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The maximum entropy analytic continuation method, to determine the dynamical properties of a
solvated electron from equilibrium path integral Monte Carlo data, is applied to the calculation
of the optical absorption spectra, real time correlation functions, and transport coefficients of
an excess electron in water, supercritical helium, and supercritical xenon. Comparisons with
experiments and with analytical theories are presented.19@6 American Institute of Physics.
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I. INTRODUCTION the absorption spectrum. In their present form, besides, these

In many condensed phases, ranging from ionic liquids tdnethods cannot go beyond the classical treatment of the sol-

polar and nonpolar molecular liquids, and under a broad€"t degfees of freedom. . )

range of thermodynamic conditions it is possible to observe a A different approach to this problem is based on the
stable low-energy electron in thermal equilibrium with the B&ym and Mermin theorefithat shows that real-time quan-
surrounding solvent. Such excess electrons can be introducdd correlation functions are analytical continuations of
into a liquid either by photoionization or by injection by a Imaginary t_|me correlation fungtlong to th_e real-time axis
low-energy electron beam. Once thermalized, the excesdVick rotations. Although the imaginary time correlation
electron can be in a localized or extended state and oftefynctions are readily available from PIMC calculations, even

behaves differently than the valence electrons of the solver{P" fairly complex systems, in practice, the numerical ana-
molecules. Iytic continuation operation has to be carried out with great

Excess electrons can be monitored by a number of dif¢are because it is known to be very unstable and capable of

ferent techniques most of which, such as optical absorptiorEnormously amplifying the unavoidable statistical errors of
photoelectric spectroscopy, and photoconductivity, probe théhe imaginary-time correlation function. In recent years,
dynamics of thermalized solvated electrdriEhese quanti- Nhowever, maximum entropy image enhancement techrfiques
ties, however, are also the most difficult to determine fromhave been successfully applied to solve a variety of ill-
realistic many-body theoretical models and, consequentlygonditioned problents®and, in particular, to effect a stable
several of the experimental findings cannot be used to quarfumerical analytical continuation of imaginary-time correla-
titatively test and improve our present theoretical underdion functions of several systems.® We have recently
standing of the phenomenon of electron solvation. tested this methodology on a simple, exactly solvable, model
Path integral Monte Carl¢PIMC) methodd have been system related to the self-trapped electron in a fluid and we
extensively used to determine the equilibrium structure andlave applied it to the calculation of the optical absorption
solvation energies of excess electrons in various fluidsspectrum of an excess electron in supercritical hefitim.
These methods allow accurate numerical determination of One of the strengths of this method is that, for its imple-
equilibrium properties and time correlation functions as amentation, no approximations are required. In particular, the
function of imaginary time. Although important in elucidat- method allows the study of electron dynamics in quantum
ing some of the properties of the excess electron, these ngolvents, thereby including nonadiabatic effects, and, thus,
merical studies have not given accurate information abou@llowing simulations to go beyond the mixed quantum-
dynamical properties like the electron conductivity, the opti-classical ensembles.
cal absorption coefficient, and the behavior of real-time cor-  In this paper we apply the maximum entropy analytic
relation functions. Besides, the direct real-time Monte Carlocontinuation method to the study of the adiabatic dynamics
simulation of these quantum dynamical quantities is not feaof an excess electron in various solvents. The methodology
sible because of the phase cancellation problem. used in the previous stulfyhas been extended to include
There has been considerable progress in simulating theecent developments in the maximum entropy algorifhihs
dynamics of solvated electron systems by quantum molectand we also present a scheme for the determination of the
lar dynamics(QMD), both for the adiabatfcand nonadia- real-time correlation function and transport coefficients omit-
batic regime’® however, such methods may be impracticalted in the previous work that was focused mainly on the
for the determination of equilibrium dynamical properties calculation of the optical absorption spectra.
derived from time correlation functions because they require  In the next section we derive an analytic continuation
averaging over a large number of trajectories and they do naicheme for the displacement correlation function
efficiently sample high-energy states, giving rise to the tail of|r(t) —r(t")|? by means of an integral equation that relates
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the imaginary-time displacement correlation function to the - 2

optical absorption cross section. In Sec. Il we outline the R%(t)z(T(|r(t)—r(0)|2))=; [C(0)—-C(1)], ()
maximum entropy method and its application to the numeri- ~

cal solution of the integral equation derived in Sec. Il. InwhereT is the time-ordering operator, one finds

Sec. IV we review the PIMC method used to obtain the

equilibrium quantities and the imaginary-time correlation esz(t):f
. . . . . T

function needed as input to the analytic continuation scheme.

In Sec. V we apply the proposed method to estimate the

optical absorption cross section, the real-time displacemerﬁI

correlation function, and the real-time velocity autocorrela—l( i )

tion function of an excess electron in liquid water at different(3: EQ- (6) can be written in the form

thermodynamic conditions; we compare the calculated aby 2,2 o

sorption spectra in water to the available experimental find 7 R%(t)zf do o(w)

ings and we find good agreement. In Sec. VI we calculate the 0

absorption spectra, real-time displacement correlation func-

tions, and diffusion constants of an excess electron in super- i

critical helium at medium and low densities, we compare our  sinh(Bfiw/2)

calculations with analytical results for the associated hard (7)

sphere model and we find reasonable agreement. In Sec. VII . ) o )

we investigate the possibility, using the proposed method, to A time-ordered correlation function is an analytic func-

reproduce the experimental conductivity data of excess eledlon in the complex plane; thus, it can be expressed in Eu-

trons in xenon; we find only qualitative agreement with theclidean t|r7ne7- by performing the substitution— —i 7, where

experiments, we propose an explanation for the observed d8=7=#." Applying this to Eq.(7), we obtain

viations, and we discuss the implications for future applica- 4m2e?

+ oo

dw .
—|(w)(1—e_'“’t). (6)
T

— oo

nally, introducing the detailed balance relation
—w)=e #"*|(w) and the absorption cross section in Eq.

coshi Bhw/2)—cosh Bhw(5—it/Bh)]
X .

tions of the method. In Sec. VIl we finally present some 5 R%(—ir)=J’ do o(w)K(w,7), (©)]
concluding remarks. ¢ 0

where
Il. OPTICAL ABSORPTION AND REAL-TIME cosh Bhw/2) — cosh Bhw(3— 7/ Bh)]
DYNAMICS K(w,7)= 9

o Sinh(Bfw/2)

The dipole time autocorrelation function of a system

. o . Equation (8) is an integral equation that relates the
with HamiltonianH at the inverse temperatug=1/kgT (kg d ® g d

. Euclidean-time displacement correlation function and the ab-
is the Boltzmann constanis sorption cross sectiong(w), through the kernel function
Tr(e AHeH/t y.e M) K(w,7) defined in Eq(9).
C(t)=(m(t)-pu(0)) = Tr(e P Y In the following we will omit the time-ordering subscript
T when it refers to the Euclidean-time correlation function

where u is the dipole operator of the system. The dipoIeRg(_iT) with the convention that the imaginary-time pa-
spectral density functioh(w) is defined as the Fourier trans- rameterr is real and positive.

—itH/A

form of C(t), namely The numerical calculation of the imaginary-time dis-
+oo , placement correlation functioR?(—i7) is feasible, even for
|(w)=f dt e“'C(1), (2)  fairly complicated systems while the calculation of the cor-
o responding real-time function is often infeasible because of
and the absorption cross section, the phase cancellation probléetthus, in principle, the inver-
. sion of the integral equatiofB) provides a method for ob-
o(w)= T w(1-—e ) (w), (3)  taining dynamical information, like the absorption spectrum,

inaccessible by other means. It should be noted, however,
describes the absorption of a monochromatic radiation othat the numerical inversion of E@8) is a very unstable

frequencyw due to the interaction with the dipole of the operation—the systematic and the unavoidable statistical er-
systemt® rors on the imaginary-time displacement correlation function

The dipole moment of the solvated electronuis —|e|r, R?(—ir) are enormously amplified in the absorption spec-
wheree is the electron charge amdhe electron position, so trum o(w)—and therefore the inversion must be performed
that very carefully. The numerical inversion method we have

chosen to use is described in Sec. lIl.

C(t)=eXr(t)-r(0)). ) It should be noted that the kernel functi&iw,7) in Eq.
Inverting Eq.(2), expressing the dipole autocorrelation func- (9) is proportional to the imaginary-time displacement corre-
tion in terms of the time-ordered displacement correlatiorlation function of a harmonic oscillator of frequenayand
function fort=0, massm
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3h
Mo Sinh BAw/2)

phe)

RZ( —i 7-)h.O.: 2

-

odpdi- 3]

Thus, Eq.(8) states thatR?(—i7) can be expressed as a

linear superposition of harmonic components. In this inter-
pretation, therefore, the differential absorption intensity
dw o(w) measures the contribution of the harmonic compo-
nent of frequency to the total imaginary-time displacement

correlation function. By the inverse argument, therefore, the
solution of Eq.(8) for a harmonic oscillator of frequenay,
must be, as expected, proportional t& &unction atwy. It
can be also noted that the singularitykfw,7) at =0 can
be easily removed by observing that

T(Bh—17)
pgh '

(10

lim K(7,w)= (11

w—0

which is proportional to the imaginary-time displacement

correlation function of a free particle, i.e., of a harmonic
oscillator of infinitely small frequency.
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and Eqgs(4), (5), and(7), obtaining

8m2e?
hc

(v(t)-v)y= J?dw wo(w)

coshi Bhiw(3—it/Bh)]

sinh( B w/2) (7
The diffusion coefficienD of the electron is defined Hs
D=1 R 18
_tﬂw 6t ( )
N
=lim —f dt e SYv(t)-v). (19
s—0 3 0

By substituting either Eq(7) or Eq.(17) and using the fact
that'®

1 1-coswt 1
im ———=—1Iim
t—w ot T s—0

=d6(w), (20

s(1+ w?/s?)

it can be shown that the diffusion coefficient is proportional
to the zero-frequency absorption, namely

The first and second derivatives of the imaginary-time

displacement correlation functiofé(—i7) at ==0" can be
related, respectively, to the initial values of the velocity—
position and velocity—velocity correlation functions

dR?(—i7) . 1
dr T:o+_ |<V'r> ( )
and
d’R%(—i7)| L 3
dTZ T=o+_ <V'V>. (

By differentiating Eq.(8) with respect tor and using the
relations above, we have

hc o
a7 |, do o(w)=2i{v-r) (14
and
hc °°d wo(w) (]2
4% fo ? tanh Bhwl2) (o], (15

B fic o(0) . C
T 4w 6e’Bh  24me?p

(0). (21)

lll. THE MAXIMUM ENTROPY INVERSION METHOD

In order to perform the analytical continuation of the
imaginary-time displacement correlation function, the nu-
merical solution of the integral equatid8) is required. The
inversion of this integral equation is like the inversion of a
Laplace transform because it basically involves the problem
of resolving a noisy signal that is composed of a sum of
exponential decays: a well-known ill-conditioned problem.
As a consequencd&?(—ir) is rather insensitive to the de-
tails of o(w) so that it is always possible to adjust amplitudes
and frequencies to obtain virtually perfect fits to the calcu-
lated data, but often these amplitudes and frequencies are far
from being unique. The severity of this problem means that
the noisy datasets contain limited amounts of information
about the spectrum. It is necessary, therefore, to incorporate
prior knowledge to limit the range of possible solutions.

A variety of numerical inversion methods based on this

which are two sum rules for the absorption cross sectioPrinciple are availablé?~**In these methods the least-square

o(w).

deviation of the fit is minimized subject to a number of con-

Once the absorption cross section is known by invertingstraints that contain information about such known properties

Eq. (8), the analytic continuation dR2(t) from the negative

of the spectrum as positivity and sum rules or assumptions

imaginary axis to the positive real-time axis can be com-about smoothness. Each constraint is then associated with an

pleted by performing the integration in E@). The real-time
displacement correlation functioR?(t)=(|r(t)—r(0)]%) is
equal to the real part oR2(t). Other real-time correlation
functions can be extracted from{w), for instance the veloc-
ity autocorrelation function fot=0 can be calculated using
the relation

2

d
(v(t)-v>=—w<r(t)-r), t=0, (16

undetermined Lagrange multiplier. Such methods are all
implementations of the basic concept dflaximum
Likelihood®* The maximum entropy methoMEM)?>26 is
based on the complementary concephaiximum Entropy*
The maximum entropy method approaches the problem of
data analysis from information and probability theory and is
based on well-established mathematical axioms. While the
maximum likelihood method approach selects the spectrum
that has the largest probability of reproducing the data, the
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maximum entropy method, instead, selects the positive spec- g%(Ala,m)oce“% (24)

trum to which is associated the largest number of ways of h , bi . is th
reproducing the data, i.e., the one that maximizes thd/NEréa is an arbitrary positive parametes,is the entropy

information-theory definition of the entropy of the spectrumfunCtion’
subject to the given constraints. N A.
The inversion problem is reduced by the maximum en- S=Z Aj—mj—A; In # , (25

tropy method to finding the maximum of the entropy given a =1 ]

constraint on the value of the least-square deviation from theshere
data. In this paper the resulting Lagrange multiplier is se-

lected according to the classic maximum entfoPyscheme Ar=Alwr)(02~ w112,

in which the Lagrange multiplier is determined self- A=A(w) (01— wi_)I2, i=2,...N—1, (26)
consistently, and therefore the method has no adjustable pa-

rameters. The most important feature of the maximum en- An=A(oy)(oy—on-1)/2,

tropy approach is the fact that, since the solution has thg,q the integrated values of the map in each grid spacing
minimum information content, any structure present in theaccording to a trapezoidal rule of integration andres are
spectrum must be due to the data. Another useful feature Cﬁositive parameters derived in analogy with EB6) from
the method is that it allows the introduction of prior known the so-calleddefault map m(w). The unconstrained maxi-
information about the solution through a default spectrum,um of the entropy occurs @ =m; for which S=0. The
!_ast, Fhelsmethod is able to estimate the reliability of theyafqauit mapm(w) is chosen to be consistent with any prior
inversion. o _ . information about the map that is available, we will illustrate

The following is a brief account of the maximum en- i role in the analytic continuation problem later in this sec-
tropy method in its application to the analytic continuationyion The form(25) for the entropy has been shown to be the
method; for a more detailed description the reader is referreg, st general form consistent with the axioms of the MEM
to existing publication’ formalism?®

The maximum entropy inversion method is applicable to - oy we turn to the problem of defining the likelihood
the general problem of evaluating a set of unknowns from Brobability distribution(D|A). In the variablesh; that de-

dataset, knowing only the rule that generates the data frofne aN-dimensional map space and the frequency discreti-
the unknowns. The inverse operation is never invoked and i 5+ion given above, Eq22) assumes the form

can be assumed unavailable. We will focus on the numerical
solution of the integral equation, D=KA, (27)

where A and D are vectors with component; and D;,
D(T):f do K(7,0)A(w), (22) respectively, and the kernel matriX, defined as

Kij=K(7,0;), is a linear transformation from the
N-dimensional map space to tihé-dimensional data space.
From a mapA we can, therefore, predict what the détaA);
should be and get the residuals from the actual data given. If
we exclude the possibility of systematic error, the residuals
are due to statistical noise in the data,; if we then suppose the
errors have Gaussian distributions described by standard de-
viations o;, we have

whereD (7) represents the calculated or measured data)

is a positive unknown function called timneap andK(r,w) is

a regular kernel function. In practicB,(7) is known only on

a discrete set of point®;=D(7;), i=1,... M. To everyD;

is also assigned an uncertainty. Analogously, we look for

the values ofA(w) on the set of pointsy;, j=1,... N and we

carry out the integration in the finite interval,,<w<wmyay,

implicitly assumingA(w)=0 outside this interval. We also M [D,—(KA)]? — 2

assume for the moment that the data are uncorrelated, i.e., AD|A)x]] exp{ - '—2'] Eexp(— .

that theD;’s can be considered independent variables. Later =1 2 2

we will drop this assumption. (28)
The maximum entropy method assigns to the M#&p)  Combining Eqs(25) and(28) we see that thposteriorprob-

a probability distribution that is dependent on the data availability whose maximum is the Maximum Entropy solution to

able, and defines the solutidk(w) of Eq. (22) as the most the integral equatiof22) is

probable map. Le?(A|D) be the probability of the mag

g’ _ 2
given the datdD. By Bayes theorem A(AD)=explaS—x"/2), (29
- so that we are left with the problem of maximizing the func-
AA|D)=AA)ADIA); (23)  tion of N variables
whereZ(A) is the so-callegrior probability forA, i.e., the Q(A)=aS(A)— x?*(A)/2. (30

probability distribution we assign t& before acquiring the

data, and(D|A) is thelikelihood probability, i.e., the prop- - Selection of the Lagrange multiplier

ability of obtaining the datdD by the transformatio22) The arbitrary parameteat in Eq. (24) is interpreted as
with the given mapA. the inverse Lagrange multiplier in the constrained maximi-
The prior distribution for the map is taken to be zation of S with a fixed value ofy. If « is large, the maxi-
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mum of Q(A) is dominated by the entropy function, i.e., by . \i

the prior information available. Thus, the MEM solution —2aS(A;)=2 Fr

A(w) of the integral equation(22) would deviate only tY !

slightly from the default map. If, instead, is small,A(w) is XZ(A&) \i (34)
determined only by thg? function, and it would then repre- ¥ +§i: mI ,

sent very well, in ay? deviation sense, the data. It would
also, however, represent any random error present in thehere the); are the eigenvalues of the matri82). This
data. ThusA(w) would be too sensitive to errors in the data, procedure, called error rescalifig:is important to perform
would suffer high oscillations, and it would have little re- correctly the maximum entropy inversion and to assess the
semblance to the true solution of the integral equation. In thejuality of the data. In the applications presented in this work
old form of the maximum entropy method, historic maxi- we found 1.Ky<1.6.

mum entropy, it is a common practice to geso that, at the

maximum ofQ(A), x¥*’=M =the number of observations. In

the most recent form, classic maximum entropy, the best- Selection of the default map

value fora is also derived from Bayesean logic, estimating  often, the prior information on the map is available in

a given the data and the model map. This is achieveghypressed as

by integrating outA, in a steepest descent approximation,
from the expression of the compound probability B=> b.m -1, N 35
AA, a|D,m)=AD|A)AA|a,m)Aa) and finding the d ; akMis 4= L. e 39

maximume of the logarithm of the resulting distribution, r B_q are the known numerical values of the sum rules and

. 1 a R 0B, the correspondent uncertainties, we can apply the maxi-
In A «|D,m)=const- > > I o TQ(AL mum entropy formalism to obtain the unique default map
' ! m(w) that satisfies the sum rul€85) within specified error
+In Aa), (31)  level. They? deviation to be used is
whereA , is the maximum ofQ(A) for the given value ofy, - %% (Bq—Bg)? 36
Aa) is the prior probability assigned to the Lagrange mul- X = 533 (36)

tiplier a (usually taken to be proportional todl/in some . . ]
finite interval®), and\; is theith eigenvalue of the matrix ~ 1hiS procedure would seem to require that we specify a de-
fault map form(w). To avoid this we use a normalized form

P (x%12) of the entro
I'ij= \/X \/—J by

e (32
| IR OA . fd mo) mo) s B
- o In—=ramihgs @7

evaluated aAzAa. The maximum of Eq(31) is approxi-

mately given by the equality where.Z=[dom(w)=2;m; andp;=m;/=;m; .

. \i Often Ng is a small numberin the applications pre-
—2aS(A;) =2, o (33 sented here we identified two or three useful sum judes,
' ! for such small dataset, the classic maximum entropy method
The results shown above and the ones to follow haveannot be used because the best value for the Lagrange mul-
been obtained assuming, as has been suggested by Skillingjplier @ would be poorly defined. We used instead the his-
that the metric¥” of the map space is the one for which the toric maximum entropy selection criterion wheredys cho-
curvature of the entropy is a constant, i;; = &;/VA/A;,  sen to achieve the conditioff=Ng . We observed that the
called theentropic metric In this metric a differential vol- default maps derived in this way are nearly independent on
ume isZA = II; dA //A;, the components of a gradient are the particular value ofr selected as long as it is reasonably
multiplied by VA, and the elements of a matrix of second chosen.
derivatives are multiplied by/A;A;.

D. Estimation of integrals of the map

The width of posterior probability at its maximum, quan-
o ~ tified by the Hessian matri®’Q/JA oA for the mapA, pro-

Often the uncertainties; of the data are harder to esti- yides information on the uncertainty associated with the
mate than the data itself. Since the parametedepends maximum entropy inversion. We are often interested in

indirectly ona; through the eigenvalues of the curvature ma-quantities that are related to integralsAfw). Such quanti-
trix of x?, it is useful to introduce an additional paramefer ties can be expressed in the form

that multiplies eacho; and then estimate its best valge
using similar techniques used to estimateThe result is two B=> bA=b-A (38)
simultaneous equations for thé&,() pair T ’

B. Error rescaling
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and we seek an estimate of the uncertaidB associated The default map has been derived, following the proce-
with B. This is more easily accomplished by diagonalizingdure presented above, using the sum rgle8, (15), and

the Hessian with an orthogonal transformatiGnand ex-
pressingb in this new basis. Ify; is thei-th eigenvalue of 47262 —igh o coshi Bhw/2)—1
#QlaA oA andb; the correspondent transformed component Z RZ( ZB ):f do o w)f(_ﬂ—wﬁ)/Z.
of b, the uncertaintysB is given by?® ¢ w Sinh( BA w/2)

1\2
oB2=> (b7) ) (39)  The numerical calculation of the quantitiésr) and(v-v)
[ ai involved in the sum rule$14) and (15) is described in the
From Eq.(39) is clear that ifb has a large component along Next section.
a direction poorly constrained by the data, the uncertainty of ~Our maximization algorithm maximizes, in the entropic
B will be large. On the other hand, if has a large compo- Metric, the functionQ(A) (30) with fixed « using the
nent along a direction that is highly constrained, this analysidééwton—Raphson method, starting with the initial guess
shows that even relatively low-quality data can accurately® =M at the maximum of the entropy functid@5) with a
generate a particular integrated value of the map. In generd@rge value ofa. The inverse Lagrange multipliex and,
such error analysis provides an invaluable tool to quantifyeventually, the error rescaling paramefeare then progres-
the accuracy of a map inversion and the quantities derivedively varied until the self-consistent equatid@d) are sat-

(42

from it. isfied. At every iteration convergence is checked by measur-
ing the normalized norm of the difference between the
E. Implementation details gradient of the entropy and the gradient of ffefunction™®

. ) ~_ calculated in the entropic metric
The numerical problem of the constrained maximization

of the entropyS has been solved even for very lare(a

il i ici la VS=V(x*12y%)|?
million or more points on the mapby very efficient _ _
algorithmé® that have been applied successfully to the MEM la VS|*+[V (x*12y%)|?
reconstruction of two-dimensiondR-D) and 3-D images

with a large number of pixels. The present application is fafFor the maximum entropy reconstructed spectra presented
less demanding in terms of the dimensionality of the magy, this paper,<1x10~%) Quantities related to integrals of

space because a good representation of the spectral functigie map can then be estimated from E88) and their un-
is described, at most, by a few hundred points. We are ablggrtainties can be calculated by Eg9).

therefore, to use a safe but memory intensive Newton—

Raphson based maximization procedtitsloreover, the lin-

earity of the relation(27) between the map and the data

ensures uniqueness of the maximum entropy solution. IV. PIMC CALCULATION OF THE IMAGINARY-TIME
In the maximum entropy inversion of the integral DATA

equanzonz (®) 5 from  PIMC data, we have D, The thermodynamic properties of a quantum particle of
=(4m°e’/hc)R*(—im) and massm interacting with a classical solvent can be investigate
cosh Bh w;/2) — cosh Bhw;(1/2— 7;1 Bh)] numerically_ using the path integral _Monte C_arlo method

ij= o, SN Bl /2) , (40 (PIMC). This approach exploits the isomorphism between

) : this mixed quantum-classical system and the one in which

derived from the discretization of the integral equati6n the quantum particle is replaced by a classical polymer con-

As explained in Sec. IV, the dafa; cannot be consid- sjsting of a large enough numbgrof beads interacting with

ered statistically independent. Th& measure needed by the their nearest neighbors through harmonic bonds and with the
Maximum Entropy inversion algorithm in the case of corre-solvent molecules through the interaction potential attenu-

(43

lated data i¥’ ated by a factor of /.33
7 Notice that the real-time correlation functions obtained
X2=2 [Di—(KA) (2™ H;[D;— (KA);], (41) by analytic continuation of imaginary-time correlation func-
]

tions calculated in the classical limit for the solvent degrees
where” is the cross-correlation matrix of the fluctuations of of freedom describe the dynamics of the electron in an infi-
the data. For the application presented in this papels  nite static disordered lattice of solvent molecules. This is
defined in Eq(52). We also note that, if the positive definite appropriate as long as there is a separation of time scales
correlation matrixz” is properly diagonalized by an orthogo- between the electronic and solvent motions. The static ap-
nal matrix 7, the maximum entropy inversion of E@8) proximation is computationally convenient but not necessary
can be carried out, starting from the uncorrelated transand, by treating the solvent degrees of freedom quantum me-
formed data seb’ =7/'D and the transformed linear relation chanically in the path integral formalism, it is possible to
from map space to data spacé=7/'"K. Theo;'sin Eq.(28)  simulate phonon assisted dynamics.
are, then, interpreted as the eigenvalues of the correlation The canonical average of a propefyr,RM) of an ex-
matrix Z". cess electron in a classical solvent is, therefore,
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1 Bmw;‘; 3p/2 " this application a significant amount of cross correlation is
(0)= 0.8 | 2m f dRM e A*(RT) expected. This is best seen by the normalized cross-
P correlation matrix of the fluctuationsg;=;— R?(—i 7j)
1
XJ'drl.”drpBEi: O(I’i,RM) ;”2 <5Q| 59]) _ (O/” (51)
, T Weeh)(seh) NT7y
Mo, V(ri ,RM)
X expl — B[ >, T(ri_r”l)ZJrT , where
I
Zij=(dei 6¢j)/(L—-1), (52)

(44)

wherer; are the coordinates of the electron beads B
describes th&/-degrees of freedom configuration of the sol-
vent. The canonical partition function is

0; is defined in Eq(49), andL is the number of samples.
The configuration space of the solvent—electron system

is sampled using the Monte Carlo method. In every Monte

Carlo pass the internal, rotational, and translational degrees

Bma)| P M of freedom of each solvent molecule are sampled accord-
p) deM e AR >J' dry---dr,

Qp(ﬂ):

2 ing to the Metropolis algorithm and the configuration
) of the electron ring is sampled, applying the staging
Mw method®?’ to a large enough number of segments of the
xexpl —B| >

Tp (ri=ri1)? ring in order to cover all its length. After equilibration, all
the properties of interest have been accumulated for a num-
ber of Monte Carlo passes large enough to ensure conver-

' (45 gence. In particular, the quantitigs in Eq. (49) have been
considered forj=1,...j.x and block averagéfl using

where L= 2] ma blocks. For every block the average gfin that

D block, p{, is stored, this quantity is used to calculate the

(,BT)Z’ (46) cross-correlation matrix” in Eq. (52). The eigenvector and
eigenvalues ofZ” can be calculated performing a singular

®(RM) is the interaction potential between solvent mol-value decomposition of thé X .., matrix with elements

ecules, and/(r,R) is the interaction potential between sol- {[p{” — R?( — ir;)]/yL—1}, avoiding, thus, the calculation

vent molecules and the electrén. of #”and its, often unstable, spectral analysis.

As we have seen, a useful correlation function is the
mean-square displacement between pairs of points of the
chain separated by the imaginary time incremeht V. THE HYDRATED ELECTRON

2 H —_ P H ’ 2
R =(r=ir =i+ ), @7 An excess electron in water has been simulated using the
which is independent on the position of the first point corre-path integral Monte Carlo method at three different tempera-
sponding to the imaginary time. TheR*(—i) correlation  tyres under atmospheric pressur@=298 K, p=0.997
function is usually evaluated at the points=7%gj/p, glcnt), (T=340 K, p=0.980 g/cm), and (T=373 K,

V(ri !RM)>
+
p

2__
(,()p—

j=0,...p/2, by the PIMC averages, p=0.958 g/cm). The potential of interaction between two
RZ(—iTj)=<pj>, (49) Wgter molecules is take_n to be a central force potentia_l ob-
tained as a sum of pair potentials between the constituent
where the estimatog; is atoms3®~* The internal vibrations of the water molecule are
1P modeled by a set of Morse potenti4fs*
0j== E |rk_rk+j|21 j=1,...pl2. (49) The pseudopotential descnbmg the mtergctlon betyveen a
P k= water molecule and the electron is an effective potential that

reproduces gas phase scattering data over a wide range of
impact energies and it is composed of an electrostatic, ex-
change, and many-body polarization contributith®’
The potential model described above has been used by
Wallgvist et al*° to calculate the absorption spectrum in the
i P static limit of the hydrated electron by averaging, over sev-
(vr)= /% < Z (rk+1_rk)'rk> . (50 eral solvent configurations, the dipole transition moments be-
k=1 tween energy eigenfunctions of the electron calculated on a
The mean kinetic energy of the electron, directly related tahree-dimensional grid. The position of the resulting calcu-
the second sum rulkeq. (15)], is calculated using either the lated absorption band was in agreement with the
virial or the primitive estimato?® experiment$® although it failed to reproduce the high-
The values of theR?(—i7) correlation function at dif- frequency tail found experimentally. Another potential
ferent values of-are not statistically independent; instead, inmodef’ has been shown to reproduce the shape of the ab-

As noted in the previous sections Ed4) is important to
estimate the quantityv-r), which is related to the first de-
rivative of R?(—i7) at ==0" (and to the total absorption
cross section We have used the estimator
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FIG. 1. The imaginary-time displacement correlation functi—i) of FIG. 2. The calculated absorption spectrum of the hydrated electron at three

hydrated electron at three different temperatures. Error bars are shown evefifferent temperatures.
ten calculated points.

x is an equally spaced grid of 250 points in the intefal],

sorption band, but not its position. The present calculatiora=4, w,;;=0.005 a.u., an@d,,,=1 a.u.
should ascertain whether the potential model proposed by The error rescaling parametghas been estimated to lie
Wallgvist et al.is capable of reproducing the high-frequencyin the 1.1-1.3 range.
tail by using the computational scheme described in the pre- In Fig. 3 we show the comparison between the absorp-
vious sections. tion spectrum of Fig. 2 at 298 K with the the spectrum cal-

In our simulation there are 216 water molecules in aculated by Wallgvistet al. at 300 K#° The agreement is
cubic box with periodic boundary conditions and of size de-extremely good given the complexity of the model. The no-
termined by the chosen liquid density. All interactions aboveticeable difference is the high-frequency tail present in the
8 A have been ignored, implementing a spherical hard cutofpresent calculation and the experiment but almost absent in
scheme. To calculate the contribution to the many-body pothe spectra calculated by Wallgvist al.
larization energy of an electron bead, only those solvent mol-
ecules inside a sphere of radius 5.5 A centered around it have
been considered. Given the numerical complexity associated
with evaluating the gradients of the many-body polarization .

. . . — T =298 K (This work)
potential, the kinetic energy of the electron has been calcu- = A — T =300 K (Wallquist et al)
lated using the primitive estimatdt:*84°

The Trotter number for the electron =900 The
R%(—ir) correlation functions have been calculated calcu-
lated for O<7<<Bh/4 (in the region above this point the cor-
relation function is practically constant and can be ignored
without loss of informationby block averaging the estima- ©
tor ; in EQ. (49 for j=1,... p/4. The number of blocks,
composed of 44 sequential samplingsopf was taken to be S
L=900. Thus, about 40 000 Monte Carlo passes were, typi-
cally, necessary to ensure proper convergence of the aver- 3 A
ages.

14

1.2

1.0

08

0,

The imaginary-time displacement correlation func- 3 1
tions are shown in Fig. 1 for the three temperatures studied.
The corresponding absorption spectra have been calcula- 8 -
ted by inverting Eq.(8) using the maximum entropy 10 15 20 23 30 35
method described in Sec. lll and are shown in Fig. 2. V)

The frequency grld used in the maximum entropy numerlcaIZIG. 3. The calculated spectrum Bt&298 K of Fig. 2 compared with the

inversion has been generated by the eXpressiOQbsorption spectrum calculated by Wallguistal. (Ref. 45. In this figure
o(X) = (0max— Pmin€Xp@x) —1)/[exp@) — 1]+ wmin,» Where  the spectra are normalized by total absorption intensity.
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FIG. 5. The real-time displacement correlation functid®&t) of a hy-
FIG. 4. (a) The calculated spectra of Fig. 2 compared wWhihthe available  drated electron at three different temperatures. Error bars are shown only for
experimental absorption spectra. In this figures the spectra are normalizédie T=340 K curve.
by the maximum absorption intensity.

process investigated in a number of classical and semiclassi-

cal studie$:®° For fluids with very low electron mobility, the

In Fig. 4 the maximum e”tTOPY'eS“mate‘? spectra alfyotion of the solvent molecules provides the primary
shown, compared with the experimental spettiia, this fig- mechanism for the diffusion of the electron

ure all the spectra are normalized by the maximum. AS can e yelocity correlation functions undergo several sign

be noticed, the agreement with the experiments is good. Th&,anges before decaying to zero. Thus, it can be concluded
position of the spectrum and its shape is well reproduced, byf, 5 the electron is rattiing in a cage of water molecules with
its width seems to be systematically smaller than the experpich the electron “collides” periodically, reversing its ve-
ments. The change in width with temperature is also in the, iy, The initial value of the velocity correlation function is
opposite direction relative to the experiments. We notlceqhe mean square velocity, a measure of the average kinetic

that the width of the absorption band decreased if pooref,qorov of the electron. The values obtained are consistent
guality data were used, i.e. data taken from a shorter Monte

Carlo simulation. Even though we see a convergence in the
shape of the band with increasing simulation length, it is
possible that the rate of such convergence is very slow and a
very large number of block averages is needed to obtain an 3 e T=340K
accurate bandwidth. It is also possible, and more likely, how-
ever, that such features are a consequence of the choice o
the pseudopotential made in these calculations as we hav
observed that an increase the overall cutoff causes a sensibleg s
narrowing of the spectral band.

The real-time displacement and velocity correlation ,
functions of the excess electron were calculated from the 1 R
simulated absorption spectra using E@%.and(17), and are , M 1
shown in Fig. 5 and Fig. 6 for the three temperatures studied. - N/

The error bars on this function have been calculated, as ex- - T

plained in Sec. Ill. The displacement correlation functions go
flat after a short transient time, showing the fact that the
mobility of the electrons is either zero or very small at these \
conditions. We were not able to determine an accurate value T . T T T T
of the electron diffusion coefficient given the present statis- 0 2 4 6 8 1o 12
tical uncertainties. v

It ShC.)L.JId be noted t_hat the present estimate ,Of the elecIEIG. 6. The real-time velocity correlation functiors(t)-v(0)) a of hy-
tron mobility calculated in a static solvent cannot include theyrated electron at three different temperatures. Error bars are shown only for
contribution arising from the motion of the solvation cage, athe T=340 K curve.
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FIG. 7. The imaginary-time displacement correlation functifif—ir) of FIG. 8. The calculated absorption spectra of an excess electron in super-
an excess electron in supercritical helium at three reduced solvent densitiesritical helium at three reduced solvent densities.

V.Vlth the ones .obtamed fforT‘ the primitive k||jet|c ENergy €S-same potential model for the electron-helium system but a
timator, but with uncertainties two to three times smaller.

different selection scheme for the Lagrange multiplier in the
maximum entropy inversion. As has already been nottéed,
the observed variations of the absorption bands with density
are in agreement with the analytical predictions of the RISM-
To study the process of electron localization due to thepolaron theory of Chandler and co-work&r&* for the hard
excluded volume effec® we have simulated by path integral sphere solvent model of electron solvation.
Monte Carlo, an excess electron in helium along the 309 K At the p*=0.3 density the absorption spectrum is made
supercritical isotherm at three densitig& =ps°=0.1, 0.2, of a single band centered arourg=0.4 eV of Gaussian
and 0.3. The potential of interaction between two helium shape on the low-frequency side and of Lorentian shape on
atoms is taken as a Lennard-Jones 12-6 potetiial2.556 the high-frequency side, as we have observed for the hy-
A, €=10.22 K). The electron-helium pseudopotential used isdrated electron. This observation correlates well with the fact
that of Kestneret al.®! a model used in the pa%t!* The that in both cases the electron is best described as being
kinetic energy of the electron has been calculated using thiecalized in a solvent cavity. The absorption band is due to
virial estimator® optical transitions from the ground state to localized low-
The simulation is of 864 helium atoms and a discretizedying excited states.
electron path in a cubic box with periodic boundary condi- At lower density(p* =0.2) the absorption maximum red-
tions and of size determined by the chosen density. The Troshifts, and we can observe a substantial increase of the ab-
ter number for the electron §=1000%2 The R*(—ir) cor-  sorption at zero frequency. From these observation we con-
relation functions have been calculated calculated farrO clude that under these thermodynamic conditions the
< Bhl2 by block averaging® the estimatop; in Eq. (49 for  electronic ground state and the low-lying excited states are
j=1,...p/2. The number of blocks, composed of 44 sequenstill localized in a solvent cavity but the extended states be-
tial samplings ofg; , was taken to bé& =1200. Thus, about come thermally accessible, providing means for the electron
50 000 Monte Carlo passes were, typically, necessary to ere diffuse in the solvent.
sure proper convergence of the averages. At the smallest density studigg* =0.1) the absorption
The imaginary-time displacement correlation functionsband at positive frequencies virtually disappears and the zero
are shown in Fig. 7 for the three densities studied. The corfrequency absorption becomes more intense. The absorption
responding absorption spectra were calculated by the maxspectrum therefore assumes a structure similar to the absorp-
mum entropy inversion of the integral equatit8) using a tion spectrum of an excess electron in xenon investigated in
frequency grid given by the expression the next section. This is consistent with the fact that at this
o(X) = (0max— Omip[€Xp@x) —1)/[exp@) — 1]+ wmyin, Where  density the solvent is not able to provide a cavity that sup-
x is an equally spaced grid of 250 points in the intef\@al], ports an electron ground state and few low-lying excited

VI. AN EXCESS ELECTRON IN SUPERCRITICAL
HELIUM

a=4, wmin=0, andw,,,=1 a.u. states. At these conditions the electron is best described as
The calculated absorption spectra, shown in Fig. 8, are ibeing fully delocalized.
good agreement with previous calculatihthat used the From the calculated absorption spectra, using(qgwe
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FIG. 9. The real-time displacement correlation functi®3ét) of an excess o . )
electron in supercritical helium at three different reduced densities. Errof |G- 10. The calculated reduced diffusion constarit= 8% p* D/o* of an

bars are shown every three calculated points. The asymptotic slope of the§¥CeSS electron in supercritical helium. For heligm2.556 A. Also shown
curves at largé is proportional to the diffusion coefficient of the electron. i@ dotted line, the reduced diffusion constant of an excess electron in hard

sphere solvent of sphere diameter

have extracted the real-time displacement correlation func-
tions up to 50 fs. These are shown in Fig. 9. Apart from a . _
short-time transient behavior, we observe diffusive motionP€Ween two xenon atoms is taken as ag,zlmple Lennard-Jones
for times larger than about 25 s for all the densities studied12-6 potential(c=4.0551 A, =229 K).> The electron—
This is also in agreement with the predictions of Nichols and<énon psegé:iopotennal we have used has been developed by
Chandler®* The diffusive motion sets up at shorter times asSPaceet al>> to reproduce the observedwave phase shifts
the density is lowered. The slope of these functions at Iong‘{1 electron-xenon scattering experiments. A many-body po-
times are proportional to the diffusion coefficient of the elec-larization term has been added through a Lekner polarization
tron. The value of the slopes calculated at 50 fs, taken to bBotential™” For the calculation of the kinetic energy of the
our operational definition of the diffusion coefficient, agrees€léctron we used the virial estimafty. _
to a 1% tolerance with the asymptotic value at< given by The simulation is of 864 xenon atoms and an electron in
the zero-frequency absorption cross seclisee Eq.(21)]. a cublq box with periodic boundary condmons and of size
The error bars in Fig. 9, calculated as explained in Sec. ll1determined by the chosen sol\i_gnt denzs,lty: The Trotter num-
provide a mean to estimate the uncertainties of the operder for the electron path=1000>"TheR“(—ir) correlation
tional values of the diffusion coefficient by simply consider- functions have been calculated calculated ferr€s4/2 by
ing the upper and lower bounds of the slope of the real-tim&@l0ock averagingf the estimatop; in Eq. (49) for j=1,. P/
displacement correlation functions. 2. The number of blocks, composed of 44 sequential sam-
The values of the diffusion coefficients are plotted ver-Plings of ¢;, was taken to bé& =1200. Thus, about 50 000
sus solvent density in Fig. 10. In this figure we also show thdlonte Carlo passes were, typically, necessary to ensure
curve corresponding to the diffusion coefficient for the assoProper convergence of the averages. _ _
ciated hard sphere mod&lat a slightly larger temperature The imaginary-time displacement correlation functions
(377 instead of 309 K We observe that the two models are aré shovyn in Fig. 11 for the four densities studied. The_ cor-
in reasonable agreement, suggesting that, in this case, tf@SPonding absorption spectra, calculated by the maximum
operational diffusion constants calculated from the slope agntropy inversion of the integral equati¢8) are shown in
50 fs of the real-time displacement correlation functions aré19- 12. The peak intensities occur a=0 with a fast-

a good representation of the true diffusion constants. decaying unstructured tail at positive frequencies. The fre-
quency grid used in the maximum entropy numerical inver-

sion has been produced from the expression
@(X) = (0max— @min)[€Xp@x) —1)/[exp@) — 1]+ i, where
x is an equally spaced grid of 250 points in the intefgal],

An excess electron in supercritical xenon has been simua=5, wy,;,=0, andw,,=1 a.u. The value of the absorption
lated using the path integral Monte Carlo method along thespectrum atw=0, as we have already noticed, is related to
309 K supercritical isotherm for four densities the drift mobility of the electronup=¢eB8D, whereD is the
(p*=pas®=0.3, 0.5, 0.7, and 0)9The potential of interaction diffusion coefficient.

VIl. AN EXCESS ELECTRON IN SUPERCRITICAL
XENON
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FIG. 11. The imagin_ary—time d_i;placement correlation funcb(—ir) of __FIG. 13. The calculated real-time displacement correlation functis)

?2 excests Electrc;rr: In SL.'p?rC”t'(.:t?]I seno'n atff?hur re?u;%(z_splvfigt den5|t|e8f an excess electron in supercritical xenon at four reduced solvent densities.
€ Inset shows the vanation wi ensity of the valu 18h12). The asymptotic slope of these curves at larrge proportional to the diffu-

sion coefficient of the electron.

The error rescaling parameterhas been estimated to o o o
lay in the 1.1-1.3 range. tical uncertainties of thes_e values 01_‘ the diffusion coefficients
From the calculated absorption spectrum, using &5. ha_s been_ _e_st|mated, as |IIustrate_d in Sec. VI. The calculated
we have extracted the real-time displacement correlatioflfift mobilities .o =€BD, shown in Fig. 14 versus reduced
functions up to 100 fs. These are shown in Fig. 13 only in thesolvent density, present a maximum §g=0.7.
0-50 fs region. Apart from a short-time transient behavior, _ tis interesting to compare in Fig. 15 the calculated mo-
we observe diffusive motion for times larger than about 25 fdilities with the available measurements along the liquid—gas
for all the densities studied. The slope of these functions agoexistence cunve.*® The experimental mobility reaches a
long times are proportional to the diffusion coefficient of the Maximum of 6000 crfiv's atT=223 K andp*=0.8, which
electron. The value of the slopes calculated at 50 fs are ouf in reasonable agreement with the calculated mobilities.
operational definition of the diffusion coefficient. The statis- 1 he simulations, however, do not reproduce the dramatic fall
off of the mobility with decreasing density. At the critical
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FIG. 12. The calculated absorption spectra of an excess electron in supeFG. 14. Calculated drift mobility of an excess electron in supercritical
critical xenon at four reduced solvent densities. xenon as a function of reduced solvent density.
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lation, thus, the average size of the electron polymer in such
a trap will be almost free-particle like. This is in contrast
with the fact that a free particle has ballistic motignfinite
diffusion coefficient while a trapped electron can diffuse
only by infrequent hopping from one trap to another. This
observation suggests that another contribution to the ob-
served deviation between calculated and experimental drift
mobilities may come from the failure of the numerical ana-
Iytical continuation method to discriminate between a local-
e ized electron in a large trap and a “quasi-free” extended
' electron. The absorption spectrum of a localized electron in a
large trap is expected to have a peak at very low frequencies
whose intensity falls rapidly to zero at zero frequency. Thus,
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-~ Experiniental (163K < T < 290K) . ; ) -
— Calculated (T = 309K) given that the maximum entropy inversion of E§) has a

~~~~~~~~~~~~~~~ finite frequency resolution dictated by the precision of the
— imaginary-time data, a very intense peak at a frequency
l l . T . . . smaller than the attainable frequency resolution, would be
03 04 05 06 07 03 09 virtually indistinguishable from an absorption at zero fre-
p quency. This would result in an overestimation of the mobil-

FIG. 15. The calculated mobilities of an excess electron in supercritical|ty of the quasnoc_allzed electron.
xenon at four reduced solvent densities compared with the available experi- 10 @nalyze this phenomenon further, we have performed
mental measurements along the liquid—gas coexistence curve. PIMC simulations of an electron in a large isobaric fluctuat-

ing spherical cavity, as defined in Ref. 14. In this localized
system the electron has zero drift mobility for any cavity

point, T=290 K andp* =0.333, the measured mobility is just size, even though the electron would look almost like a free
3.0 cnf/V's, more than three orders of magnitude smallerparticle if studied in imaginary time. The analytical solution
than the calculated value at similar thermodynamic condiof this system and its PIMC simulation have been presented
tions (T=309 K andp*=0.3). in Ref. 14 and will not be repeated here. Notice, however,

Since the calculations have not been performed along thihat for spherical cavities of the size examined here, the ana-
liquid—vapor coexistence line, but along the 309 K isotherm|ytical derivation presented in Ref. 14 must be generalized
the deviations between the experiments and the present cdly dropping the assumption of ground state dominance. We
culations can be partially explained by the fact that it is ex-have studied the model at the two new smaller external pres-
perimentally observed in xenon that even a slight removal obures:P;=5x10"8 a.u. andP,=1x10 8 a.u. The other pa-
the system from the liquid—vapor coexistence region camameters of the model are the same as those used in Ref. 14:
sensibly increase the electron drift mobiltythis effect is  8=1000 a.u.,p=Trotter number1000. The De Broglie
greater the closer the system is to the critical point. wavelength of the electron at this temperature is approxi-

At high densities the electron mobility is large becausematelyA=16 A to be compared with the average cavity di-
the energy gap between the localized ground state and tremeters of about 30 and 40 A for the two external pressures
conduction band is comparablekd. On the other hand, as examined. In Fig. 16 we show the calculated and exact ab-
the critical point is approached large density fluctuations ocsorption spectra and the corresponding real-time displace-
cur and the probability of finding large localizing traps for ment correlation functions for the two pressures examined.
the electron increases. Then, none of the states in the coiNotice that most of the absorption intensity of both spectra
duction band will be thermally accessible from the localizedlies below Biw=5. This is similar to what we find for an
ground state, resulting in a small mobility. Hetial>® have  electron in xenon and low-density helium. In comparison,
observed that the main contributions to this critical behavioithe absorption spectrum of an electron self-trapped in water
come from the large-wavelength fluctuations of the solvenbr high-density helium has a peg@t» an order of magni-
density. Given the finite size of the simulation box, thetude larger. The maximum entropy reconstructed spectrum
PIMC simulations performed in this work cannot reproducefor the particle in the spherical cavity at the larger pressure is
density fluctuations with wavelengths of the order of the boxstill fairly accurate: the zero frequency absorption and, cor-
size or larger. The simulations, therefore, are not accurate irespondingly, the estimated drift mobility is essentially zero,
describing the phenomenon of electron localization near thand the reconstructed real-time displacement correlation
critical point, a fact that could explain the large deviationfunction agrees extremely well with the exact one. At the
between the experimental and calculated mobility at lowsmaller pressure, however, we notice that the reconstructed
densities. spectrum has a wider absorption band that does not decay to

The term “quasilocalized” is sometimes used to de-zero at zero frequency. Consequently, the real-time displace-
scribe the states of the localized electron in liquids of polarment correlation function grows linearly with time, in con-
izable rare gases because the traps have a size comparablartst with the exact one that goes flat after a short transient
the De Broglie wavelength of the electron. In a PIMC simu-time. Notice that beyond a certain time the calculated error
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ties of the excess electron in several solvents and in different
thermodynamic conditions. Comparing the results of this
work with other computation&l and analytical® calcula-
tions and with the experimenits’® enabled us to test the
performance of the method.
— PIMC+MAXENT The method is very reliable in cases where the electron
is localized in a bubbldlike in water and supercritical he-
lium at moderate densityin reproducing the absorption
; . spectrum and the real-time position and velocity autocorre-
0 10 20 30 40 50 lation functions up to times unattainable by most other
® means. In these cases, however, it is not possible to give an
estimate of the values of the mobilities or, equivalently, the
™ pivcs maxent diffusion coefficients because they are too small in the static
1 solvent limit. The method can be considered reliable in esti-
mating transport coefficients for extended electrons in low-
density helium, where the delocalization is caused by the
decrease of the volume excluded to the electron by the sol-
vent.
) The method is probably unreliable in reproducing the
: . , mobility of excess electrons of polarizable rare gases in the
0 1 2 3 4 region of the critical point. The source of the problem seems
t to originate from the combination of finite-size effects in the
PIMC simulation that generates the imaginary-time data and
FIG_. 16. (a) Absorption cross ;ectio_ns of an electron in a breathirjg sphericafrom the inability of the analytic continuation method to dis-
cavity. w* = Bhw. (b) The real-time displacement correlation functidgtf§t) . . . .
corresponding to the absorption spectra showr(ain t* = t/g#. In this  cfiminate between close lying resonance frequencies in the
figure the curves are labeled according to the external pressuredoW-frequency region of the absorption spectrum. We be-
P1=5x10"° a.u. andP,=1x10"° a.u. For the values of the other param- |ieve, however, that even in this case the method provides a
eters see the text. good quantitative estimate of the absorption spectra at higher
frequencies and of the corresponding real-time correlation
bars on the maximum entropy reconstructed correlation funclinctions at short times. _
In a future publication we will address the effects of

tion for the lower-pressure case do not include the exact diabatic t " the d . ¢ eloct |
values, this seems to suggest that the analytic continuation fionadiabatic transitions on the dynamics of electron solva-

this case is also very sensitive to systematic errors present Hen by treating the solvent coordinates as fully quantal de-
the imaginary-time data. grees of freedom.

We conclude, therefore, that, although the calculated ab-
sorption spectra at finite frequencies and the real-time corre-
lation functions at short times can be still be considere

quantitatively accurate, the maximum entropy analytic con-  This work was supported by the National Science Foun-
tinuation method is inaccurate in predicting the mobility of adation (CHE-91-22-506 and the Maui High Performance
solvated electron trapped, as in xenon near the critical pointComputing Center. This paper is in partial fulfillment of the
in a region of size larger than its De Broglie wavelength. Ph.D. (E.G) in chemical physics at the Department of
The issue does not seem to arise in low-density heliumChemistry, Columbia University.

as we found good agreement with the RISM-polaron
results* for the associated hard sphere model. One reason
for this is that the simulations of this system were conducted'J-p. Jay-Gerin and C. Ferradiriixcess Electrons in Dielectric Media
along the 309 K supercritical isotherm, where critical behav-z(CRC F’rekss, Bodca Raton, 1991 | | y
; ; ; D. F. Coker and B. J. Berne, iBxcess Electrons in Dielectric Media
lor is not expected 1o be abserved. In .thIS. Casef thus, we edited by J-P. Jay-Gerlin and C. Ferradi@RC Press, Boca Raton, 1991
conclude tha.t a sudden drop of absorption lmtensny at Verysp Thirumalai and B. J. Berne, Comput. Phys. Comn).415 (1991,
low frequencies does not occur and the mobility grows as the*J. Schnitker and P. J. Rossky, J. Phys. Ch@gn6965(1989.
electron becomes more extended. It is for this reason that iﬁzéx\/(igztgn P. J. Rossky, and R. A. Friesner, Comput. Phys. Con@8un.
this sys.tem the maximum eerp_y analytic Contm,uatlon °D. F. Cokér. inComputer Simulations in Chemical Physieslited by M.
method is able to successfully predict the electron drift mo- p_ajlen and D. J. TildesleyKluwer Academic, Dordrecht, 1993pp.
bility. 315-377.
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