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Large scale simulations of macromolecules in solution that do not suffer from artifacts arising from
force truncations are becoming feasible. New force evaluation algorithms such as the fast multipole
method(FMM) and multiple time scale integration methods such as the reversible reference system
propagator algorithm(r-RESPA have been combined and used to perform fast and stable
simulations of large macromolecular systems. A consistent treatment of the long-range forces in
simulations with periodic boundary conditions requires the use of a periodic form of the Coulomb
potential. In this article, the FMM is extended to periodic systems, and combined with RESPA,
yielding a new algorithm that is successfully applied to the simulation of large biomolecules in
solution. If the interactions at different stages are separated smoothly, good energy conservation is
obtained even for time steps as large as 12 fs on a system of over 40 000 atoms, and a CPU speedup
of more than a factor of 20 is achieved compared to the standard Verlet integrator with Ewald sum
for the Coulombic interaction. As compared with the recently developed particle-mesh Ewald
(PME) method, the periodic-RESPA/FMM has a break-even point at about 20 000 atoms; for
larger systems;-RESPA/FMM is expected to be more efficient. 97 American Institute of
Physics[S0021-960807)51923-4

I. INTRODUCTION of solvated biomolecules is the use of holonomic con-
straint€®?’ to effectively freeze the rapidly varying degrees

Performing large scale simulations of macromolecules in

solution is still a challenge. For some problems, a realistic:Of freedom, thus allowing for larger time steps. Uniortu-

representation of the effects of the solvent environment ner_1ately, the use of a Verlet integrator plus these constraints

cessitates an atomistic model of both solute and solvent, thd&nits the time step that can be safely taken to between 0.5
the need for large numbers of atoms. Since the number @"d 2 fs, depending on the complexity of the system. For a
pairwise interactions amorly atoms grows likeN?, the di- solvafted protein of about 1000 atoms, one |s_ty_p|c_ally limited
rect computation of all of them is not practical, even with {0 @ time step of 1 fs. To go beyond these limitations, algo-
current supercomputers, for more than a few thousand atomdthms more sophisticated than the usual Verlet integrator are
This problem is often circumvented in biomolecular simula-necessary, and several multiple time step methods have been
tions by truncating the forces beyond a “cutoff” distarice. proposed:?®=*" The reversible reference system propagator
With clever pair-list generating algorithms, the computa-algorithm (r-RESPA developed by Bernet al*® is a gen-
tional cost scales &3(N). However, the truncation of forces eral technique which yields a family of multiple time step
changes the underlying physical system. Recently, it haiitegration algorithms.
been shown that the truncation of long-range electrostatic In this article, we devise a new algorithm which com-
interactions introduces unrealistic physical effécté. To  bines the periodic FMM for computing the long-range elec-
avoid the truncation of long-range interactions, severatrostatic forces with the RESPA multiple time scale integra-
groups have experimented with approximate schemes, abr, and apply it to simulations of solvated proteins with
which the most widely used is the fast multipole methodperiodic boundary conditions. The periodic FMM is neces-
(FMM) of Greengard and Rokhit™*"and its variants®**  sary to handle, in a consistent manner, the effects of periodic
This algorithm, described in more detail in Sec. Il, decreasepoundary conditions, which are typically used in simul-
the computational burden t0(N) by cleverly exploiting a  ations that include explicit solvent. The combined
hierarchy of clusters and using multipolar expansions to apr-RESPA/FMM algorithm for free boundary conditions was
proximate the potential produced by these clusters. Recentlgescribed in an article by Zhou and Berffehis article ex-
another  promising  algorithm, particle-mesh ~ Ewaldtends their treatment to the periodic case. We also report
(PME)?+?*~%has been described in the literature. comparisons with published performance figures for the
Another common approach to speed up the simulatiolppe andr-RESPA/PME methods.
The structure of the article is as follows. In Sec. I, the
dElectronic mail: ronlevy@lutece.rutgers.edu FMM is described, based largely on Greengard’'s
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9836 Figueirido et al.: Large scale simulation of macromolecules in solution

dissertationt? Since most simulations use periodic boundary [(T—m)! ,

conditions, the consistent treatment of the electrostatic inter-  Y["(8,¢)= T+m)! P"(cos #)e'™m? 3)
actions in a periodic system using the FMM is discussed in ’

Sec. lll. Section IV provides a description of theRESPA  for m=0 and

technique, with the emphasis on the separation of forces —mom*

based on different distance scales. In Sec. V, the separation Y=Y 4

of forces in the FMM used in the applications of the Although the use of this approximation was proposed almost
r-RESPA method is discussed. This separation in FMM camwenty years agd®*° Appel*! was the first to recognize that
be done in a number of ways, including a sharp separatiogne can compute these coefficients efficiently using a hierar-
based on the boundaries between boxes, as done by ZheHical algorithm, where the particles are collected into “clus-
and Bernd* for isolated protein systems, or a smooth sepaters” at different levels. The first level, =0, encompasses
ration using a switching function. Switching functions have g|| the particles in the system; each successive level is
been widely used in nonbonded force separations imbtained by dividing the clusters at leveinto octants. After
r-RESPA®% We have implemented both methods andthis construction has proceeded up to some specified level
compare their efficiency. Section VI presents an analysis of | where the clusters typically contain only a few particles,

simulations on several different systems, ranging from a paithe multipole coefficients are computed for each cluster at
of ions in aqueous solution to a solvated macromoleculeghat level, using the formula

with emphasis on the energy conservation as a function of
the simulation parameters. From this a_maly5|s, it appears that m|m=(—l)'A|m2 Qull X =o' "(X=R0), (5)
the presence of solvent has a dramatic effect on the conser- «
vation of Energy- For agien level of energy conservathn,_e\lNhere the sum is taken over all charged particles in the clus-
more accurate simulation is ne_eded when the s_olv_ent IS Irl['er, andx, is the geometric center of the cluster. The algo-
c_Iuded. It "’?'SO emerges that using a smooth swﬂch_mg funCr'ithm continues then by evaluating the coefficients of a clus-
tion sometimes allows the use 9f a much larger time ste er at levellL in terms of those of its octants at leviek-1.
than when the sharp separ_atlon is implemented. In Sec..VI or this purpose, a “multipole translation” formula is used
we report the results of timing tests, as well as a comparison
with the PME method. Finally, we offer some conclusions !
and discuss the implications of our findings for biomolecular m/ "= Z _2 ~J(m—n,n)
simulations. J=on=m

In Appendix A, we present some technical details con- Xm™ (= DIx=x"PANY(X=X) (6)
cerning the extension of the FMM to periodic boundary con-

ditions. Appendix B provides details of our implementationWhICh g/lv_es the coeffluents_ .Of the mu|t|po|_e expansion
inside the molecular mechanics packageacT.® aroundx’ in terms of the coefficients of the multipole expan-

sion aroundx, whereJ(m,n) is given by
Il. THE FAST MULTIPOLE METHOD (—2)minmLInkif m.n<0
J(m,n)= .

1 otherwise.

i

; 13,14 (7)
The fast multipole methodMM)=>** has already been
described in several articles, at varying levels of detail. An  Bames and Hi improved on Appel’s method by intro-

overview of the method is given below. ducing a faster algorithm for “loading” the particles onto
The FMM starts from the observation that the electro-the clusters at level, that is, deciding to which of the's

static potential produced by a collection of charges can bg|ysters each particle belongs. This algorithm was shown by

approximated by a multipolar sum Salmorf®to be asymptoticallD(N log N); he also described
P mm a parallel version. Hernquiét, Makino**“¢ and Barne¥
| A ” ; ) .
d(x)=>, > (1) Y'(X—%X), (1) later modified this algorithm to improve the performance on
|

myy _ 1+1
=0 m=-I AIX =Xl vector supercomputers. Sédtoand Shimadaet al?! de-

where the multipolar coefficientm" depend only on the scribed algorithms that used similar ideas. Greengard and
sources and not on the observation pairit the observation Rokhlin>**went a step further with the observation that the
point, andx, is the geometric center of the charges. The carefnultipolar expansions of the potentials produced by several
indicates the unit vector. Our definition of the multipolar clusters could be lumped together into a local expansion of
coefficients, which is chosen to simplify the equations thathe form

follow,'” differs from the usual one by the factor

p |
(—1)"/A", whereA™ is given by the formul& d)=> > IMAMx—x|'Y"(x=X"), @)
=0 m=-1
(—1)
Al'= . 2 ici i i -
| =l +m)! (20 where the coefficienty” again are independent of the obser

vation point,x, but depend on the center of expansigh,
In contrast to White and Head Gordbhhowever, we use and showed that their algorithm was asymptoticaigiN),
the same nonstandard normalization for the spherical hamlbeit with a large constant factor. The corresponding field is
monics as Greengard: given by the formula
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P! tations, however, treated the case of periodic boundary con-
E)=2> > IMAMx—x||'""-1Y"(x=X") ditions, although Schmidt and L&had described an Ewald-
1=0 m=-1 like method to extend the FMM to this case.
FiI(X—X)XLYM, (9) The FMM involves the following stages.
(FMM.0) Create a tree structure to describe the clusters
where the angular momentum operaltoacts as follows: from levelsl =0 to L. This must be done only once.
(FMM.1) Load the particles onto the clustgisodes of
iLym—| ; VI +1)-m(m+1) ym+1 the tree at levelL.
! 2 ! (FMM.2) Compute the multipolar coefficients of all
clusters at level, Eg. (5), and then use the recursive pro-

+i VI(+1)—m(m-1) Y{“*l cedure, Eq(6), to compute the coefficients at leviebiven
2 those at level +1, for I<L. At the end of this step, the
— multipolar coefficients of an expansion around the center of
VI(1+1) - m(m+1) y|m+1 each cluster would have been computed.
2 (FMM.3) Using Greengard’s recursive algorithm, com-
JT+D)—mm-1) pute the coefficients of the local expansion, around the center

Y™ imY"|. (10  of each clustec at levell (I<L). This involves two steps:
(i) shifting the local expansion coefficients of parent at

The coefficients of these local expansions are computed in '§vell —1 toc at levell, using Eq.(13); (ii) adding the local
hierarchical manner, described later, in which one of the?XPansions from multipoles of clusters that are children of
steps involves a “multipole to local” translation formula c's parent’s first and second neighbors, but are neither first
analogous to Eq(6) nor second neighbors af itself, using Eq.(11). After this

_ step, the multipolar expansions of every cluster that is not a
! 1 first nor a second neighbor af (at the same levell) are
= n;_. J’(n,m)m? AT Mlx—x'[[[F1+1 lumped together. The first and second neighbors are ex-
. . '+ cluded because they are calculated directly.
XY MN(X=X), (11 (FMM.4) For each particle in a cluster at the lowest
level L, compute the contribution to the energy and force
where from the local expansion of distant multipoles using E9j;
(—ymnllmlinl i m.n>0 add to this the_ contribution from the nearby parf[icles tha_t
i (12 have not contributed to the above local expansion coeffi-
1 otherwise. cients, that is, particles in either or first or second neigh-
The other main step in this calculation is a “local to local” POrs ofc. o .
translation formula, In step(FMM.4), all the direct interactions between par-
ticles inc and those irc and its first and second neighbors
are computed; this is just like the direct approach, except that

2

rm__
"=

J'(m,n)=

p

J
I(m=2_| _E J7(nn=m)IP(= 1) x—x'|I ! it is applied at level. Increasing. decreases the size of the
= clusters at that level, and therefore the time spent in step
XAIZMYIM(X=X), (13) (FMM.4), however, it increases the total number of clusters,
and thus the time spent in steff@IM.2) and(FMM.3) [step
whereJ” is given by (FMM.1) is usually extremely fagt Of these two, steps

(FMM.3) is by far the most expensive. To obtain an efficient

algorithm, one must therefore find a balance between steps

(FMM.3) and(FMM.4). One way to do thigsee Sec. Yis to

use a deep treg¢large L, small clusters but to do step
(14 (FMM.3) less often. This leads us naturally to consider mul-

Boardet al!® described one of the first implementations tiple time step methodésee Sec. IV.

in the context of molecular dynamics. They also described a

parallel version. White and Head—Gordbstudied the ac-

curacy and performance of the FMM as a function of the

number of multipoles retained in the sum, and the depth

L of the tree. Dinget al!® described a slightly different al- The first implementation of the FMM for systems with

gorithm where Cartesian multipoles are used instead of thperiodic boundary conditions, to our knowledge, is that of

expansions in spherical harmonics. Their method was limite®chmidt and Leé&? although Greengard’s dissertatidron-

to only a few moments due to the complexity of the Carte-tains a brief description of the main ideas. Recently,

sian representation. Fenley al*® implemented an adaptive Esselink® compared the algorithmic complexity of the peri-

version of the FMM for their calculations of the total elec- odic FMM and the Ewald summation method. This section

trostatic energy of strands of DNA. None of these implemen-enlarges on the method of Schmidt and Lee and presents a

(- if m-n<o
J"(m,n)= (=pIm=" if m-n>0 and |m|<|n],
1 otherwise,

llI. EXTENSION TO PERIODIC BOUNDARY
CONDITIONS

J. Chem. Phys., Vol. 106, No. 23, 15 June 1997
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derivation of formulas which reduce to regular Ewald in the YM(R)
proper limits. We were unable to reduce the corresponding S"'= Z,O WH— (18
n

formulas in Ref. 49 to the correct limiting forms.

In the description below, we assume that the simulatiorwhich is conditionally convergent for <l<2 and abso-
box is cubic and its linear dimension Is To introduce lutely convergent fot>2. To obtain a convergent sum that
periodic boundary conditions, it is convenient to think of thecan be manipulated, we replace Ef8) by
simulation system as consisting of énfinite) lattice of ex- oMy A
act replicas of the unit cell. We f ticular cell  gm_ | Il e

plicas of the unit cell. We focus on one particular ce S"= lim > T € ) (19)

among them and call it the “central” box; the others will be s,0*+N7#0 Inl]
called the “proper copies.” The potential produced by all With this regularization, the sum for oddvanishes identi-

trzergrsoepr)wet);(;:ozleeslitiarl\ pc:c':rt'tn;;d?nghrﬁecnetngilute)gxo(f:agogserc_ally because of reflection symmetry. The sum over dven
P » hegiecting converges absolutely but slowly. To accelerate the conver-
gence, by the infinite sum

gence, we proceed, as for the Ewald summation, and use the
p |
p0=2 2 2 (-1)'m
=0 m=-1 n#0

Y"(X—bn) identity
|m AMy_ 1" (15
Al'lx—bn| R S A
) ) ) == [ te ™t (20
Schmidt and Lee regarded these proper copies as “virtual” X~ TI'(r) Jo
clusters and applied the same FMM algorithm to them as Qaineqd from the definition of thE function by a simple
the c_e_ntral _box._More precisely, the Proper copies can b%hange of variables. Inserting this representation into Eq.
subdivided into first and second neighbors of the central bo>619) gives
and all the others. The third neighbors and more distant cop- ’

ies, that is, those for which at least one component @ m_ jim 1 2 ||n||'Ym(ﬁ)
larger than 2, will be called “distant copies”. The local field S ot =0 '
from these distant copies at poirtin the central box can 70 T+ 2
then be expressed by
p I % JOctl+1/2—1e—(s+t)|\n||2dt_ (21)
p0=2 3 ATIXIV), (16 0

For s>0, the sum converges absolutely and the summation

where the expanSion coefficients are given by the Inflnlt%nd integration can be interchanged' so that
sum

l 0
P S"= lim —1f dtt! + 121
||m:jzl n;_j J'(n,m)m; s—ot |14+ =| 7°
1Y) o
X o IFIAT, " ;0 1L (17 Xr;o In"Y(Rye (s*Vlnl, (22)

(The j=0 term does not enter the summation since the boXSeparation of the integral at a midpoint, which de Leeuw
is neutral) The first and second neighbors are treated in theet al. call a5, requires evaluation of the two sums

usual way as if they were part of the simulation volume, )

except that forces on particles inside them are never com- A= f”’ dtt +12-1> ||n||ly|m(ﬁ)ef(s+t>lln\|2_ (23
puted. In what follows, it is more convenient to consider the 0 n#0

sum in Eq.(17) as extending over all nonzerg to get back  g5ng

the constrained sum, we only need to subtract the explicit

sum over first and second n(_aighbors. This app_roach therefore B= wdtt'“’z‘lE ”n”IY:Tl(ﬁ)e—(s-*-t)Hn”z. (24
differs from the usual FMM in that the simulation box starts a? n#0

\(’\1'%] Zn?iogllzi:gsltgcr::lhz)\iiﬂselc;rz]a’mgelvr?:m?:ertr(])? f?rl;?]ag:j Eg'ln the second sum, the convergence is absolute fos all
ond'neighbors C>—a2, so that we can t.ake the limg—0"* with confi-
’ . ' . dence. We can then rewrite the slBras

The only dependence on the instantaneous configuration

of the charges in Eq.17) lies in the multipole moments of Y"(n) L

the central boxm™. Thus the infinite sums in parenthesis B:rgo T a2Hn|\2tl+1/2 le~'dt. (25)
need be computed only once, provided the shape of the cen-

tral simulation box does not change. Following Schmidt and/Ve are thus led to consider the integrals

Lee, this computation is carried out using an extension of the

Ewald summation method, which is described next; the deri- Ir(X):j
vation parallels that given by de Leeust al>* For fixed |
andm, we need to compute which can be shown to satisfy the recurrence relation

t'le tdt (26)

X
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() =x""te ™ +(r=1)I,_4(x), (27)  positions yield different integration algorithm$>*°3for our
purposes, two decompositions are of interest. The first de-

valid for any r. Since the values for half integralr=|I composmon defines

+1/2) are needed, the recurrence relations must be supple-

mented with the initial value L=Lg+L,, (33
LX) = r[ 1-erf(Vx)], (28 _ 14

. . ILQZE — P (34
where erfk) is the usual error function. 7 m; 7 dq;

The first sum is rather more complicated and the details

are given in Appendix A. After some algebra, one arrives at iL =E F.(q) i (35)
the final result for the sum over all proper copies: P Y opy
n_ Y'(n) In this case, since each Liouville operator “propagates” only
S =R one half of the conjugated variables, their finite-time propa-

A gators are easily computed:
> el At
o [ttt Y Uq(At)g(q,p)=e'“ng(q,p)=g(q—ﬁp,p) (36)

+ 2 VAN k]! 2e K, (29 Up(At)g(g,p)=e""*teg(q,p)=g[q,p— AtF(q)],
) (37)

\%hereg(q,p) is an arbitrary(smooth function defined on
the phase space. From these identities and the approximation

As discussed above, the explicit sum over first and secon
neighbors must be subtracted from this result.

The results embodied in E§29) resembles the Ewald
summation formul@®® but differs from the latter in a key
aspect: whereas the Ewald summation formula gives the U(At)”Up(j)Uq(At)Up(?) (38)
Wigner potential at each point in the unit cell, E9) gives
just the nontrivial part of the coefficients of the translationone immediately obtains the Verléhtegration algorithm, as
matrix that converts the unit cell’'s multipole moments into ashown in Ref. 33.
local expansion around its center of the potential produced The second decomposition of interest separates the
by all the proper copiegthat is, not including the central forces into “fast” and “slow” componentsF; andFs, and
cell). The full translation matrix is given by E¢17). the corresponding Liouville operators are defined by

14 d
ihEE'—Qm (@) 5o (39
IV. REVERSIBLE RESPA (r-RESPA) :

J
The reversible reference system propagator algorithms L —2 Fsi(Q) —. (40)
(r-RESPA?3 form a family of multiple time step algorithms p;

derived from a Trotter factorization of the Liouville propa- Tpe fast propagatareference propagatocan be further de-
gator, composed as,

U(t)=e itt, (30 A\
Uf(?” (41)

iL= E (
followed by a Verlet-type decomposition for the inner propa-

The basic idea is to decompose the Liouville operator intcgator. All the algorithms described in this article follow this
the sumL=L,+L, and then use the Trotter formula to ap- Pattern, with the innermost propagator handled by the simple
proximate the full propagatod (At) for a finite but small ~ Verlet integrator. The advantage and disadvantage of differ-
time stepAt as ent factorization are discussed in a recent arfitle.

The fast and slow components are often identified by
(32) separating a distance-dependent force into a short- and a
long- (or mediumy range pieces; this is conveniently done
with a “switching” function, s(r), such thats(r)=0 forr
<r, ands(r)=1 for r>r,, wherer,<r, are two cutoff
distances chosen according to the problem at R&AtS?
é/_\/ith such a switching function, one takes

Us(At)=

Pj —— ’ Fj(Q)i)- (3D
aq; ap;

At At
U(At)~ u2< ) 1(At)U2<2

whereU; is the propagator associated with. This expan-
sion is accurate to ord@(At3), but judICIOUS choice of the
decomposition can yield an algorithm for which a “long”
At can be used; for a detailed discussion, the reader is r

ferred to the original publicatioff This decomposition guar- Fi(r)=[1—s(r)]F(r) (42)
antees that the integration is time reversible and confers a
long-time stability on the integratd?:>>-3'Different decom- Fs(r)=s(r)F(r). (43
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The decompositiori39) can be applied recursively: the fast that is, those computed as direct interactions with par-
forcesF; can be further decomposed into modes with differ- ticles in the second shell of clusters plus those com-
ent time scales, and the same Trotter expansion used on this puted via the local expansions;
decomposition. (i) r-RESPA4: we divide the nonbonded interactions into
In macromolecular simulations, one typically subjects three ranges(a) short range: those arising from the
the system to holonomic constraints to keep the bond lengths cluster itself and first neighborgb) medium range:
fixed during the simulation. Moreover, many water models those arising from the second neighbors; é&rjdong
have been parameterized assuming rigid geometries. These range: the contribution from the local expansions of
constraints allow for larger time steps since the fast bond distant multipoles;

vibrations are frozen. The use ofRESPA integrators, on

. For both r-RESPA3 andr-RESPA4, we have also

the other hand, allows the use of a short time step for the )
: . . : implemented variant§ -RESPA3-sm and-RESPA4-sm, re-
rapidly varying bonding forces, and a large time step for the . : . .
. . . _spectively which use a smooth, spherically symmetric
nonbonding forces, the most-expensive part of calculations,” -~ . . . : . .
; , switching function to separate the direct interactions into
less frequently. However, since many force fields have been : o
short and long range. The choice of decomposition is under

parameterized assuming rigid bonds, it is useful to allow for omplete control of the user throuah special kevwords added
these constraints. In all the integration algorithms describe@ P gn sp yw

in this article, with the exception of simple Verlgthere all ° trfslMs?ocvzncgg?/:n?h?nd%?ei%ef:zi:agggrr:diIr)1( t%e EMM is
the forces are computed at every Stepe treat the bonding roken into two stag;es in two wayéa) as in Zhou and
forces as the “fastest” forces, that is, they are the ones th erne® a sharp cutoff based on the cluster decomposition
get updated in the innermost propagator loop. Since it is onlé '

ho ; ._Tor electr ic for in isolat roteins; in
inside that loop that the coordinates are updated, to satis or elect ostatp orces in 1so'a ed P o_te S a(""_d using a

. . . . mooth, spherically symmetric switching function to define
the holonomic constraints, we apply coordinate correction

using, for example, theHAKE?® algorithm, within this inner- the short- and medium-range componetttse long-range

. ) . mponent is always identified with that computed from the

most loop. Since the time step is small, the updates are sm . . 34
. ocal expansions as was done previousfy:>* The reason

and sHAKE converges rapidly. If one wants to apply also

velocity corrections usin@ATTLE?” they must, on the other for this dual implementation was to test whether the sharp-

. " ._ness of the Zhou—Berne cutoff introduces problems in situ-
hand, be applied after every update of the velocities, Whlcr}:\tions other than those treated by th@oteins in vacuum
occur at all levels. It should be noted that whemke and y

. . ) The particular form of the switching function used in

RATTLE are used, the resulting RESPA integrator is no longer . )
- . - - r-RESPA3-sm and-RESPA4-sm is not very important, as
reversible. Since the CPU time spent doing these updates . o L .
: : . long as it and its first derivative are continuous. We chose
scales linearly with the number of atoms, the overhead in:

volved is negligible for large systems where the nonbonde . . .
. . ennard-Jones interactions, which were computed separately
force calculation consumes well over 90% of the time. - .
from the electrostatic ones, in contrast to our code. The

In Sec. V, the actual force decompositions used in our_ . - . i .
. switching function we use is defined by
code are described.

he same form as Zhou and Berne had chosen for their

o if r<ry,
V. COMBINING THE FMM WITH r-RESPA

The bottlenecks in the FMM are steflSMM.3), where
the local expansion coefficients are generated,(&vM.4), 1 if r>ry
where the interactions with particles that lie in a cluster OlwhereS is the polynomial
one of its first or second neighbors are computed. Using a
deeper treélargerL) shifts the burden from stgjfFMM.4) to S(x)=x?(3—2x) (45
(FMM.3). The interactions between particles that are .farwhich has the property that its first derivative vanishes at
from each other are computed through the local expansions

. . . . . bothx=0 andx=1. It should be noted that the sharp, cell-
in this step, and thus, this step involves the slowly varying - ced cutoff used i RESPA3 and -RESPAA is more natu-
long-range force which can be treated in the outer loop.

: . : . ral, and results in a faster method, from the point of view of
The bonding forces will always comprise the innermost

. ; he FMM. A spherically symmetric switching function is, on
loop. In our code, we have implemented several differen :
- ) i he other hand, more natural to separate the forces at differ-
decompositions of the nonbonding forces:

ent length scales. It is possible, however, to consider also a
(i) r-RESPA2: all nonbonded forces are computed asmooth switching function with cubic symmetry.
once, that is, they are not decomposed; since the Note that for the two-stage method-RESPA2 the
bonding forces are computed separately this is a twoeriginal FMM is used, since in this case we do not separate
stager-RESPA. the nonbonding forces into short- and long-range compo-
(i) r-RESPA3: the nonbonded forces are divided intonents.
two ranges:(a) short range: those arising from the To combine the FMM with any of the-RESPA integra-
direct pair interactions within the cluster itself and the tors, a slight modification of the algorithm described in Sec.
first neighbor clusters; antb) long range: the rest, Ilis needed. Stepd~MM.0) through(FMM.3) remain essen-

_ (f
sn=1 S|—

u

r
rl) if risr=<ry; (44)
|
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tially the same, except thatFMM.2) and (FMM.3) are AE,,,, vs. simulation time
skipped in all but the outermost loop, where the forces that (T and Na in 1,103 SPC water molecules)
need to be computed contain the contribution from the local ' ' : g
expansions. StefFMM.4) is replaced by the following. 90 |
(FMM.4") For each particle in a cluster at the lowest
level L, compute the contribution to the energy and force
from: (a) the local expansion from distant multipoles around
the center of the cluster using Eq.(9), if we are in the
outermost loop(b) the medium-range interactiofsom sec-
ond neighbork if this stage calls for it; ofc) the short-range
interactions(from cluster itself and its first neighbgraNo-
tice that the decomposition into short- and medium-range v
. . . . . p=5 ” 4,/
interactions is different, as discussed above, when a sharg S
cutoff or a switching function are used. ‘ oy ATy o,
ALY

p=4

40

AE,, (kcal/mol)

Y4

" A
p=7

-10

VI. ENERGY CONSERVATION 0.0 0.2 04 0.6 08

Simulation time (ps)

Energy conservation during the simulation is a common, ., . . . .

. . . . 34.38 55.5 . 1. Energy conservation for different force algorithms, using the Verlet
requirement for an integration aIgontI”ﬁ?]. 38:55%%The de- integrator. The system studied contained one @hd one Na ion, plus
viations from exact energy conservation arise from many1103 SPC water molecules. The dashed line corresponds to a simulation
sources:(a) the finite time step used in the numerical inte- using the Ewald summation methéd.=9 A, 7=5.5, kn,=5); the others
gration, which renders the method only approximately?® for simulations using the FMM with different number of multipoles
Hamiltonian; (b) the finite precision in the numerical evalu-
ation of the forces(c) the intrinsic deficiencies of the inte-
gration algorithm, such as not being symplectic. In this ar-
ticle, we are concerned mostly wite) and(b). To study the tween the results of a very accurate Ewald calculatign
effects of time step and errors in the forces on the energy=-11.0,r.=16.0 A, k,,=30) and a FMM calculation with
conservation, we have run simulations of several different. =3, p=20 was always less thanx3L0™°.
systems, ranging from pure SPC water to ions in water, tg
proteins in water. In addition, we have studied the effect ofA
using periodic boundary conditions as opposed to free We ran several 1 ps simulations using the simple Verlet
boundary conditions on the energy conservation. integration algorithm, but using different force algorithms,

Two energy conservation parameters are commonly usedn a system consisting of 1103 SPC water molecules plus
to describe the stability of a constant-energy molecular dyene CI" and one N4 ion. The simulation box was a cube of
namics (MD) simulation®3438%50One is the total energy side 32 A. The SPC molecules were kept rigid using

. lons in SPC water

fluctuationAE defined by SHAKE/RATTLE?®?" as described in Sec. V. For the Ewald
Ny method, the convergence parametewas chosen equal to
AEEL D EO_Ei‘ (46) nlb,, whereb, is the linear dimension of thécubic) box
Ntist| Eo | and n was taken to be 5.5; the real-space cutoff distance was

. . . L 9 A. For the FMM, the depth was fixed &t=3 and the
whereE; is the total energy at stap E, is the initial energy, number of multipoles was varied from a minimum k= 4

and Ny is the total number of time steps. This quantity hasto a maximum ofp=7. Figure 1 illustrates the drift with

been shown to be a reasonable measure of accuracy in prgsshact 1o the initial total energy as a function of the simu-

: : 53,55 :
?"OUAS S|mulat|or_1§, and a v«';llue ofAEslo.OOB, €. |ation time. It indicates that for this ion/water system, a mul-
0g AE<—2.5, gives an acceptable numerical accuracy. Anyi,o1e |evel of at leasp=6 should be used to generate a

gthgr pomr?orr: meafure of accurr]acy IS (tjhe_ra_no Off t?]e Lm§table MD simulation, however, it is found that for isolated
eviation of the total energy to the rms deviation of the Ki- . 16in systems, using=4 is enough. This difference in

: 8,56
netic energy) requiredp for proteins in vacuum and NaCl solution shows

AE;ms that the level of multipoles needed to achieve a specified
R=1kE - (47)  accuracy depends on the specific system. We will discuss
ms this in Sec. VII.

A value of R<0.05, has been used as an alternate criterion Table | presents the results from several runs using the
for stability in MD simulations>®° In this article, we use r-RESPA integrator. The entries in the first column give the
log AE as a measure for the energy conservation. combination of force separation stages. The notation we use
As a test of accuracy, we have examined the error in thés analogous to that used by Zhou and Betheach of the
force between two oppositely charged ions in a 32 A box, agour components corresponds to a particular stage—except
a function of their relative separation. The difference be-that a “1” means that the corresponding stage is absent, i.e.,
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TABLE |. Energy conservation for different-RESPA integrators. In all TABLE Il. Energy conservation of protein ribonuclealdein water (8412
cases, the FMM with. =3, p=7 was employed. The system studied con- atoms. The data are collected fmoa 1 ps MD run of thesystem for differ-
tained one CI and one N& ion, plus 1103 SPC water molecules. See the ent methods. In all cases, the FMM with=4, p=6 was employed. See the

text for a discussion of the parameters used. text for a discussion of the parameters used.
Method At (fs) logAE CPU (16 slps) AE,.(%) R (%) Method (1.n5,N3) At (fs) logAE  CPU (16 s/ps)
2,19 2 —4.11 4.9 0.009 5 V-Ewald 1,19 1 —3.20 27.7
4,11 4 —3.60 25 0.018 10 V-FMM 1,1 1 —3.68 35.0
2,29 4 -1.81 24 0.89 180 R-FMM (2,2, 2 —2.84 21.2
(2,2, 4 —4.01 3.4 0.009 5 (2,2,2 2 —4.16 32.3
(2,22 4 -2.03 3.2 0.53 140 (2,22 4 -2.52 19.5
(2,2,2% 4 -2.32 5.1 0.27 104 (2,2,2% 4 -2.77 314
(8,1,) 8 -292 13 0.036 19 (4,4, 8 -1.49 8.52
(2,4,9 8 -1.11 1.2 4.96 260 (4,4,22 8 -3.70 13.0
(2,4, 8 -3.61 1.7 0.021 11 4,4, 12 —-0.89 6.80
42,9 8 -1.05 1.4 5.68 260 (4,4,92 12 -3.27 8.48
(4,2, 8 —4.00 2.2 0.010 5
2,2,2 8 —1.42 1.6 2.33 237 aJsing a smooth switching function.
(2,2,22 8 —1.68 2.5 1.24 212
(3,32 8 -1.47 22 1.94 202
(3,3,2° 8 -1.62 22 1.4 206 (8abp), and lysozyme. In all cases, the protein is put in the

center of a pre-equilibrated SPC water bath, which is chosen
large enough to hold the protein. For the lysozyme case, a
very large water box, 76 A on each side, was used. The water

has been coalesced with the one immediately alftivéhe molecules that overlap with the protein are deleted in all
right of) it. Thus, for example, the entr{2,2,]) means: a Cases. After these steps, the number of remaining water mol-
three stager-RESPA with the two inner stages being re- ecules are:(a) 1982 for ribonucleased; (b) 5990 for
peated for two steps each—that is, it isr@RESPA3(or  arabinose-binding protein; artd) 14 093 for lysozyme. The
r-RESPA3-sn according to the classification presented insolvated proteins are then minimized by using a steepest de-
Sec. V. The parametext gives the time step, in femtosec- scent methOd, and equilibrated to about 300 °K by V8|0City
onds, used for the outermost stage; those for the inner stagé&scaling. After full equilibration of the protein-water system
are obtained by dividing by the appropriate factor. For ex-Nas been achieved, which can take a CPU week for very
ample, if the first entry say@,2,2, and the time step for the large protein systems, a constant energy simulation can be
outermost stage is 4 fs, then the time step for the innermogtnN-

@Using a smooth switching function.

stage is given by The results described below were obtained from 1 ps
MD simulations of Zn2/water (8412 atomy 8abp/water
_ _ (22 913 atomg and lysozyme/watef44 259 atoms Two
Aty 0.5 fs. (48) : _ ) _ .
2X2X2 algorithms for calculating electrostatic forces with periodic

The third column reports lo§E, the quantity defined in Eq. Poundary conditions, Ewald sum and periodic FMM; and

(46): the fourth column gives the number of CPU seconddWO integrators, Verlet and-RESPA, are compared.
used in the run. All the timings reported in this article have ~ 1@Ple Il lists logAE and CPU timings for protein
been normalized to a one node IBM RS6000 SP2. The fiftte"N2/water with different methods. For the Ewald method, a
and sixth columns give some other common indicators of thgUtoff 1c=15.0 A and»=8 are used in the real space, and
quality of an integration algorithrif-3the rms deviation of Kmax=10 is used in the reciprocal space. The parameters used
the total energy divided by, respectively, the average totall€r® should be close to the optimal values fon2/water
energy and the rms deviation of the kinetic energy; bottSYStem. The energy conservation of the VerleUEwald is
quantities are shown in percentages. All these simulation©und to be logAE=-3.20 in this case. The periodic FMM
were run using FMM withL=3 andp=7. From these re- Was combined with the-RESPA method as discussed in
sults, it appears that the optimal force decomposition i&€C- Vs the parameters used wére-3 andp=7. The re-
(2,4, with a smooth force separation, and a time step of 8§ults !ndlcate that a smooth cutoff in RESPA force separa-
fs, since this combination yields good energy conservatioions is necessary for protein/water systems. If a nonsmooth
(log AE=—3.61) at almost a third of the computational cost. fOrce separatiortbox separationis used for both van der

It is noteworthy also that separating the second neighbor an/@@!s and Coulombic forces in this protein water system,
local expansion contributions results in poor energy consert€ I09AE is —2.84, —2.52, —1.49, and—0.89 for overall

vation, probably due to charge fluctuations near the boundime steps of 2, 4, 8, and 12 fs mRESPA, respectively.
aries between second and third neighbors. This poor energy conservation might be due to our using an
atom-based cutoff, rather than the usual molecule—or group-

based cutoffs. If a smooth separation is used, much more,
stable MD simulations can be generated with XMgequal to

The effect of solvating a protein was studied on three—4.16, —2.77, —3.70, and— 3.27 for time steps of 2, 4, 8,
systems: ribonucleasd (2rn2), arabinose-binding protein and 12 fs, respectively. This shows that a very large time

B. Proteins in water

J. Chem. Phys., Vol. 106, No. 23, 15 June 1997



Figueirido et al.: Large scale simulation of macromolecules in solution 9843

TABLE Ill. Energy conservation of arabinose-binding protein in water
(23 912 atomp The data are collected from 0.5 ps MD run of the system for
different methods. In all cases, the FMM with=4, p=6 was employed.

Energy Conservation vs. At

Comparing lysozyme in vaccuum and in water

0.0 r T T
See the text for a discussion of the parameters used. @ — @ Lysozyme in vaccuum, smoothing
B # Lysozyme in vaccuum
€—@ Solvated lysozyme, smoothing
Method (1,n2,n3) At (fs) log AE CPU (16 s/ps) 1o A&— Solvated lysozyme
V-Ewald 1,11 1 —3.20 219
V-FMM (1,19 1 —-3.75 104
R-FMM (2,2,02 2 -3.91 67.9 20
(2227 4 -2.37 51.1 N
4,4, 8 —1.09 194 3
(4,4,02 8 —3.76 24.3 2
4,4, 12 -0.64 13.2 e I
(4,497 12 -3.11 16.4 -
4Using a smooth switching function. _40
step of up to 12 fs can be used in th&RESPA/FMM algo- 50 - . n %
rithm for the Zn2/water system provided the force separa- At {fs)

tion is done with a smooth switching function. Compared to
the Verlet/Ewald method, the RESPA/FMM with time step FIG. 2. Effect of the smooth cutoff on the energy conservation for protein

. . . . lysozyme in vacuunidashed lingsand in water(solid lineg. It is shown
of 12 fs gives a factor of 3.3 in CPU time saving at COMPasi ¢ using smooth cutoff is necessary for the protein/water system, while it

rable accuracy for this syste(8412 atoms has less effect on the protein/vacuum system.
Table Il lists analogous results for theBp/water sys-

tem (22 661 atomps For the Ewald method, we varied the
cutoffs between 15 and 22 A anglbetween 8 and 15, and e Similarly, we obtain a very stable simulation even

report the best results that were obtained in this range. Th@sing a time step up to 12 fs, which gives us a speedup of
parameterd =4 andp=7 were used in the FMM method g4, 20 with respect to the Verlet/Ewald integrator.
for 8abp/water. Stable MD simulations are obtained by us- g ghove simulation results imply that for the protein/

ing smooth cutoffs, similar to therd2/water system. The ;o systems it is necessary to use a smooth cutoff when

CPU saving is a factor of 11.4, which is reasonable becausﬁerforming the force separations iRRESPA: however, as
the r-RESPA/FMM[O(N)] becomes more favorable than a1 reported in a previous artidéa very stable MD simu-

3/ . .
the VerletEwald methodO(N*?)] as the system size in- |aion can be obtained without a switching function for

creases. . ) protein/vacuum systems. Here we use lysozyme/vacuum
Lysozyme in wate(44 259 atompis the largest system (1930 atompand lysozyme/watefd4 259 atompssystems as
stgdled in this article. In _Table IV, we alsq show the resultsan example to exhibit the effect of a smooth cutoff on the
usingL=4, p=7, and differentr-RESPA integrators. FOr  gnergy conservation. Figure 2 shows the results for these two
the Ewald method, a cutoff of 18 A ang=12 is used in the g stams with and without smooth cutoffs. All energy conser-

simulation. For the reciprocal space sum, we l§gs=15.  \ation data are collected from 1 ps MD runs using different
Again we observe that a smooth force separation is necessafiye steps. For the many possible combinations of

to obtain good energy conservation for time steps of 4 fs %(n,,n,,ns) for a fixed overall time step, only the best result
is reported. It is clear that the smooth cutoff greatly improves
TABLE V. E ion for different.RESPA intearators. Th the energy conservation for the lysozyme/water system.
. nergy conservation for airrerent- integrators. e . .
entries marked “Verlet” were run wit a 1 fstime step but only for 20 When t_he overall time step Increases from 1 to 12 fs,
steps. The others were run for a full picosecond. In all cases, the time pépg.AE. 'ncrea.ses from—4.27 to —0.97 for sharp cutoffs,
picosecond is reported. Except when noted the FMM withd, p=7 was ~ While it only increases from-4.27 to —3.75 for smooth
employed. The system studied contained one molecule of lysozyme with atutoffs. On the other hand, the effect of the smooth cutoff is
titratable residues neutralized, plus 14 093 SPC water molecules. See tha,ch smaller for the lysozyme/vacuum system, in agreement
text for a discussion of the parameters used. with previous results* Apparently, the problem arises from
Method (01,N5,N3) At(fs) logAE  CPU (16 s/ps) the water molecules. For_rigid water molecul&PQ, mo-
lecular cutoffs, not atomic cutoffs, are normally used to

\\//—_[E:vl\\;la'\;d Eﬁg i :iég i’gé? _ayoid splitting dipoles ir_1 electrost_atic calculations. However,
R-EMM 2.2.2 4 230 417 it is easier to use atomic cutoffs in FMM, because it is more
(2,2,22 4 250 64.4 natural to treat all atoms equally when assigning particles to
(4,4, 8 -1.28 245 cells on the tree. In our implementation, an atomic cutoff is
(4,4, 8 —4.00 35.4 used for the SPC water molecules. The fast translational and
(4*4'33 12 —084 168 rotational motion of the small water molecules produces
(4,4, 12 -3.75 24.1 , ; :
large charge fluctuations at the cell boundaries, which may
3Using a smooth switching function. induce large force fluctuations for those water molecules
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CPU vs. Accuracy space cutoff radius;., was varied frgn 6 A upin incre-
(SPC water) ments of 1 A. For these runs, the time spent creating the
10 - y Verlet list of nonbonded interactions was subtracted because
the implementation we used was patrticularly slow; thus the
Ewald timings represent a lower bound. In contrast, the tim-
ings for the FMM have not been corrected.
Several observations are worth making. The CPU time
spent in the Ewald metha@ninus the generation of the Ver-
let list) is the sum of:(a) the CPU time spent in the real-
space calculation, an¢b) that spent in the reciprocak)
space part. The former increases with increasingthe lat-
ter with increasingkmay.>’ FOr any given accuracy, there is
always a compromise between these two terms, since one
can always decreasg as long as both the convergence pa-
rametera andk,,, are increased accordingly. As a compatri-
, , son between the two Ewald curves corresponding to the
10 10° 10° 10 ; ;
CPU (seconds) 14 817 molecule system shows, increadipgy aqda makes
the curves steeper. Fér,,, large enough, the timéand ac-
FIG. 3. Maximum relative error in the force vs CPU tinfser step. The ~ curacy would be almost independent of, since the real-
filled triangles show the results using the Ewald summation method withspace sums would decay very rapidly. However, for a given
kmax=5; the empty triangles were obtained wkh.=10 (but only for the ; ; ; ; ; _
14 817 molecule systemthe empty circles correspond to the use of the Fe mcr_easmgkmax Increases the C_PU time, and ,that IS Te
FMM. From left to right, the data sets correspond to 2175, 3104, 14 s17flected in the fact that the white triangles are shifted to the
and 28 886 SPC water molecules, respectively. From the top down, theight_
Ewald results were obtained by varying the cutoff radius frgm 6 tor For largep (number of multipolel the CPU time for the
=30 A or less; the results for the FMM were obtained by varying the EMM. f fixed | IL is dominated b d not by th
number of multipoles fronp=4 to p=19. Note that the Ewald timings do , Tor a IXe. evg » 1S dominate . )p and not by the
not include the CPU time needed to generate the Verlet list of nonbondetiumber of particles in the system. This is clearly shown by
Interactions. the curves corresponding to 14 817 and 28 886 molecules:
both havel =4 and they coalesce fgrlarger than about 13.

. ) At very high accuracy, the Ewald method with small cutoff
around the cell boundaries. Using a smooth cutoff reduces .. large convergence parameteis more efficient—at

the abrupt force changes to some extent, thus significantlpéast for the 14 817 molecule case. For the larger system, the
improving the energy conservation. The use of moleculaqzw”vI will be faster

cut(_)ffs for water will improve the energy conservation, al As discussed in the preceding section, FMM with 7
lowing the use of a smallep than thep=7 now used for . : . .
; : . is accurate enough for simulations of solvated proteins, as
protein/water, thus saving CPU time. . . .
measured by energy conservation. At this lefelrth circle
from the top, the CPU time for the 14 817 molecule case is

Maximum relative error in the force
=

O—OFMM
A—AEwald (k, =5)
A—AEwald (k,.=10)

VIIl. COMPARISON OF FMM WITH EWALD about 4.3 times faster than for the Ewald method with the
SUMMATION METHODS same accuracgnote that thek,,,=5 and thek,,,=10 curves
A. Periodic FMM versus Ewald summation cross at about this point

The combined -RESPA/FMM algorithm is much faster
n the standard Verlet/Ewald method for large solvated
roteins with periodic boundary conditions. Comparative

Figure 3 shows a comparison of the CPU times per ste%a
for the Ewald methodtriangles and the FMM(circles. The
calculations were performed on a Hewlett—Packard HPP

9000/735 runningA.09.01 at 100 MHz; the system studied TPbLIJ t'rﬂmﬁf _?_Lthgslcjlvgted ?rot?n \jyslte;rés alrs I|stehd (;n
consisted of pure SPC water with a varying number of mol-' 22'€S lI=1V. The R L= C L L

ecules. From left to right, the lines correspond to system¥@ry between 27 and 562 ks/ps as the system size varies
with: 2175, 3104, 14 817, and 28 886 SPC molecules, rebetween 8000 and 44 000 atoms. In contrast, the CPU times
spectively; the data for the Ewald method wikh,—=10 for ther-RESPA/FMM method vary between 8 and 24 ks/ps,

(white triangle$ was obtained with the 14 817 molecule sys- "espectively, with similar levels of accuracy in energy con-
tem. The various data points on each line were obtained a&€rvation. This gives a factor of 3 to 23 in CPU time saving
follows: for the FMM (circles the number of levels was for systems with about 8000 to 44 000 atoms at the same
fixed (L=3 for the 2175 and 3104 molecule systerns: 4 accuracy. The CPU time savings will be even more promis-
for the other and the maximum number of multipoles, ing for even larger systems, such as solvated nucleic acids. In
was varied from 4 up to 19. For the Ewald method, thesummary, we observe thaetRESPA/FMM provides a com-
maximum number ok-space vectorsk(,,,) was fixed(at 5 putational advantage over standard Verlet/Ewald even for the
for the black triangles and 10 for the white triangles, with thesmallest macromolecular system we have simulated, of about
convergence parametemrmodified accordinglyand the real- 8000 atoms.

J. Chem. Phys., Vol. 106, No. 23, 15 June 1997



Figueirido et al.: Large scale simulation of macromolecules in solution 9845

TABLE V. CPU timing comparison of FMM vs SPME for a 40 A water box TABLE VI. CPU timing comparison of FMM vs SPME for solvated protein
(2038 moleculgssystem. The CPU time of simple cutoff a{=10 A is system. The CPU time of simple cutoff at=10 A is used as reference.
used as reference. Both Coulombic and van der Walls interactions are irffhe data for SPME is taken from Procaetial’s article (preprin). CPU
cluded. The data for SPME is taken from Essnedral’s article[J. Chem.  time for SPME refers to DEC-Alpha 3000/800 s workstations; and CPU
Phys.103 8577,(1995]. The results were obtained using the Verlet inte- time for FMM refers to IBM R6000 SP2 workstations. A levet 3 for the
grator. 8412 atoms system arld=4 for the 22 661 atoms system, and multipole
orderp=6 for both are used in FMM.

Method Af CPU (s/step ratio
CUT (r,=10A) — 7.24 R= £LE crU .
SPME 5%10°4 736 101 Atoms Method At (fs) r. (A) log AE AKE (10° s/ps) ratio
CUT (r;=10 é) — 9.07 707¢  CUT 1 100 0.018 6.06
FMM (p=4) 1.68<10° 21.26 2.34 SPME 1 100 0.018 9.65  1.59
FMM (p=6) 4.32¢10° 24.88 2.74 RSPME 12 100 0.036 259 0.43
FMM (p=8) 1.25¢10 32.72 3.60 8412  CUT 1 100 -258 8.92
— — FMM 1 — -368 35.04  3.92
aTiming for SGI-R4400, a cutoffo9 A in direct sum(a cutoff larger than R-EMM 12 . _3927 8.48 0.95

9 A is necessary for van der Waals forcasd 4th order interpolation with
36X 36x 36 grid used. 20627  CUT 1 100 18.5

bTiming for IBM R6000 SP2, level =3, multipole termsp as specified. SPME 1 10.0 287 1.55
R-SPME 12 10.0 7.7 0.42
2266F CUT 1 100 -260 31.50
FMM 1 — —-3.75 94.17 2.98
B. Comment on FMM versus PME REMM 12 _  _311 1648 052

Recently, the particle mesh Ewald meth®ME), and a , :

th variant(SPME) develoned by Dardeet al. have 4C-Pycocyanin(3033 atompin 1335 water molecules.
Smoo . ) v p 23_25y i PRibonuclease H2466 atomysin 1982 water molecules.
been described in the literaturk? They are based on cRhodobacterial Sphaeroidé8321 atomsin 4101 water molecules.
Hockney and Eastwood$ idea of assigning charges to a dArabinose-binding proteit4691 atomjsin 5990 water molecules.
mesh according to their real space positions; the CPU time
savings come from applying the fast Fourier transfoFf . . .

gs co pplying . OFAT) bonding and van der Waals forces are also included in both
to the particle mesh to accelerate the reciprocal-space calcy-

lations of the Ewald sum. The algorithms are found to be o PME and FMM when performing real MD S|muIr.;1t|ons.. The
orderO(N log N). data for the FMM are collected from 1 ps MD simulations.

. . . The results show that the SPME is about 1.6 times slower
There are three different algorithms for the calculation of ; ~ .

. : . I than the simple cutoff method ag=10 A for systems with
the electrostatic forces in systems with periodic bounda%etween 7070 and 20 627 atoms. In contrast. the EMM is
qondition;:(a) the_(optimized E\.Na.ld methodz which s_cales_ between 3.9 and 2.6 times slowér than the ’simple cutoff
like O(N37?), prowded_afast palr_llst generation algorithm is method for comparable system siZ&12 and 22 661 at-
gzigé?c) ?&;Mﬁhl\’c\lg 'g?aslgglﬁlf el)llz%NFlg?\’;gr;Padr;Ce) tshyes_ oms, respectively Thus the FMM is still slightly slower
tems (N>10), it is expected that the FMM will be the best ;[gfnerssl\gtEe:r?sr iZSZnOOOthsgci)lrgﬁl.eUnfortunately, SPME data for
choice, given its linear algorithmic complexity. However, gHovx)//ever as shown in Téble 6 after combining the
what about systems of 10 000 to 100 000 atoms, which are bespa me;thod with SPME and FMM (this articld tr?e
currently feasible in computer simulation? ; . ’

Table V gives CPU time comparisons between SBME particle-mesh Ewald and fast multipole methods have com-

and FMM for a 40 A system composed of 2038 SPC Watelparable performance for systems witt20 000 atoms. They

molecules. All the results were obtained using the Verlef'® both about twice as fast as a simple spherical cutgff (

integrator. The CPU time of a simple spherical cutoff with =10A). The SPME benefits most from the use of a very

r.=10 A is used as reference for comparison. The data or%maII real space pafas small as=6 A) so that fast Fou-

SPME is taken from the study of Ess al25 The timing rier transforms, which speed up thespace part, can be used

. . ._to maximum advantage. In contrast, in order to gain the most
studies show that the CPU times for SPME and the spher|c§rom r-RESPA it is gesirable to use a large C?Jtoff for the

10 A cutoff are comparable for an rms force accuracy of )
~5%10-%. In contrast, FMM is about 3 times slower than real space sum. Thus, there is a trade off between the SPME

: o andr-RESPA methods. While the two methods appear to be
the simple cutoff method at 10 A, for a similar accuracy o
(using multipoles up t=6). Thus, the FMM method is competitive for~20 000 atoms, we expect that the RESPA/
: : ' MM will be faster than the RESPA/SPME method for even
approximately 3 times slower than SPME for a system o . . .
6000 atoms larger systems, because of their respective computational

Table VI gives a comparison of CPU times for SPME complexities.

and FMM for solvated proteins. The simple cutoff is again
used as reference. The data for SPME is taken from Procacgi”l' CONCLUSIONS

et al>® Two similar size protein systems are compared in  We have extended the FMM method to periodic sys-
Table VI. For the FMM, leveld. =3 andL =4 are used for tems, with a full derivation of the local field transformation
the 8412 atoms and 22 661 atoms systems, respectivelgdue to all distant multipoles in the periodic replicas. Our
multipole terms up tq=6 are used for both systems. The transformation, embodied in E¢R9), can be easily reduced
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to the normal Ewald sum under proper limiis=0, r=0, APPENDIX A: RECIPROCAL-SPACE SUM

and no self_-energy however, we were unable to reduce the =, ;g appendix we derive a reciprocal-space represen-
corresponding transformation in Ref. 49 to the proper Ewalqation for the sum

limit. After combining the periodic FMM witlhr-RESPA, we
devised a new molecular dynamics algorithm for charged
systems, such as solvated proteins, with periodic boundary
conditions. This combination of a reversible multiple time
step integrator and an efficient algorithm for calculatingWe first note that for any>0 the integral converges when
long-range electrostatic interactions has been shown to be= 0 and vanishes identically. We then rewrite the sum using
powerful method for such simulations. The speedup ofhe Jacobi identity

r-RESPA/FMM over the standard Verlet integrator with the R

Ewald sum is more than 20 for a protein water system with >, f(n)= >, f(2mk) (50

44 000 atoms. As compared to the recently developed par- "*° K

ticle mesh Ewe}IdPI\{IE), ther-RESPA/FMM method has a \yhere the Fourier transforthis defined by

break even point with the-RESPA/PME method for sys-
tems with approximately 20 000 atoms. It is expected that
the r-RESPA/FMM will be faster than the-RESPA/PME
for larger systems, since the asymptotic computational co
plexity is O(N log N) for PME andO(N) for FMM.

In comparison with the results of a previous artitdé¢he @ i
introduction of an aqueous solvent requires more accurate A:; fo dtt
calculations than for isolated proteins in order to achieve the
same level of energy conservation. This we attribute to the
fast translational and rotational motions of the small water
molecules which can produce large charge fluctuations when , . .
crossing cell boundaries, and the use of an atom-based cutoff For_kqto, the mtegrals are finite in the limét—0 as can
instead of molecule-based cutoff for water molecules inPe €asily seen by a dimensional argument and the fact that
FMM cell separations and-RESPA force breakups. the spatial integral will de;cay exponentially | —oc.

It has also been shown that the use of a smooth switch- If >0 andk=0, the integral
ing function to effect the force separation for the direct in- R ,
teractions allows the use of very long time steps. The current f dy|ly|'Y"(y)e (s (53
implementation of smooth switching is suboptimal and re-
sults in a method that is about twice as slow as the cell-base¢nishes identically due to the spherical symmetry of the
Separation for a gi\/en time step. Several avenues for imt:egularization function. Fot=0, this is not true and it is
provement are under investigation, such as: the use dfnowrP" that in this case there is a divergence wigen0
Verlet-like lists of interactions, and use of cubic rather thanthat cancels only if the system is electrically neutral. In our
spherically symmetric switching functions. treatment this cancelation is automatic since there id no

The periodicr-RESPA/FMM described in this article =0 (monopole term to worry about. If the regularization
has been implemented inside the molecular mechanics pacfunction is not spherically symmetric, the above argument
ageIMPACT.38 The resultant speed up has made possible foﬂoeS not hold and we must proceed with more care. It is still
us to carry out nanosecond time scale simulations of pHtrue that the limits—0 do not diverge fot>0, but there is

dependent effects on protein stabilipanuscript in prepa- a finite contribution forl = 1. However, as discussed previ-
ration). ously, we do not need the sums for oddTo compute the

Finally, it should be noted that the underlying electro- Fourier coefficients fok# 0, we make use of the expansion
static model is a periodic form of the Coulomb potenttae ~ (Ref. 64

lX2 ~
A= f dtt|+1/2_12 ||n”lYi’T‘l(n)e—(s+t)”nH2. (49)
0 n#0

f(u)= J dxe ™ (UXf(x). (51)

ml:,lsing this identity, we obtain the expression

x [ daye z=tspyvp@e ¢ s

Wigner potentigl. There are artifacts associated with the pe- p
riodic models, as there are with any computer models for — g-27itkx= jl(2| +1)j,(2|k||x|)
macroscopic systems. The nature of the artifacts associated =0
with the Wigner potential is a topic of current inter&%t®3 |
X > YMK)Y,M(X), (54)
m=—1
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4wi'Y,m(|2)f r1+2) (2a|k|r)e " dr. (56)
0

Thus, we obtain fot>1 and ever(since for odd the sum
vanishes identically

_ ymer 1_g [@®l2mk? g
A=, 4mi'YM(K)|[ 27K dtt
k 0

X f:drr'*zh(r)e*”Z. (57)
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Our implementation of the FMM consists of two sets of
routines:(a) the “core” routines, which are designed to be
independent of the way a particular simulation program rep-
resents the system; arfl) some “interface” routines that
provide the necessary glue to connect the core routines with
the rest of the MD program. We have written this interface
for the programmpACT,*® an MD program developed at Rut-
gers that is very well suited to the simulation of biomol-
ecules in solution. Moreover, this interface was written in
such a way that the FMM can be run in “serial mode” on a
single workstation or in “parallel mode,” on either a cluster

To compute the first integral, we expand the Bessel funcof workstations or a massively parallel computer. For port-
tion in a Taylor series and integrate term by term, obtaininggbility, the parallel mode is based on the parallel virtual ma-

J’O eftrerJijl(r)dr

© 2
fo e tr r|+l/2+lJ|+l/2(r)dr

r | +1/2+ 2k
k
m [ * 2 (_1) (E
:\@J e tr l,I+1/2+1§: 1
0 k=0
KIT| k+1+5+1
:\/f (=1)"
2150 praziaggr k+|+%+1
><Joce—trzl,2|+2k+2dr
0
1
(—1)kr I+§+k+1)

S

k=0
2| +1/2+2kk! r

. e—l/4t

k+1+ E+1)2t|+1/2+k+1
2

(58)
The integral ovet becomes then
jaz/“zwk“zdtt|+1/2_l \/E e_l/4t
0 2 (Zt) +12+1
m 1 faZIHZﬂ-ksz e V4 [ze Ikl
~ N2 |, t rva 51 )
(59

chine (PVM)® message-passing library; a measure of the
ease of portability is the fact that essentially the same code
runs on clusters of workstations, the IBM RS6000 SP2 and
the Cray T3D. Only the interface needs to know whether it is
running in serial or parallel mode; the core routines are in-
dependent of the mode.

The core routines take care of such chores as: building
the tree structure; loading the particles onto the (cedy the
charges and positions need to be kngwromputing the
multipole moments; computing the local expansion coeffi-
cients. We also provide routines to compute the potential and
field at an arbitrary point, but those computations are best
left to the interface routines since the core routines do not
know about, for instance, the integration algorithm. There is
another, perhaps more important, reason for making the in-
terface code responsible for the force computation. In bio-
molecular simulations, one needs to compute not just the
electrostatic but also shorter ran@ennard-Jones, hydrogen
bondg forces. Typically these forces are handled by the use
of a so-called list of nonbonded interactidnshich needs to
be updated every so often. In our code, however, we take
advantage of the fact that the particles have already been
spatially sorted at the time they were loaded on the tree and,
since in any case we must compute the direct electrostatic
interactions with particles in the first and second neighbor
shells of each clustéat the lowest leve] we can at the same
time compute the short-range forces. One important point is
the following: not all pairs of atoms participate in nonbonded
interactions; some pairs are “excluded” because of chemical
constraintgthey are connected by one, two, or three bonds
It is more efficient, however, to disregard this complication
during the force computation and simply subtract the un-
wanted components afterwar@bis same approach was used
by Boardet al).?®

To implement the Schmidt and L¥emethod, we only

Combining all the above expressions we arrive at the resulfl®€d to add a function that computes the sums in(E8),

A= E ,n.|—1/2iIYIm(l'(\)”k”|—2e—772||kH2/a2_ (60)
k#0

APPENDIX B: IMPLEMENTATION DETAILS

minus the contribution from first and second neighbors. In
our current implementation, we are limited to constant vol-
ume simulations and therefore this computation needs to be
done only once and so we can afford to do it very accurately
(for eachl,m). There is one further subtlety: when using
periodic boundary conditions the contributions from the ex-

In this appendix, we will briefly describe our implemen- cluded atom pairs that must be subtracted are not purely
tation of the FMM, with and without periodic boundary con- Coulombic, but are given by the Wigner potential. Since

ditions, and its integration with-RESPA.

these atoms are very close to each other we approximate this
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potential by the first few terms in its expansion in powers ofwill be computed by several nodes. If internode communica-

r: tion is fast it might be preferable to avoid these multiplicities
of work, but for loosely connected networks of workstations
1 27 C .
dw(X)~—+ v r24+ T +0(r%). (61)  this is probably not the case.
r
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