be expressed in the form

B5(
i
biAi5b–A, ~38!
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and we seek an estimate of the uncertaintydB associated
with B. This is more easily accomplished by diagonalizing
the Hessian with an orthogonal transformationO and ex-
pressingb in this new basis. Ifqi is the i -th eigenvalue of
]2Q/]A ]A andbi8 the correspondent transformed component
of b, the uncertaintydB is given by13

dB25(
i

~bi8!2

qi
. ~39!

From Eq.~39! is clear that ifb has a large component along
a direction poorly constrained by the data, the uncertainty of
B will be large. On the other hand, ifb has a large compo-
nent along a direction that is highly constrained, this analysis
shows that even relatively low-quality data can accurately
generate a particular integrated value of the map. In general,
such error analysis provides an invaluable tool to quantify
the accuracy of a map inversion and the quantities derived
from it.

E. Implementation details

The numerical problem of the constrained maximization
of the entropyS has been solved even for very largeN ~a
million or more points on the map! by very efficient
algorithms28 that have been applied successfully to the MEM
reconstruction of two-dimensional~2-D! and 3-D images
with a large number of pixels. The present application is far
less demanding in terms of the dimensionality of the map
space because a good representation of the spectral function
is described, at most, by a few hundred points. We are able,
therefore, to use a safe but memory intensive Newton–
Raphson based maximization procedure.29 Moreover, the lin-
earity of the relation~27! between the map and the data
ensures uniqueness of the maximum entropy solution.

In the maximum entropy inversion of the integral
equation ~8! from PIMC data, we have Di

5(4p2e2/\c)R2(2 i t i) and

Ki j5
cosh~b\v j /2!2cosh@b\v j~1/22t j /b\!#

v j sinh~b\v j /2!
, ~40!

derived from the discretization of the integral equation~8!.
As explained in Sec. IV, the dataDi cannot be consid-

ered statistically independent. Thex2 measure needed by the
Maximum Entropy inversion algorithm in the case of corre-
lated data is12

x25(
i j

@Di2~KA! i #~C
21! i j @Dj2~KA! j #, ~41!

whereC is the cross-correlation matrix of the fluctuations of
the data. For the application presented in this paperC is
defined in Eq.~52!. We also note that, if the positive definite
correlation matrixC is properly diagonalized by an orthogo-
nal matrixU, the maximum entropy inversion of Eq.~8!
can be carried out, starting from the uncorrelated trans-
formed data setD85U†D and the transformed linear relation
from map space to data spaceK85U†K. Thesi ’s in Eq. ~28!
are, then, interpreted as the eigenvalues of the correlation
matrix C .

The default map has been derived, following the proce-
dure presented above, using the sum rules~14!, ~15!, and

4p2e2

\c
R2S 2 ib\

2 D5E
0

`

dv s~v!
cosh~b\v/2!21

v sinh~b\v/2!
. ~42!

The numerical calculation of the quantities^v–r & and ^v–v&
involved in the sum rules~14! and ~15! is described in the
next section.

Our maximization algorithm maximizes, in the entropic
metric, the functionQ~A! ~30! with fixed a using the
Newton–Raphson method, starting with the initial guess
Ai5mi at the maximum of the entropy function~25! with a
large value ofa. The inverse Lagrange multipliera and,
eventually, the error rescaling parameterg are then progres-
sively varied until the self-consistent equations~34! are sat-
isfied. At every iteration convergence is checked by measur-
ing the normalized norm of the difference between the
gradient of the entropy and the gradient of thex2 function30

calculated in the entropic metric

d5
ua “S2“~x2/2g2!u2

ua “Su21u“~x2/2g2!u2
. ~43!

~For the maximum entropy reconstructed spectra presented
in this paper,d,131024.! Quantities related to integrals of
the map can then be estimated from Eq.~38! and their un-
certainties can be calculated by Eq.~39!.

IV. PIMC CALCULATION OF THE IMAGINARY-TIME
DATA

The thermodynamic properties of a quantum particle of
massm interacting with a classical solvent can be investigate
numerically using the path integral Monte Carlo method
~PIMC!. This approach exploits the isomorphism between
this mixed quantum-classical system and the one in which
the quantum particle is replaced by a classical polymer con-
sisting of a large enough numberp of beads interacting with
their nearest neighbors through harmonic bonds and with the
solvent molecules through the interaction potential attenu-
ated by a factor of 1/p.31,32

Notice that the real-time correlation functions obtained
by analytic continuation of imaginary-time correlation func-
tions calculated in the classical limit for the solvent degrees
of freedom describe the dynamics of the electron in an infi-
nite static disordered lattice of solvent molecules. This is
appropriate as long as there is a separation of time scales
between the electronic and solvent motions. The static ap-
proximation is computationally convenient but not necessary
and, by treating the solvent degrees of freedom quantum me-
chanically in the path integral formalism, it is possible to
simulate phonon assisted dynamics.

The canonical average of a propertyO~r ,RM! of an ex-
cess electron in a classical solvent is, therefore,
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~44!

where r i are the coordinates of the electron beads andRM

describes theM -degrees of freedom configuration of the sol-
vent. The canonical partition function is

Qp~b!5S bmvp
2

2p D 3p/2E dRM e2bF~RM !E dr1•••dr p

3expH 2bF(
i

Smvp
2

2
~r i2r i11!

2

1
V~r i ,R

M !

p D G J , ~45!

where

vp
25

p

~b\!2
, ~46!

F~RM! is the interaction potential between solvent mol-
ecules, andV~r ,RM! is the interaction potential between sol-
vent molecules and the electron.2

As we have seen, a useful correlation function is the
mean-square displacement between pairs of points of the
chain separated by the imaginary time incrementt33

R2~2 i t!5^ur @2 i t8#2r @2 i ~t81t!#u2&, ~47!

which is independent on the position of the first point corre-
sponding to the imaginary timet8. TheR2(2 i t) correlation
function is usually evaluated at the pointst j5\b j /p,
j50,...,p/2, by the PIMC averages,

R2~2 i t j !5^r j&, ~48!

where the estimator%j is

% j5
1

p (
k51

p

ur k2r k1 j u2, j51,...,p/2. ~49!

As noted in the previous sections Eq.~14! is important to
estimate the quantitŷv–r &, which is related to the first de-
rivative of R2(2 i t) at t501 ~and to the total absorption
cross section!. We have used the estimator34

^v–r &5
i

b\ K (
k51

p

~r k112r k!–r kL . ~50!

The mean kinetic energy of the electron, directly related to
the second sum rule@Eq. ~15!#, is calculated using either the
virial or the primitive estimator.35

The values of theR2(2 i t) correlation function at dif-
ferent values oft are not statistically independent; instead, in

this application a significant amount of cross correlation is
expected. This is best seen by the normalized cross-
correlation matrix of the fluctuationsd% j5% j2R2(2 i t j )

C̃ i j5
^d% i d% j&

A^d% i
2&^d% j

2&
5

C i j

AC i iC j j

, ~51!

where

C i j5^d% i d% j&/~L21!, ~52!

%j is defined in Eq.~49!, andL is the number of samples.
The configuration space of the solvent–electron system

is sampled using the Monte Carlo method. In every Monte
Carlo pass the internal, rotational, and translational degrees
of freedom of each solvent molecule are sampled accord-
ing to the Metropolis algorithm and the configuration
of the electron ring is sampled, applying the staging
method36,37 to a large enough number of segments of the
ring in order to cover all its length. After equilibration, all
the properties of interest have been accumulated for a num-
ber of Monte Carlo passes large enough to ensure conver-
gence. In particular, the quantitiesrj in Eq. ~49! have been
considered for j51,...,jmax and block averaged38 using
L>2 jmax blocks. For every block the average ofrj in that
block, r̄ j

(b), is stored, this quantity is used to calculate the
cross-correlation matrixC in Eq. ~52!. The eigenvector and
eigenvalues ofC can be calculated performing a singular
value decomposition of theL3 jmax matrix with elements
$@ r̄ j

(b) 2 R2( 2 i t j )#/AL21%, avoiding, thus, the calculation
of C and its, often unstable, spectral analysis.

V. THE HYDRATED ELECTRON

An excess electron in water has been simulated using the
path integral Monte Carlo method at three different tempera-
tures under atmospheric pressure:~T5298 K, r50.997
g/cm3!, ~T5340 K, r50.980 g/cm3!, and ~T5373 K,
r50.958 g/cm3!. The potential of interaction between two
water molecules is taken to be a central force potential ob-
tained as a sum of pair potentials between the constituent
atoms.39–41The internal vibrations of the water molecule are
modeled by a set of Morse potentials.42,43

The pseudopotential describing the interaction between a
water molecule and the electron is an effective potential that
reproduces gas phase scattering data over a wide range of
impact energies and it is composed of an electrostatic, ex-
change, and many-body polarization contributions.44,45

The potential model described above has been used by
Wallqvist et al.45 to calculate the absorption spectrum in the
static limit of the hydrated electron by averaging, over sev-
eral solvent configurations, the dipole transition moments be-
tween energy eigenfunctions of the electron calculated on a
three-dimensional grid. The position of the resulting calcu-
lated absorption band was in agreement with the
experiments,46 although it failed to reproduce the high-
frequency tail found experimentally. Another potential
model47 has been shown to reproduce the shape of the ab-
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sorption band, but not its position. The present calculation
should ascertain whether the potential model proposed by
Wallqvistet al. is capable of reproducing the high-frequency
tail by using the computational scheme described in the pre-
vious sections.

In our simulation there are 216 water molecules in a
cubic box with periodic boundary conditions and of size de-
termined by the chosen liquid density. All interactions above
8 Å have been ignored, implementing a spherical hard cutoff
scheme. To calculate the contribution to the many-body po-
larization energy of an electron bead, only those solvent mol-
ecules inside a sphere of radius 5.5 Å centered around it have
been considered. Given the numerical complexity associated
with evaluating the gradients of the many-body polarization
potential, the kinetic energy of the electron has been calcu-
lated using the primitive estimator.35,48,49

The Trotter number for the electron isp5900.44 The
R2(2 i t) correlation functions have been calculated calcu-
lated for 0,t,b\/4 ~in the region above this point the cor-
relation function is practically constant and can be ignored
without loss of information! by block averaging38 the estima-
tor %j in Eq. ~49! for j51,...,p/4. The number of blocks,
composed of 44 sequential samplings of%j , was taken to be
L5900. Thus, about 40 000 Monte Carlo passes were, typi-
cally, necessary to ensure proper convergence of the aver-
ages.

The imaginary-time displacement correlation func-
tions are shown in Fig. 1 for the three temperatures studied.
The corresponding absorption spectra have been calcula-
ted by inverting Eq. ~8! using the maximum entropy
method described in Sec. III and are shown in Fig. 2.
The frequency grid used in the maximum entropy numerical
inversion has been generated by the expression
v(x)5~vmax2vmin!@exp(ax)21#/@exp(a)21#1vmin , where

x is an equally spaced grid of 250 points in the interval@0,1#,
a54, vmin50.005 a.u., andvmax51 a.u.

The error rescaling parameterg has been estimated to lie
in the 1.1–1.3 range.

In Fig. 3 we show the comparison between the absorp-
tion spectrum of Fig. 2 at 298 K with the the spectrum cal-
culated by Wallqvistet al. at 300 K.45 The agreement is
extremely good given the complexity of the model. The no-
ticeable difference is the high-frequency tail present in the
present calculation and the experiment but almost absent in
the spectra calculated by Wallqvistet al.

FIG. 1. The imaginary-time displacement correlation functionR2(2 i t) of
hydrated electron at three different temperatures. Error bars are shown every
ten calculated points.

FIG. 2. The calculated absorption spectrum of the hydrated electron at three
different temperatures.

FIG. 3. The calculated spectrum atT5298 K of Fig. 2 compared with the
absorption spectrum calculated by Wallqvistet al. ~Ref. 45!. In this figure
the spectra are normalized by total absorption intensity.
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In Fig. 4 the maximum entropy-estimated spectra are
shown, compared with the experimental spectra,46 in this fig-
ure all the spectra are normalized by the maximum. As can
be noticed, the agreement with the experiments is good. The
position of the spectrum and its shape is well reproduced, but
its width seems to be systematically smaller than the experi-
ments. The change in width with temperature is also in the
opposite direction relative to the experiments. We noticed
that the width of the absorption band decreased if poorer
quality data were used, i.e. data taken from a shorter Monte
Carlo simulation. Even though we see a convergence in the
shape of the band with increasing simulation length, it is
possible that the rate of such convergence is very slow and a
very large number of block averages is needed to obtain an
accurate bandwidth. It is also possible, and more likely, how-
ever, that such features are a consequence of the choice of
the pseudopotential made in these calculations as we have
observed that an increase the overall cutoff causes a sensible
narrowing of the spectral band.

The real-time displacement and velocity correlation
functions of the excess electron were calculated from the
simulated absorption spectra using Eqs.~7! and~17!, and are
shown in Fig. 5 and Fig. 6 for the three temperatures studied.
The error bars on this function have been calculated, as ex-
plained in Sec. III. The displacement correlation functions go
flat after a short transient time, showing the fact that the
mobility of the electrons is either zero or very small at these
conditions. We were not able to determine an accurate value
of the electron diffusion coefficient given the present statis-
tical uncertainties.

It should be noted that the present estimate of the elec-
tron mobility calculated in a static solvent cannot include the
contribution arising from the motion of the solvation cage, a

process investigated in a number of classical and semiclassi-
cal studies.4,60For fluids with very low electron mobility, the
motion of the solvent molecules provides the primary
mechanism for the diffusion of the electron.

The velocity correlation functions undergo several sign
changes before decaying to zero. Thus, it can be concluded
that the electron is rattling in a cage of water molecules with
which the electron ‘‘collides’’ periodically, reversing its ve-
locity. The initial value of the velocity correlation function is
the mean square velocity, a measure of the average kinetic
energy of the electron. The values obtained are consistent

FIG. 4. ~a! The calculated spectra of Fig. 2 compared with~b! the available
experimental absorption spectra. In this figures the spectra are normalized
by the maximum absorption intensity.

FIG. 5. The real-time displacement correlation functionsR2(t) of a hy-
drated electron at three different temperatures. Error bars are shown only for
theT5340 K curve.

FIG. 6. The real-time velocity correlation functions^v(t)•v~0!& a of hy-
drated electron at three different temperatures. Error bars are shown only for
theT5340 K curve.
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with the ones obtained from the primitive kinetic energy es-
timator, but with uncertainties two to three times smaller.

VI. AN EXCESS ELECTRON IN SUPERCRITICAL
HELIUM

To study the process of electron localization due to the
excluded volume effect,50 we have simulated by path integral
Monte Carlo, an excess electron in helium along the 309 K
supercritical isotherm at three densities~r*5rs350.1, 0.2,
and 0.3!. The potential of interaction between two helium
atoms is taken as a Lennard-Jones 12-6 potential~s52.556
Å, e510.22 K!. The electron-helium pseudopotential used is
that of Kestneret al.,51 a model used in the past.52,14 The
kinetic energy of the electron has been calculated using the
virial estimator.35

The simulation is of 864 helium atoms and a discretized
electron path in a cubic box with periodic boundary condi-
tions and of size determined by the chosen density. The Trot-
ter number for the electron isp51000.52 TheR2(2 i t) cor-
relation functions have been calculated calculated for 0,t
,b\/2 by block averaging,38 the estimator%j in Eq. ~49! for
j51,...,p/2. The number of blocks, composed of 44 sequen-
tial samplings of%j , was taken to beL51200. Thus, about
50 000 Monte Carlo passes were, typically, necessary to en-
sure proper convergence of the averages.

The imaginary-time displacement correlation functions
are shown in Fig. 7 for the three densities studied. The cor-
responding absorption spectra were calculated by the maxi-
mum entropy inversion of the integral equation~8! using a
frequency grid given by the expression
v(x)5~vmax2vmin!@exp(ax)21#/@exp(a)21#1vmin , where
x is an equally spaced grid of 250 points in the interval@0,1#,
a54, vmin50, andvmax51 a.u.

The calculated absorption spectra, shown in Fig. 8, are in
good agreement with previous calculations14 that used the

same potential model for the electron-helium system but a
different selection scheme for the Lagrange multiplier in the
maximum entropy inversion. As has already been noticed,14

the observed variations of the absorption bands with density
are in agreement with the analytical predictions of the RISM-
polaron theory of Chandler and co-workers53,54 for the hard
sphere solvent model of electron solvation.

At the r*50.3 density the absorption spectrum is made
of a single band centered aroundv̄50.4 eV of Gaussian
shape on the low-frequency side and of Lorentian shape on
the high-frequency side, as we have observed for the hy-
drated electron. This observation correlates well with the fact
that in both cases the electron is best described as being
localized in a solvent cavity. The absorption band is due to
optical transitions from the ground state to localized low-
lying excited states.

At lower density~r*50.2! the absorption maximum red-
shifts, and we can observe a substantial increase of the ab-
sorption at zero frequency. From these observation we con-
clude that under these thermodynamic conditions the
electronic ground state and the low-lying excited states are
still localized in a solvent cavity but the extended states be-
come thermally accessible, providing means for the electron
to diffuse in the solvent.

At the smallest density studied~r*50.1! the absorption
band at positive frequencies virtually disappears and the zero
frequency absorption becomes more intense. The absorption
spectrum therefore assumes a structure similar to the absorp-
tion spectrum of an excess electron in xenon investigated in
the next section. This is consistent with the fact that at this
density the solvent is not able to provide a cavity that sup-
ports an electron ground state and few low-lying excited
states. At these conditions the electron is best described as
being fully delocalized.

From the calculated absorption spectra, using Eq.~7!, we

FIG. 7. The imaginary-time displacement correlation functionR2(2 i t) of
an excess electron in supercritical helium at three reduced solvent densities.

FIG. 8. The calculated absorption spectra of an excess electron in super-
critical helium at three reduced solvent densities.
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have extracted the real-time displacement correlation func-
tions up to 50 fs. These are shown in Fig. 9. Apart from a
short-time transient behavior, we observe diffusive motion
for times larger than about 25 fs for all the densities studied.
This is also in agreement with the predictions of Nichols and
Chandler.54 The diffusive motion sets up at shorter times as
the density is lowered. The slope of these functions at long
times are proportional to the diffusion coefficient of the elec-
tron. The value of the slopes calculated at 50 fs, taken to be
our operational definition of the diffusion coefficient, agrees
to a 1% tolerance with the asymptotic value att5` given by
the zero-frequency absorption cross section@see Eq.~21!#.
The error bars in Fig. 9, calculated as explained in Sec. III,
provide a mean to estimate the uncertainties of the opera-
tional values of the diffusion coefficient by simply consider-
ing the upper and lower bounds of the slope of the real-time
displacement correlation functions.

The values of the diffusion coefficients are plotted ver-
sus solvent density in Fig. 10. In this figure we also show the
curve corresponding to the diffusion coefficient for the asso-
ciated hard sphere model54 at a slightly larger temperature
~377 instead of 309 K!. We observe that the two models are
in reasonable agreement, suggesting that, in this case, the
operational diffusion constants calculated from the slope at
50 fs of the real-time displacement correlation functions are
a good representation of the true diffusion constants.

VII. AN EXCESS ELECTRON IN SUPERCRITICAL
XENON

An excess electron in supercritical xenon has been simu-
lated using the path integral Monte Carlo method along the
309 K supercritical isotherm for four densities
~r*5rs350.3, 0.5, 0.7, and 0.9!. The potential of interaction

between two xenon atoms is taken as a simple Lennard-Jones
12-6 potential~s54.0551 Å, e5229 K!.52 The electron–
xenon pseudopotential we have used has been developed by
Spaceet al.55 to reproduce the observeds-wave phase shifts
in electron-xenon scattering experiments. A many-body po-
larization term has been added through a Lekner polarization
potential.56 For the calculation of the kinetic energy of the
electron we used the virial estimator.35

The simulation is of 864 xenon atoms and an electron in
a cubic box with periodic boundary conditions and of size
determined by the chosen solvent density. The Trotter num-
ber for the electron pathp51000.52 TheR2(2 i t) correlation
functions have been calculated calculated for 0,t,b\/2 by
block averaging38 the estimator%j in Eq. ~49! for j51,...,p/
2. The number of blocks, composed of 44 sequential sam-
plings of %j , was taken to beL51200. Thus, about 50 000
Monte Carlo passes were, typically, necessary to ensure
proper convergence of the averages.

The imaginary-time displacement correlation functions
are shown in Fig. 11 for the four densities studied. The cor-
responding absorption spectra, calculated by the maximum
entropy inversion of the integral equation~8! are shown in
Fig. 12. The peak intensities occur atv50 with a fast-
decaying unstructured tail at positive frequencies. The fre-
quency grid used in the maximum entropy numerical inver-
sion has been produced from the expression
v(x)5~vmax2vmin!@exp(ax)21#/@exp(a)21#1vmin , where
x is an equally spaced grid of 250 points in the interval@0,1#,
a55, vmin50, andvmax51 a.u. The value of the absorption
spectrum atv50, as we have already noticed, is related to
the drift mobility of the electronmD5ebD, whereD is the
diffusion coefficient.

FIG. 9. The real-time displacement correlation functionsR2(t) of an excess
electron in supercritical helium at three different reduced densities. Error
bars are shown every three calculated points. The asymptotic slope of these
curves at larget is proportional to the diffusion coefficient of the electron.

FIG. 10. The calculated reduced diffusion constantD*5b\r*D/s2 of an
excess electron in supercritical helium. For heliums52.556 Å. Also shown
in a dotted line, the reduced diffusion constant of an excess electron in hard
sphere solvent of sphere diameters.
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The error rescaling parameterg has been estimated to
lay in the 1.1–1.3 range.

From the calculated absorption spectrum, using Eq.~7!,
we have extracted the real-time displacement correlation
functions up to 100 fs. These are shown in Fig. 13 only in the
0–50 fs region. Apart from a short-time transient behavior,
we observe diffusive motion for times larger than about 25 fs
for all the densities studied. The slope of these functions at
long times are proportional to the diffusion coefficient of the
electron. The value of the slopes calculated at 50 fs are our
operational definition of the diffusion coefficient. The statis-

tical uncertainties of these values of the diffusion coefficients
has been estimated, as illustrated in Sec. VI. The calculated
drift mobilities mD5ebD, shown in Fig. 14 versus reduced
solvent density, present a maximum forr*50.7.

It is interesting to compare in Fig. 15 the calculated mo-
bilities with the available measurements along the liquid–gas
coexistence curve.57,58 The experimental mobility reaches a
maximum of 6000 cm2/V s atT5223 K andr*50.8, which
is in reasonable agreement with the calculated mobilities.
The simulations, however, do not reproduce the dramatic fall
off of the mobility with decreasing density. At the critical

FIG. 11. The imaginary-time displacement correlation functionR2(2 i t) of
an excess electron in supercritical xenon at four reduced solvent densities.
The inset shows the variation with density of the value ofR2(2 ib\/2).

FIG. 12. The calculated absorption spectra of an excess electron in super-
critical xenon at four reduced solvent densities.

FIG. 13. The calculated real-time displacement correlation functionsR2(t)
of an excess electron in supercritical xenon at four reduced solvent densities.
The asymptotic slope of these curves at larget is proportional to the diffu-
sion coefficient of the electron.

FIG. 14. Calculated drift mobility of an excess electron in supercritical
xenon as a function of reduced solvent density.
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point,T5290 K andr*50.333, the measured mobility is just
3.0 cm2/V s, more than three orders of magnitude smaller
than the calculated value at similar thermodynamic condi-
tions ~T5309 K andr*50.3!.

Since the calculations have not been performed along the
liquid–vapor coexistence line, but along the 309 K isotherm,
the deviations between the experiments and the present cal-
culations can be partially explained by the fact that it is ex-
perimentally observed in xenon that even a slight removal of
the system from the liquid–vapor coexistence region can
sensibly increase the electron drift mobility;57 this effect is
greater the closer the system is to the critical point.

At high densities the electron mobility is large because
the energy gap between the localized ground state and the
conduction band is comparable tokT. On the other hand, as
the critical point is approached large density fluctuations oc-
cur and the probability of finding large localizing traps for
the electron increases. Then, none of the states in the con-
duction band will be thermally accessible from the localized
ground state, resulting in a small mobility. Hsuet al.59 have
observed that the main contributions to this critical behavior
come from the large-wavelength fluctuations of the solvent
density. Given the finite size of the simulation box, the
PIMC simulations performed in this work cannot reproduce
density fluctuations with wavelengths of the order of the box
size or larger. The simulations, therefore, are not accurate in
describing the phenomenon of electron localization near the
critical point, a fact that could explain the large deviation
between the experimental and calculated mobility at low
densities.

The term ‘‘quasilocalized’’ is sometimes used to de-
scribe the states of the localized electron in liquids of polar-
izable rare gases because the traps have a size comparable to
the De Broglie wavelength of the electron. In a PIMC simu-

lation, thus, the average size of the electron polymer in such
a trap will be almost free-particle like. This is in contrast
with the fact that a free particle has ballistic motion~infinite
diffusion coefficient! while a trapped electron can diffuse
only by infrequent hopping from one trap to another. This
observation suggests that another contribution to the ob-
served deviation between calculated and experimental drift
mobilities may come from the failure of the numerical ana-
lytical continuation method to discriminate between a local-
ized electron in a large trap and a ‘‘quasi-free’’ extended
electron. The absorption spectrum of a localized electron in a
large trap is expected to have a peak at very low frequencies
whose intensity falls rapidly to zero at zero frequency. Thus,
given that the maximum entropy inversion of Eq.~8! has a
finite frequency resolution dictated by the precision of the
imaginary-time data, a very intense peak at a frequency
smaller than the attainable frequency resolution, would be
virtually indistinguishable from an absorption at zero fre-
quency. This would result in an overestimation of the mobil-
ity of the quasilocalized electron.

To analyze this phenomenon further, we have performed
PIMC simulations of an electron in a large isobaric fluctuat-
ing spherical cavity, as defined in Ref. 14. In this localized
system the electron has zero drift mobility for any cavity
size, even though the electron would look almost like a free
particle if studied in imaginary time. The analytical solution
of this system and its PIMC simulation have been presented
in Ref. 14 and will not be repeated here. Notice, however,
that for spherical cavities of the size examined here, the ana-
lytical derivation presented in Ref. 14 must be generalized
by dropping the assumption of ground state dominance. We
have studied the model at the two new smaller external pres-
sures:P15531028 a.u. andP25131028 a.u. The other pa-
rameters of the model are the same as those used in Ref. 14:
b51000 a.u.,p5Trotter number51000. The De Broglie
wavelength of the electron at this temperature is approxi-
matelyl516 Å to be compared with the average cavity di-
ameters of about 30 and 40 Å for the two external pressures
examined. In Fig. 16 we show the calculated and exact ab-
sorption spectra and the corresponding real-time displace-
ment correlation functions for the two pressures examined.
Notice that most of the absorption intensity of both spectra
lies belowb\v55. This is similar to what we find for an
electron in xenon and low-density helium. In comparison,
the absorption spectrum of an electron self-trapped in water
or high-density helium has a peakb\v an order of magni-
tude larger. The maximum entropy reconstructed spectrum
for the particle in the spherical cavity at the larger pressure is
still fairly accurate: the zero frequency absorption and, cor-
respondingly, the estimated drift mobility is essentially zero,
and the reconstructed real-time displacement correlation
function agrees extremely well with the exact one. At the
smaller pressure, however, we notice that the reconstructed
spectrum has a wider absorption band that does not decay to
zero at zero frequency. Consequently, the real-time displace-
ment correlation function grows linearly with time, in con-
trast with the exact one that goes flat after a short transient
time. Notice that beyond a certain time the calculated error

FIG. 15. The calculated mobilities of an excess electron in supercritical
xenon at four reduced solvent densities compared with the available experi-
mental measurements along the liquid–gas coexistence curve.
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bars on the maximum entropy reconstructed correlation func-
tion for the lower-pressure case do not include the exact
values, this seems to suggest that the analytic continuation in
this case is also very sensitive to systematic errors present in
the imaginary-time data.

We conclude, therefore, that, although the calculated ab-
sorption spectra at finite frequencies and the real-time corre-
lation functions at short times can be still be considered
quantitatively accurate, the maximum entropy analytic con-
tinuation method is inaccurate in predicting the mobility of a
solvated electron trapped, as in xenon near the critical point,
in a region of size larger than its De Broglie wavelength.

The issue does not seem to arise in low-density helium,
as we found good agreement with the RISM-polaron
results54 for the associated hard sphere model. One reason
for this is that the simulations of this system were conducted
along the 309 K supercritical isotherm, where critical behav-
ior is not expected to be observed. In this case, thus, we
conclude that a sudden drop of absorption intensity at very
low frequencies does not occur and the mobility grows as the
electron becomes more extended. It is for this reason that in
this system the maximum entropy analytic continuation
method is able to successfully predict the electron drift mo-
bility.

VIII. CONCLUSIONS

In this paper we have applied the maximum entropy ana-
lytic continuation method to the study of dynamical proper-

ties of the excess electron in several solvents and in different
thermodynamic conditions. Comparing the results of this
work with other computational45 and analytical54 calcula-
tions and with the experiments57,46 enabled us to test the
performance of the method.

The method is very reliable in cases where the electron
is localized in a bubble~like in water and supercritical he-
lium at moderate density! in reproducing the absorption
spectrum and the real-time position and velocity autocorre-
lation functions up to times unattainable by most other
means. In these cases, however, it is not possible to give an
estimate of the values of the mobilities or, equivalently, the
diffusion coefficients because they are too small in the static
solvent limit. The method can be considered reliable in esti-
mating transport coefficients for extended electrons in low-
density helium, where the delocalization is caused by the
decrease of the volume excluded to the electron by the sol-
vent.

The method is probably unreliable in reproducing the
mobility of excess electrons of polarizable rare gases in the
region of the critical point. The source of the problem seems
to originate from the combination of finite-size effects in the
PIMC simulation that generates the imaginary-time data and
from the inability of the analytic continuation method to dis-
criminate between close lying resonance frequencies in the
low-frequency region of the absorption spectrum. We be-
lieve, however, that even in this case the method provides a
good quantitative estimate of the absorption spectra at higher
frequencies and of the corresponding real-time correlation
functions at short times.

In a future publication we will address the effects of
nonadiabatic transitions on the dynamics of electron solva-
tion by treating the solvent coordinates as fully quantal de-
grees of freedom.
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