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We discuss whether or not local information on the potential energy surface embodied by the
distribution of unstable instantaneous normal modes can be used to predict the hopping rates and
barrier heights for Zwanzig's model of self-diffusipR. Zwanzig, J. Chem. Phyg9, 4507(1983]

in simple liquids. Results from a set of simulations of Lennard-Jones particles done at multiple
temperatures and densities are presented. These simulations show that the theories which predict
diffusive barrier heights from the distribution of imaginary frequencies are questionable. This
discrepancy is due to the presence of imaginary frequency instantaneous normal modes which
persist into the solid phase. Model systems are used to show that imaginary frequency instantaneous
normal modes(and even those at the top of the barrier along that made not necessarily
indicators of diffusive barrier crossing as used in Zwanzig’s model. These false barriers are shown
to be the cause of all of the imaginary frequency zero-force modes in the solid as well as many of
the imaginary frequency modes in the high-density super-cooled liquid. We therefore dispute their
utility as predictors of barrier heights or hopping rates in related liquid systems. We also show that
attempts to separate the modes that are truly diffusive from those with false barriers using a
frequency cutoff or local information on the potential energy surface are not successful at removing
all of the non-barrier modes. @997 American Institute of Physids$S0021-960607)50336-9

I. INTRODUCTION been applied to many aspects of liquid and protein theory

. L _including Raman spectra rotational motion in molecular
In his 1983 papéron self-diffusion in liquids, Zwanzig fluids®  friction 1  the glass transitiont2  cluster

proposed a model for diffusion which consisted of “cells” 4 namicst®14 and as a probe of barrier height distributions
or basins in which the liquid’s configuration oscillates until it ;, peptides>16
sudd.enly finds a saddle po_int on.the potential energy surface |, this paper we focus on the appropriateness of INMs
and jumps to another basin. This model was based on angl; computing diffusion constants in simple liquidboth
supported by simulations done by Stillinger and Wébtin super-cooled and normalWe give evidence of the lack of
wh|c.h the liquid conflguratlpns_ generated b){ molecular dy'validity of many of the key assumptions of the INM thedry.
namics were quenched periodically by following the steepesihis evidence also undermines some of the more recent theo-
descent path to the nearest local minima on the potentiglag \which use subsets of the imaginary frequency
energy surface. Stillinger and Weber found that as theifjyns 111217 Fjrst we review the major ideas contributing to
simulations progressed, the quenched configurations Wel§ase theories and then we subject each of them to tests
stable for short periods of time and then suddenly j“mpe%gainst molecular dynamics simulations.
(with some re-crossingo other configurations.

Zwanzig's model predicts the diffusion constant using
the lifetime which characterizes the distribution of survival A- Instantaneous normal modes
times (exp(-t/7)) in the various basins, ang},(), the dis- The potential energy of the system at timean be ap-
tribution of normal mode frequencies in the nearest b&®in  proximated as a Taylor series expansion of the potential
quenchedconfiguration. His diffusion constant can be ex- around the configuration =0,

pressed as
V(r(t))=V(r(0))—F-(r(t)—r(0))
r

D ka 4

1
@) +50®=rO)"D-(r(h)=r(0)), @
Wwherer(t) is the vector of mass-weighted Cartesian coordi-
nates at time, F is the gradient of the potential in these
coordinates at=0,

whereM is the mass of the particles. Zwanzig used the De
bye spectrum fopy(w) and estimated- from the longitudi-
nal and shear viscosities of the liquid.

Keyes has proposed a further elaboration of Zwanzig's IV
basin-hopping modélKeyes’ contribution is a link between Fi==—or| (©)
the hopping times between basins and the density of states of (o)
unstable instantaneous normal mod&#sMs). INMs have andD is the Hessian
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Since the configuration is chosen from a trajectory of theyheren(w) is the normalized distribution of saddle frequen-
system at nonzero temperature, it will not necessarily be @jes about a given welf
minimum on the potential energy surface. Therefore, the  The second major assumption is that the barrier heights
force vectorF, will not necessarily vanish and the Hessian, are a function of the frequencies of the unstable modes. To
D, is not necessarily positive definite. obtain this functional dependence, Keyes first derives
Using a unitary transformatiorl)) that diagonalize®,  g(«:T), the relative likelihood that the system is in a barrier
one can describe the potential energy surface and the shqggion with frequencyw instead of one of the well regions.
time dynamics based on motion along thencoupled in-  g(;T) is obtained by summing the volume in configuration
stantaneous normal modes. The potential energy surface c8Pace surrounding each barrier region with frequencnd
then be written as a sum over the instantaneous normgjiyiding by the volume surrounding the well regions. The
modes of the potential at=0, double summation is carried out by first summing over all
1 well regions, and then summing over all barrier regions con-
V(r(t)=V(r(0)+ > { —f,0.t)+ Ewiqﬁ(t) , (5 nected to each minimum. This procedure over-counts the
« barrier regions, but the over-counting can be corrected with a

where the instantaneous normal mode coordinags), the ~ Simple multiplicative factorS(w;T) is estimated as
forces,f,, and frequenciesw, are related to the Cartesian

coordinates by the same unitary transformation: S(w'T)=(i Qbarr n(w)({e FAE) (10)
’ M/ Quell '
Aa()=[U-(r() =r(0)) ], "
f —[U-F], ©) Heres is again the number of barrier regions per well amd

is the number of wells per barrier. To simplify, Keyes as-
wi:[UT, D-U],,. sumes that all minima are e.quivalent 'and thus assigns single
values ofs andm to the entire potential energy surface. In
this approximation, the ratis'm is a fixed valué, but Keyes
does not connect the value wfto the INM density of states,
B. Diffusion via the imaginary frequency INMs som remains a free parameter in the theory. Althougis a
In Keyes' work, the primary quantity of interest is the fLee p:laramgter, it dli)es haveba phyglcal mean:jng whlcr:]h limits
configuration-averaged density of states of the INMs,N€ Vvaluesitcan taken mustbe an integer, and must have a

L ; ; - : lue larger than 1.
(p(w)), which is typically represented with the imaginary va - : : .
frequency branch plotted along the negativeaxis. Keyes If the system visits a collection of barrier regions each

represents the overall density of states as the sum of w@ith imaginary frequency, the density of unstable modes
parts at that frequency is estimated to be

(p(w))=(ps(®))+{pu(®)), (7
where the subscrigg denotes the stable or positive frequency

modes, and subscript denotes the unstable or imaginary \yhere the term in square brackets normalizes over the entire
frequency modes. o configuration spacéncluding both well and barrier regions
Keyes' theory of diffusion connect¢p,(w;T)) and  Readers interested in the full details of the derivation of
(=277, the average hopping rate between the basins 0§ ,,:T) and how it relates t¢p,(w;T)) should consult Refs.
the Zwanzig mode[Eq. (1)]. This connection rests on a g gnq 18.
number of assumptions. _ Keyes third assumption is that the barrier heights ob-
~ The first assumption is that the hopping rate out of ained via the instantaneous normal météM) frequencies
given well is adequately described by transition state theor{’Eqs.(lO) and(11)] are the same barriers to diffusion used in
w Q the transition state theory expressidtgs. (8) and(9)], i.e.,
_ well ﬂ — BAE(w) . . .
wh—< o )Q e , (8) that the barriers obtained by a local expansion of the po_ten-
well tial energy surface are the same barriers that lead to diffu-
wherew,q is the characteristic frequency in the wallE is  sion. Investigating the validity of this assumption is the pri-
the difference in energy between the well and barrier regiormary aim of this paper, and we will pursue it in greater detail
and Qp . /Que is the ratio between the partition functions in section lI.
at the barrier and well regiofexcluding the reaction coordi- An observation of theT and o dependence of
nate. (pu(w;T)) allows Keyes to fit the distribution with the func-
The average hopping rat8,,, is then estimated by tak- tional form
ing the sum over thes open exit channels from a given
minimum and averaging over the different well regiéns: (pu(w;T)>=a(T)we‘°‘“4’T2. (12

-1
: 11

(pu(@;T))~S(w;T) 1+f doS(w;T)
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Fitting this distribution over a range of temperatures resultstate theory. Once again, the calculated rates for self-
in an estimate for the hopping tifhe diffusion are essentially identical to those obtained by Keyes.
Bembenek and Laifd'? have suggested a method that
mc, (= w . Lo . . ..
Qp=5—| do_—=(pu(;T)), (13)  is very similar in character to the ideas in the Vijayadamodar
2m a(T) and Nitzan paper. In their approach, the potential energy is
wherec, is obtained from a fit using the functional form calculated as the system is deformed along the projections of
a(T)=c,—C,fy(T) where f (T)=Jdw(p,(w;T)) is the €ach instantaneous normal mode, and those modes which
fraction of imaginary INMs. have two minima in their projected potential energy surfaces

Keyes approximates the distribution of quenched fre-2re called “unstable” or double-wel(DW) modes. They

quencieq py(w) in Eq. (1)] for the Zwanzig theory by the Suggest that the diffusion constant should be calculated using
following fuqnctiona| form, only those modes which have double wells. They have also

classified the unstable or DW modes into “extended” or
aTw
1—c05{—)
Wg

(201 (14) “localized” modes depending on the fraction of atoms that
s participate in the projected motion along that mode. Their
wherews is the peak frequency of the stable mode density ofneasure of this fraction is the participation ratio,
states (ps(w))). N )t
N2 (€€,
| =

The result of Keyes’ work is a theory for the rate of P.= , (15
self-diffusion that is based on local information about the

potential energy surface obtained from only a few trajectoyyhere e, is the normalized eigenvector corresponding to
ries. The information required for his theory is static and canyodeqa. An extended moded) is one in which the partici-

be obtained without any dynamical information via Monte pation ratio ) is larger than a critical value. Bembenek
Carlo or random walk techniquéSThis would be the case ang Laird have studiep, as a function of the size of the
for any theory in which all dynamical information is derived system andfor p* = 1) were able to determine that the criti-
from transition state theory. If the assumptions underlyingca) participation ratio separating extended from local modes
the connection between the imaginary mode density of stat&§as 0.4!2 At other densities, it is conceivable that the par-
and the diffusion constant are correct, this represents a suleipation ratio that separates extended from localized modes
stantial contribution to our understanding of the process ofyould have a different value, but Bembenek and Laird use

Pq=

diffusion in liquids. the same cutoff §,=0.4) for different potential energy
functions, so we do not expect the cutoff to be appreciably
C. Modifications to correct for anharmonicities different at lower densities. Bembenek and Laird conclude

that at temperatures below the glass transitibg) { only the
localized modes contribute to the distribution of unstable or
DW modes, and that in the super-cooled liquids, the
tendedmodes are the primary contribution to diffusive mo-
tion.

The distribution of DW modes is supersebf the imagi-
nary frequency ZF-INMs proposed by Vijayadamodar and

Vijayadamodar and Nitzan improved upon Keyes’
theory by limiting the imaginary INMs included ifp,) to
those which havezero force!’ A zero-force instantaneous
normal mode(ZF-INM) is one for which|f,|<|w2cd|
whereé is a small constant and is the length scale used in
the Lennard Jones potential energy surfideg. (18) below].

o1s chos_en small enough so tha/ s is independent ob Nitzan, and either of these three distributighdl-INM, ZF-
(hereNg is the number of modes that match the zero-forc . ,
o ) . ) NM, or DW-INM) can be used fofp,(w)) in Keyes
criterion). The prime goal of the Vijayadamodar and Nitzan : )
- o . : theory. The imaginary frequency zero-force modes enforce
paper was to eliminate the contribution of the imaginary T : )
: proximity to a barrier more strictly than the DW modes
INMs which are not unstable INMs. In other words, they’ . . ' .
. . s . . (since they require the current configuration to be on top of
wish to include only the contributions from imaginary INMs A
X the saddle point along that ma¢gso one would expect them
that are near the top of a barrier. . : .
. : to be more useful at removing the non-barrier anharmonici-
Vijayadamodar and Nitzan have used two routes to ob-.
. . L , . ties. The zero-force INMs have the added advantage of fall-
tain the hopping rate. The first is based on Keyes’ analysis . . .
) . ihg out of the INM computation with a trivial amount of
but using the zero-force INMs instead of the full INM den- additional computational work
sity. Even though the barrier height distribution is quite dif- P ’
ferent from Keyes’ work, the calculated self-diffusion con-
stants are similar for the two theories. Their approach still
assumes that the barriers measured by the ZF-INMs are tHg. Other INM approaches to diffusion
same barriers to diffusion used in Zwanzig's theory of self-

d|ffu|3|ont. Viiavad d d Nit d a “naive” tional approach to calculating the self-diffusion constant
q ?X 'h' Irj]aya amo atrh atn Itzan ;:r%pl)ose af na'vﬁ\l based on short time information. Their method is based on
model which assumes that every unstable zero-force N&alculating then'"-order moments of the velocity autocorre-

ar2|ses from a symmetric double-well potential WhereIation function(up ton=4) from thestableINM frequencies

WL arrier= — ®inima- A rate for crossing the barrier connect-
ing the two identical wells was calculated from transition C(t)=1—At?+Bt*+---. (16)

Adams and Stratt'* follow a somewhat more tradi-
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with parameters chosen to approximate the interactions be-

p =085 p =094
®—@ Trajectory L
<& == Quenched

V(r)=4e —Veuts (18

10 b |
]

A A R
1

0.0 — 4
+—eMD 03 tween argon atoms eE0.238122 kcal/mol, o=3.405
04 | A e A). %27y . is the standard Lennard-Jones potential evalu-

f o3 102 ated at the cutoff radiusr {,;=10 A) outside of which the

' potential energy is set to 0. The solid simulations were

E 02 started from the face-centered culffcc) lattice configura-

2 10 tion with a total kinetic energy that was twice the target

S olg temperature of the simulation. The liquid simulations were
00 0.0 also started in the fcc configuration, but with a kinetic energy

0.50 0.75 1.00 1.25 065 090 1.15 1.40
T (reduced units) T (reduced units)

that yielded an equilibrated temperature approximately twice
the melting temperature. After a 50 ps period of equilibra-
FIG. 1. Plots of the temperature dependence of the translational order pdion, the velocities were scaled repeatedly until the trajectory

rameter and the diffusion constant at 2 different densities. The left and righfy, 55 within 10 K of the target temperature. Another 50 ps
sides of the plot are for reduced densitigs’ € po®) of 0.85 and 0.94,

respectively. The top panels show the translational order parameter calci2€riod of equilibration followed the last velocity scaling, and
lated for the raw trajectorieolid line9 and for quenched trajectoriédot- 200 ps data collection runs began at the end of the equilibra-

ted lineg. In the bottom two panels, the closed circl@)(are the diffusion  tion. Diffusion constants were calculated via the Einstein re-
constants calculated via the Einstein relati&u. (17)], the diamonds ¢ ) lation duri | 500
are obtained using Keyes’ theory, and the crosse} &re calculated with ation during a longet p$ run.

the modifications in Ref. 17. The open circléS ) are results from simula- During the trajectory calculations, we accumulated the
tions done on super-cooled liquids. instantaneous normal mode frequencies every 1.2 ps and
used them to calculate diffusion constants using Keyes’
theory and the zero-force extension to his work.
The full time dependence of the velocity autocorrelation  Diffusion constants for the two INM-based theories have
function is then estimated using an interpolation introducetheen plotted along with diffusion constants calculated via the
by Isbisteret al*® and recently used by Egorost al. for  Einstein relatior[ Eq. (17)] in the bottom panels of figure 1.
computing vibration_al reIaxgtion timé_%.This interpolation |, poth INM-based theories we have adjusted the free param-
aIIow; for analytlc.mte_grann OC(%'” thg commoOn €X°  ater to match the computed self-diffusion constant at the
pressg)n for tht? dlgfusllon ??ESta d’ ar:jd IS a vsrlaBnt of higher density. The diffusion constants calculated via the
procefiures outlined aimost three decades ago by berne a'g%stein relation are essentially zero for temperatures below

Harp?* ) . . :
In section Il of this paper, we present results of Simula_the melting point. At temperatures just above the melting

tions done near the melting temperatures of systems of 10§Mperature, both INM-based theories do quite well at pre-
Lennard-Jones particles at a number of different densitieglicting the diffusion constant in the high density fluid, but
We have calculated the diffusion constants using Keyesheither of the INM-based theories predicts the sudden drop
theory as well as with the Vijayadamodar and Nitzan modi-in the diffusion constant below the melting temperature for
fications to the theory and compared them with the diffusioreither of the two densities that we studied. Note that the data

constants calculated via the Einstein relatfon presented in figure 1 are obtained from constant energy tra-
1 jectories, so the largest uncertainties are along the tempera-
D=Iim a(|ri(t)—ri(0)|2), (17)  ture axis. The data points each have a standard error of 0.06
toe in reduced temperature units along this axis.
wherer(t) is the position of particlé at timet. In section Paralleling the trajectory calculations, we also acquired

[1l we report our investigation of the origin of the imaginary data for “quenched” trajectories. Every 10 fs, we followed
frequency instantaneous normal modes in solids and liquidthe steepest descent path from the current configuration on
composed of Lennard-Jones particles. Section IV containthe real trajectory to the nearest local minimum. This tech-
our conclusions. nique was first explored by Stillinger and Wele?,and led
to Zwanzig's basin-hopping mod&l.We tracked the
quenched configurations in order to learn more about the
basins that are visited by liquids and solids at similar tem-
peratures.

We performed molecular dynamics simulations on sys-  In order to ascertain whether a given trajectory was in
tems of 108 particles interacting via the Lennard-Jones pathe liquid or solid phase, we computed the translational order
tential parameter,

Il. DIFFUSION CONSTANTS OF LENNARD-JONES
LIQUIDS AND SOLIDS
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LN 2 (4N 213 solids liquids
- - o - T 0.020 . ‘ ; ; .
(k)= [(N.Zﬁ cogk-rj)| + N; sin(k r,)) } , $=11;)f T":=11£80
(19 0.015 - t=078 T Tt=0
A §,=10 £,=0
wherek is a reciprocal lattice vector of the initial fcc con- % 0010 - T ]

figuration. In our casek=(2#/A)(—1,1-1), whereA is
the size of a unit-cell of the original fcc lattice. We averaged 0.005 - T ]

the translational order parameter over a sample ol M

statistically-independent configurations from both the raw 0.000 +
trajectory and the quenched configurations. The calculates p'=094 Tq:ffg
translational order parameters,and {,, are shown in the 0015 T;l(f% T foo
top panels of figure 1. At a reduced density=0.85, the A ¢,=10 =0
melting temperaturd* ~0.69 and ap* =0.94, the melting £ 0010 - T 1
temperaturel* ~1.2. Y

Particularly interesting is the fact that the quenched con- 0.005 T .
figurations of the solids all display a translational order pa-
rameter ¢,) of near unit value. This implies that from any 0.000 ~+ : = —+ :
configuration along the trajectories for a solid, the neares p =085
local minimum is the defect-free original fcc lattice configu- 0.015 Tgi%6775 T 1
ration. The order parameters for the liquids do not show any , ¢,=10
appreciable difference when comparing the regular anc % 0010 - T 1

guenched trajectories.
The discrepancies between the simulated self-diffusior 0.005 - T
constant and those calculated with the INM theories in the
solids led us tq wonder whether_ primary quantities used in 0000 —" e e o 100150
both INM theories(the INM density of stateg;p(w)), and o cm™ o (cm™)
the zero-force INM density of statelyo(w))) change in any
noticeable way as the temperature traverses the meltingg 2. The instantaneous normal mode density of st4iés)) (plotted
point. The densities of states for representative solids angith the imaginary frequency branch on the negativaxis) for a series of
liquids are plotted in figure 2. At identical densities, and atliquids and solids at the same density and at similar temperatures. The left
temperatures separated by only a few degrees, neith&jde of the figure containgo(w)) for a solid just below the melting tem-
. . . perature, while the right side of the figure sho{ugw)) for a liquid at the
(p(w)) or (po(w)) display any obvious difference that ;e density. The top, middle, and bottom rows are for reduced densities
would enable one to predict the phase from the spectrum. (,* =p¢?) 0f 0.85, 0.94, and 1.0, respectively. The upper line on each panel
The INM density of stateg,p(w)), is used to compute is the full INM density of states, while the lower line shows the density of
the derived quantitie§, anda(T) in Keyes’ theory. In the States for the zero-force INMs.
upper panel of figure 3 we have plotted the fraction of un-
stable mode$,, at several temperatures near the solid-liquid
phase transition. The fraction of unstable modes possessedemds us to question whether imaginary frequencies observed
small discontinuity near the phase transition temperaturdan solids (or liquids) are really giving us information about
The discontinuity is also present in the multiplicative prefac-the barriers to diffusion.
tor a(T) [Eq. (12)] shown in the bottom panel of figure 3. We have computed the imaginary frequency INM den-
Both a(T) and f, are the dominant parameters in Keyes’ sity of states for a solid and super-cooled liquid at identical
theory of diffusion. Therefore, one expects to find a discontemperatures and densities. The densities of states for these
tinuity in the self-diffusion constant when going from the systems are shown in the upper panel of figure 4 along with
liquid to the solid, yet this discontinuity is much smaller in a plot of the differences between the two systems. Note that
the predicted diffusion constants than it is in the temperatur¢he solid exhibits modes that are closer to zero while the
dependence of the real diffusion constant. super-cooled liquid exhibits modes at slightly higher fre-
Of particular interest in figures 2 and 3 is the presence ofjuencies. We have also plotted the densities of states for the
the imaginary frequency INMgand imaginary frequency imaginary-frequency double-we{DW), extended DW, lo-
zero-force INM3 in the solids The quenched trajectories in calized DW, and zero-force INMs in the lower panels of the
the solids all lead to the fcc structure and the diffusion consame figure. In all five of these distributions, we observe that
stants are essentially zero because there are no defects in the solid exhibits imaginary frequency modes, yet we know
solids, so it is clear that no diffusive barriers are being(from the quenches to the fcc configuratighat no barriers
crossed. Moreover, the projection of the full potential energyto diffusion are being crossed in the solid. Key/ess sug-
surface along some of the imaginary INMs has a double-welgested that in order to remove the non-barrier INMs from
structure, yet quenching the system from both sides of theonsideration in their theories, one should set a cutoff fre-
barrier results in the same defect-free fcc configuration. Thigjuency which separates the high-frequency barrier crossing

J. Chem. Phys., Vol. 107, No. 12, 22 September 1997



Gezelter, Rabani, and Berne: Barriers to self-diffusion 4623

LST Fuil nm ]
0.20 1.0
0.5
0.15 I
G2 0.0 ;
0.10 1.5
1.
0.05 0F
0.5
| e 0.0 [
270 S 15
I ] >
= 280 | ! = L0y
t;, - : : é 0.5
-2.90 - I
N— [}
B L ] SN’ 00
S 300 | : * v 150
y— . m V ]..5
L | ] L
-3.10 | ! oo T 1.0
-3.20 . L 1 . 0.5 |
. 0.0 0.5 . 1.0 1.5 0.0 |
T -
0.2
FIG. 3. The fraction of unstable normal modes shown in the upper panel an I
the multiplicative prefactoa(T) [Eq. (11)] shown in the bottom panel for . 0.1
two densities plotted versus temperature. The full circ@®$ ére calculated I
at p*=0.85 and open diamonds<() are calculated ap*=0.94. The 0.0 |
dashed and dotted lines indicate the phase transitidii &t0.69, p* =0.85 . .
andT* =1.20, p* =0.94, respectively. Notice the discontinuities at the tran- =30 =20 -10 0

sition temperatures. -1
P o(cm )

FIG. 4. Five related measures of the number of unstable modes at frequency
o for two Lennard-Jones systems at the same temperature and density
modes from the low-frequency modes that are due to anharp*=0.85, T*=0.6). In each of the five panels, the solid line is for the

monicities. The densities of states shown in figure 4 would aspolid, while the Fiashed line is for the super-coo_lgd liquid at thg same tem-
fist glance seem to confirm that the higher frequency modeTe. The diferene betueen e o denates of sates & shoun oo
are indeed more likely to be found in super-cooled liquidsinwms (top panel, for the imaginary frequencgiouble-well(DW) INMs (cf.
that are known to exhibit diffusive barrier crossing. WhetherRef. 12. The DW modes have been partitioned into localized and extended
or not a frequency cutoff is really what separates diffusiveP®W modes based on a participation rdfii&. (15] cutoff of 0.4. The lower
barrier crossinag motion from non-diffusive motion is still panel shows density of states for the imaginaeyo-forceINMs (cf. Ref.
9 17).

open for discussion, however. We will return to this point in
section Il

To summarize the results of our simulations, we haveswer to this question might point to possible methods for
seen that diffusion constants computed via the Einstein relasxtracting the relevant barriers for diffusion.
tion from very long trajectories show a substantial jump
when the solid melts. We have also seen that theories thzm
predict barriers to diffusion from the fraction of unstable '~
modes,f,, although they obtain a discontinuity at the melt-
ing temperature, do not reproduce a diffusion constant in the The plots of{p(w)) for the perfect solids in figure 2
solid that is many orders of magnitude smaller than in theshow a surprising number of instantaneous normal modes
liquid. Using only the zero-force instantaneous normalwhich have imaginary frequencies. At some densities, it is
modes as suggested in Ref. 17, the discontinuity is still mucimpossible to tell liquids from solids near the melting point
smaller than that calculated via the Einstein relation. It issimply by looking at{p(w)), even though the solid is in an
apparent, then that the imaginary frequencies are not an afec configuration with a translational order parameter of 0.8
curate measure of the barriers to diffusion. What then giveg¢due to thermal fluctuations of the atomic positions away
rise to the imaginary frequency INMs in the solids? An an-from their fcc lattice positionsand the liquid has an order

THE ORIGIN OF IMAGINARY FREQUENCIES IN
LENNARD-JONES SYSTEMS
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parameter approaching zero. LaViolette and Stillinger have 04 , , ,
also observed that there are imaginary frequency modes ir 5
solids that are at temperatures as low as one-fourth the melt
ing temperaturé®

The bulk of the so-called unstable INMs present in lig-
uids survive into the solid phase, and we have seen from the —0.6 : L ' R
evidence presented in section Il that these imaginary fre- —20-19 Q, 1.0 2.0 -1.5 Q, L5
guencies do not correspond to diffusive barrier crossing. We
would like to understand which motions lead to these imagi-
nary frequencies with the aim of modeling diffusion using
only those modes which really do cross barriers to diffusion.

We start our analysis by looking at the “quenched” tra-
jectories first explored by Stillinger and Welfer.For a long
trajectory, the configurations after every 10 fs were quenchec
to the nearest local minimum by steepest descent. If the bar
rier crossings really do lead to diffusion, then once a trajec-
tory has crossed a barrier into another basin, the quenche
configuration should differ from the original quenched con-
figuration. One useful measure of the displacement in con-
figuration space is
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wherer{l(t) is the position of particlé in the configuration
obtained byquenchingthe configuration at time. Stillinger FIG. 5. A contour plot of the potential energy surface for three colinear
and Weber have also tried to obtain an estimate of the hop-ennard-Jones argon atoms;, (is the distance between atoinand;). The
plng time, Th for each basin by observmg the time it takes instantaneous normal mode®4 andQ,,) have been evaluated at the point
for 5q(t) to experlence a Jumﬁ r1,=r,=4.75 A. Projections of the potential energy along these modes are
In the crystalllne solids, desplte the presence of Zeroshown in the upper two panels. Note that quenches from the minima on the
Qy, projection will both lead to the same minimum on the surface.
force imaginary INMs,5q is always found to be zero. This
means that in the solid, the configuraticadsvaysquench to
the minimum energy fcc configuration even though the tradated from the real barrier height in that directio®,, is not
jectory can be found at the tops of barriers quite frequentlya zero-force mode, however, so while it is used in predicting
This is an apparent contradiction. How can a trajectory thathe diffusion constants in Keyes’ theory, it would not be used
crosses barriers not be diffusing into an adjacent minimunin the zero-force extension.
on the potential energy surface? Quenches from each of the two minima on the projection
The answer to this riddle can be found by looking at theof the anti-symmetric stretchQ,) both lead back to the
instantaneous normal modes of a colinear three atom systersame minimum or basin, so the motion alo@g is clearly
The potential energy contours for such a system are shown inot diffusive. That is, there will be no long-time separation
figure 5. For configurations with;,=r,5>~4.4 A, the in-  of the atoms from their initial positions at these energ@s.
stantaneous normal modes are the symmetric stfgtttor is a zero-force mode, however, and would thus be used to
Q, in figure 5 and the anti-symmetric stretdliector Q). predict diffusion in both versions of the theory. It is this kind
At those configurations, at least one of the normal modef motion that we think is responsible for the confusing situ-
frequenciegcorresponding to motion along tlig, direction ation in the solids. This model system shows that there can
is imaginary, and the system is experiencimgforcealong  be imaginary frequency INM&ven zero-force INMswhich
that direction. Quenching the configuration on either side oflo not cross diffusive barriers.
the barrier leads back to the same minimum energy structure It would be reasonable to argue that these kinds of mo-
even though the trajectory has crossed a barrier! tion (imaginary modes that quench to a single minimum
In the configuration used to evaluate the INMs in figuredon't really exist in a system with many more degrees of
5, bothinstantaneous normal modes have imaginary frequernfreedom since they require a relatively high potential energy
cies. The symmetric stretch modg, , does have the equiva- in order to be observed. As evidence against this argument,
lent to a barrier to diffusior(at infinite separationwith a we have plotted contours of representativéwo-
barrier height of 2. If the INMs were evaluated at a differ- dimensional potential energy surfaces that are felt by indi-
ent point along this moder (,=r,3), the frequency would vidual atoms from our simulations when all other atoms have
change continuously from a positive frequency at smatl  been frozen in place. These contours are shown in figure 6.
an imaginary frequency, and eventually to O at infinite sepain the potential energy surfaces for the solid, super-cooled
ration. This means that the frequency ald@g is uncorre-  liquid, and for one of the liquid configurations, it is easy to
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FIG. 6. Representative contour plots of the local potential energy surfac

felt by single atoms when all other atoms have been frozen. Péjeisd

(c) were in a super-cooled liquid and solid, respectivddgth atT* =0.6, o (Cm'l)

p* =0.85). Panelsb) and(d) were in liquids(both atT* =0.81,p* =0.85).

The solid dots on the surfaces illustrate points on the surface with at least

one zero-force imaginary mode. In pané (c), and(d), quenching from  FIG. 7. The density of states for all of the imaginary frequency ZF-INMs

either side of the dot leads to the same minimum. In péoelthe system  (dotted ling and also for those which quench to the same basin from both

can quench to two different local minima, but we were only able to observesides of the barrier along that INKéolid line) for super-cooled liquid argon

configurations like this in the liquid. The contours are 0.2 kcal/mol apart. at reduced densitp* =1.0. At the lower temperature, nearly all steepest
descent paths starting on either side of the barrier along the imaginary ZF-
INMs lead to the same basin. This is not the case for the higher temperature,
where a large fraction of the imaginary ZF-INMs do quench to separate

see that there are regions with imaginary frequency that W”Fasins. A_s expe(_:ted, the density of ZF-INMs is shifted to higher imaginary
. . requencies at higher temperatures.

all quench to the same minimum on the potential surface. On

each of these surfaces, we have used a dot to indicate a

configuration which has an imaginamero-forcemode. In

the liquid, we were also able to find surfaces where configufalse barrier phenomenon. The simulations were done for a

rations on either side of a zero-force mo@® this reduced super-cooled liquid at a reduced densityy=1.0, a density

surface could quench to different minima. We were not able for which the Zwanzig model is thought to be corre@h

to find any of these surfaces in the solid configurations. Alsdower density liquids, the Zwanzig picture of basin hopping

evident in figure 6 is the rather low energy gap between théegins to break down, which makes this kind of analysis

locations of the zero-force modémdicated with dotsand  meaningles$.The most unexpected result is that almost all

the local minima. This implies that for systems with manythe saddles predicted from the imaginary ZF-INMs at

degrees of freedom the motions described in figure 5 ar@*=0.89 do not connect different basins. In the colder

even more accessible. Moreover, when all the atoms arsuper-cooled liquid, almost all of the barriers are false, just

moving, this energy gap can even decrease. as they were in the solids at lower density.

The question remains which of the imaginary frequency At a somewhat higher temperature, there are still a con-
INMs in the liquids describe saddles that connect tdiffer-  siderable number of false barriers. Also evident in figure 7 is
ent basins with respect to diffusion. In order to answer thisthe wide frequency range over which the false barriers are in
question we have classified the imaginary ZF-INMs accordevidence. There is no cutoff frequenggs suggested by
ing to the fate of the steepest descent path. If the quenchégeye$) which would allow one to easily separate the false
from both sides of the barrier along a given imaginary fre-barriers from those imaginary frequency INMs which are
guency ZF-INM result in the same configuration, then thatclose to real barriers.
mode is said to exhibit the “false-barrier phenomenon.” If Straubet al. have suggested that the cutoff should be in
the two quenched configurations differ, that imaginary fre-the height of the barrier rather than th&zequency'® This
guency ZF-INM is somewhere near a “real” barrier. Figure suggestion differs from the previous one only when the bar-
7 shows the full imaginary frequency ZF-INM density of rier heights are not correlated with the frequencies. We do
states and also the fraction of ZF-INMs which exhibit thenot see any reason to suspect that the false barrier problem
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time, quenching was done for modes in the 108 particle sys-

Solid Supercooled liquid )
08 tems) Those modes that lead to the same local minimum
06 Full INM Full INM were counted as false barrier modes.
’ We can see from the distribution of false barrier modes
04 (in both the super-cooled liquid and sglidhat none of the
02 distributions proposed to date will remove all of the false

barrier modes from the solid, and that many of the false
barrier modes persist into the super-cooled liquid. Bembenek
and Laird have observed that the extended DW modes dis-
appear at the glass transition temperatérand Sciortino
and Tartaglia have recently observed tladit of the DW
modes disappear dt, in super-cooled watér, but we do not

0.0 observe a similar phenomenon at the melting transition.

o | M ZE-INM In summary, we believe that the imaginary frequency
INMs observed in the solid are simply a measure of the
anharmonicities on the potential energy surface and do not

0.0
DW-INM
0.6

04

<p(@)> (x10%)

0.2

04

02 ” // ” correlate with the barrier heights of a diffusive process. The
00 /-—/\ fact that a simple three atom system can experience an
40 30 =200 100 0 =30 20 -0 0 imaginary frequency zero-force INM while still quenching to

@ em ) a single minimum argues strongly that this kind of motion is

FIG. 8. A complete analysis of the instantaneous normal matieds) for  the source of these modes on the potential energy surface for
solid and super-cooled liquid argdhoth atp* =1.0, T*=1.0). The upper @ much larger system of Lennard-Jones particles. In the sol-
panels show the densities of states for all of the imaginary frequency INMsids, we have observed exactly this behavionaginary fre-

In the middle panels, the imaginary frequency double-wW2W-INM) den- uency zero-force INMs which guench to a single mini-
sities are showitsolid lines and are segregated into “localtashed lines q y q 9

and “extended”(dotted line$ modes. The lower panels show the imaginary mum). Liquids traverse the same potential energy surface,

frequency zero-forcZF-INM) densities(solid line. The densities of ~and while we have not proven that this kind of motion is

states for thdalse-barrierzero-force INMs are shown With a dotted line _in responsible for the imaginary frequency INMs in the liquids

tmhgdk;céttom panel. Note thatll of the modes in the solid are false-barrier at all densities, it is clearly true for super-cooled liquid argon
' atp*=1.0.

We have seen that individual atoms can also experience
would not persist into the higher energy reginiéhe prob-  configurations on the local potential energy surface that ex-
lem exists at a wide range of barrier heights in figure 5, forhibit the same kind of behavidimaginary frequency zero-
example) Most importantly, this suggestion seems to argueforce INMs which quench to a single minimynThese were
against the main point of the original INM theories — if observed in the solids, as well as in the super-cooled and
barrier heights are uncorrelated with the local frequency ategular liquids. Since these modes are used to predict barrier
the top of the barrier, then a theory based on a local exparfrossing rates in both versions of the INM theory, we feel
sion of the surface can give no meaningfu| information aboufhat in their current form, diffusion constants calculated via
transition state theory rates. these theories have only accidental agreement with the actual

The disappearance of the INMs which are near true bardiffusion constants in the liquids.
rier regions with decreasing temperature might explain the
plateau regime observed in the multiplicative prefaet(r), IV. CONCLUSION

seen in figure 3 for lower densities. Ke$éms also observed We believe that the evidence presented above argues

this plateau regime at reduced dengity=1.0. We believe . . ; :
. A .. against the use of local information on the potential energy
that this plateau regime is indicative of super-cooled liquids

in which most(if not all) of the imaginary frequency INMs syrfa_ce(the IN.M frgquenme)sto predict dynamical proper-
- . ties like the diffusion constant. Our arguments against the
exhibit the false barrier phenomenon.

A complete picture of the density of states of imaginaryu.Se of the INM Trequenmes for this purpose can be summa-
. A ) > rized as follows:
frequency INMs in each of the distributions is shown in fig-

ure 8. These modes were calculated from 500 atom simulad) The diffusion constants predicted from INM and zero-
tions done ap* =1.0,T* =1.0. Each mode was examined to force INM densities of states for the solids are incorrect.

determine if it was a double-wellDW) mode, and DW Although Keyes specifically warns against using them
modes were segregated into “local” and “extended” DW for solids® there is nca priori way to identify the phase
modes using a participation rat{d&g. (15)] cutoff of 0.4, of matter from the INM density of states. This certainly
which is known to be the correct cutoff for this density and limits the predictive power of the theory.

number of particle$? Additionally, modes that met the zero- (2) It is possible that the wells on either side of imaginary
force criterion were quenched on either side of the barrier to  zero-force INMs can quench to the same local minimum
determine if that mode did indeed lead to a different local  on the surface. This is certainly true for model systems
minimum on the potential energy surfacd.o save CPU like the colinear three atom system in figure 5 and may
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be generally true of the full potential energy surface fora  Finally, we note that our investigations have been lim-
larger system of Lennard-Jones patrticles. The solids obited to atomic systems, and that the situation may be more
served in section |l visit low-energy regions of the po- complex for molecular liquids. Given the results presented in
tential energy surface, and quenches from both sides dhis paper, it is important to establish for molecular solids
imaginary frequency zero-force INMs lead to the fcc whether or not imaginary frequency instantaneous normal
structure. High-density super-cooled liquids also displaymodes are simply indicators of false barriers, anharmonici-
many modes with false barriers. Although higher-ties, and surface convexities as they appear to be in the
temperature liquids can visit a larger fraction of the po-Lennard-Jones solids.

tential energy surface, the surface itself is now known to

have regions for which the imaginary frequency INMs
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