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We discuss whether or not local information on the potential energy surface embodied by the
distribution of unstable instantaneous normal modes can be used to predict the hopping rates and
barrier heights for Zwanzig’s model of self-diffusion@R. Zwanzig, J. Chem. Phys.79, 4507~1983!#
in simple liquids. Results from a set of simulations of Lennard-Jones particles done at multiple
temperatures and densities are presented. These simulations show that the theories which predict
diffusive barrier heights from the distribution of imaginary frequencies are questionable. This
discrepancy is due to the presence of imaginary frequency instantaneous normal modes which
persist into the solid phase. Model systems are used to show that imaginary frequency instantaneous
normal modes~and even those at the top of the barrier along that mode! are not necessarily
indicators of diffusive barrier crossing as used in Zwanzig’s model. These false barriers are shown
to be the cause of all of the imaginary frequency zero-force modes in the solid as well as many of
the imaginary frequency modes in the high-density super-cooled liquid. We therefore dispute their
utility as predictors of barrier heights or hopping rates in related liquid systems. We also show that
attempts to separate the modes that are truly diffusive from those with false barriers using a
frequency cutoff or local information on the potential energy surface are not successful at removing
all of the non-barrier modes. ©1997 American Institute of Physics.@S0021-9606~97!50336-9#
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I. INTRODUCTION

In his 1983 paper1 on self-diffusion in liquids, Zwanzig
proposed a model for diffusion which consisted of ‘‘cells
or basins in which the liquid’s configuration oscillates until
suddenly finds a saddle point on the potential energy sur
and jumps to another basin. This model was based on
supported by simulations done by Stillinger and Weber2–5 in
which the liquid configurations generated by molecular d
namics were quenched periodically by following the steep
descent path to the nearest local minima on the poten
energy surface. Stillinger and Weber found that as th
simulations progressed, the quenched configurations w
stable for short periods of time and then suddenly jump
~with some re-crossing! to other configurations.3

Zwanzig’s model predicts the diffusion constant usingt,
the lifetime which characterizes the distribution of surviv
times (exp(2t/t)) in the various basins, andrq(v), the dis-
tribution of normal mode frequencies in the nearest basin~or
quenchedconfiguration!. His diffusion constant can be ex
pressed as

D5
kT

M E dvrq~v!
t

~11v2t2!
, ~1!

whereM is the mass of the particles. Zwanzig used the D
bye spectrum forrq(v) and estimatedt from the longitudi-
nal and shear viscosities of the liquid.

Keyes has proposed a further elaboration of Zwanz
basin-hopping model.6 Keyes’ contribution is a link between
the hopping times between basins and the density of state
unstable instantaneous normal modes~INMs!. INMs have
4618 J. Chem. Phys. 107 (12), 22 September 1997 0021-9606/
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been applied to many aspects of liquid and protein the
including Raman spectra,7,8 rotational motion in molecular
fluids,9 friction,10 the glass transition,11,12 cluster
dynamics,13,14 and as a probe of barrier height distributio
in peptides.15,16

In this paper we focus on the appropriateness of IN
for computing diffusion constants in simple liquids~both
super-cooled and normal!. We give evidence of the lack o
validity of many of the key assumptions of the INM theory6

This evidence also undermines some of the more recent t
ries which use subsets of the imaginary frequen
INMs.11,12,17First we review the major ideas contributing
these theories and then we subject each of them to t
against molecular dynamics simulations.

A. Instantaneous normal modes

The potential energy of the system at timet can be ap-
proximated as a Taylor series expansion of the poten
around the configuration att50,

V~r ~ t !!'V~r ~0!!2F•~r ~ t !2r ~0!!

1
1

2
~r ~ t !2r ~0!!T

•D•~r ~ t !2r ~0!!, ~2!

wherer (t) is the vector of mass-weighted Cartesian coor
nates at timet, F is the gradient of the potential in thes
coordinates att50,

Fi52
]V

]r i
U

r ~0!

, ~3!

andD is the Hessian
97/107(12)/4618/10/$10.00 © 1997 American Institute of Physics
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Di j 5
]2V

]r i]r j
U

r ~0!

. ~4!

Since the configuration is chosen from a trajectory of
system at nonzero temperature, it will not necessarily b
minimum on the potential energy surface. Therefore,
force vector,F, will not necessarily vanish and the Hessia
D, is not necessarily positive definite.

Using a unitary transformation (U) that diagonalizesD,
one can describe the potential energy surface and the s
time dynamics based on motion along the~uncoupled! in-
stantaneous normal modes. The potential energy surface
then be written as a sum over the instantaneous nor
modes of the potential att50,

V~r ~ t !!'V~r ~0!!1(
a

H 2 f aqa~ t !1
1

2
va

2qa
2~ t !J , ~5!

where the instantaneous normal mode coordinates,qa(t), the
forces, f a , and frequencies,va are related to the Cartesia
coordinates by the same unitary transformation:

qa~ t !5@U•~r ~ t !2r ~0!!#a,

f a5@U•F#a, ~6!

va
25@UT

•D•U#aa .

B. Diffusion via the imaginary frequency INMs

In Keyes’ work, the primary quantity of interest is th
configuration-averaged density of states of the INM
^r(v)&, which is typically represented with the imagina
frequency branch plotted along the negativev axis. Keyes
represents the overall density of states as the sum of
parts,

^r~v!&5^rs~v!&1^ru~v!&, ~7!

where the subscripts denotes the stable or positive frequen
modes, and subscriptu denotes the unstable or imagina
frequency modes.

Keyes’ theory of diffusion connectŝru(v;T)& and
Vh52p/t, the average hopping rate between the basin
the Zwanzig model@Eq. ~1!#. This connection rests on
number of assumptions.

The first assumption is that the hopping rate out o
given well is adequately described by transition state the

vh5S vwell

2p DQbarr

Qwell
e2bDE~v!, ~8!

wherevwell is the characteristic frequency in the well,DE is
the difference in energy between the well and barrier reg
andQbarr /Qwell is the ratio between the partition function
at the barrier and well region~excluding the reaction coordi
nate!.

The average hopping rate,Vh , is then estimated by tak
ing the sum over thes open exit channels from a give
minimum and averaging over the different well regions:6
J. Chem. Phys., Vol. 107, No
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Vh5E
0

`

dv
vwell

2p
sn~v!

Qbarr

Qwell
^e2bDE~v!&, ~9!

wheren(v) is the normalized distribution of saddle freque
cies about a given well.18

The second major assumption is that the barrier heig
are a function of the frequencies of the unstable modes.
obtain this functional dependence, Keyes first deriv
S(v;T), the relative likelihood that the system is in a barri
region with frequencyv instead of one of the well regions
S(v;T) is obtained by summing the volume in configuratio
space surrounding each barrier region with frequencyv and
dividing by the volume surrounding the well regions. Th
double summation is carried out by first summing over
well regions, and then summing over all barrier regions c
nected to each minimum. This procedure over-counts
barrier regions, but the over-counting can be corrected wi
simple multiplicative factor.S(v;T) is estimated as

S~v;T!5S s

mDQbarr

Qwell
n~v!^e2bDE&. ~10!

Heres is again the number of barrier regions per well andm
is the number of wells per barrier. To simplify, Keyes a
sumes that all minima are equivalent and thus assigns si
values ofs and m to the entire potential energy surface.
this approximation, the ratios/m is a fixed value,6 but Keyes
does not connect the value ofm to the INM density of states
som remains a free parameter in the theory. Althoughm is a
free parameter, it does have a physical meaning which lim
the values it can take.m must be an integer, and must have
value larger than 1.

If the system visits a collection of barrier regions ea
with imaginary frequencyv, the density of unstable mode
at that frequency is estimated to be

^ru~v;T!&;S~v;T!F11E dvS~v;T!G21

, ~11!

where the term in square brackets normalizes over the e
configuration space~including both well and barrier regions!.
Readers interested in the full details of the derivation
S(v;T) and how it relates tôru(v;T)& should consult Refs.
6 and 18.

Keyes third assumption is that the barrier heights o
tained via the instantaneous normal mode~INM ! frequencies
@Eqs.~10! and~11!# are the same barriers to diffusion used
the transition state theory expression@Eqs.~8! and ~9!#, i.e.,
that the barriers obtained by a local expansion of the po
tial energy surface are the same barriers that lead to d
sion. Investigating the validity of this assumption is the p
mary aim of this paper, and we will pursue it in greater det
in section III.

An observation of the T and v dependence of
^ru(v;T)& allows Keyes to fit the distribution with the func
tional form

^ru~v;T!&5a~T!ve2cv4/T2
. ~12!
. 12, 22 September 1997
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4620 Gezelter, Rabani, and Berne: Barriers to self-diffusion
Fitting this distribution over a range of temperatures res
in an estimate for the hopping time6

Vh5
mc2

2p E
0

`

dv
v

a~T!
^ru~v;T!&, ~13!

where c2 is obtained from a fit using the functional form
a(T)5c12c2f u(T) where f u(T)5*dv^ru(v;T)& is the
fraction of imaginary INMs.

Keyes approximates the distribution of quenched f
quencies@rq(v) in Eq. ~1!# for the Zwanzig theory by the
following functional form,

rq5F12cosS pv

vs
D G~2vs!

21, ~14!

wherevs is the peak frequency of the stable mode density
states (̂rs(v)&).

The result of Keyes’ work is a theory for the rate
self-diffusion that is based on local information about t
potential energy surface obtained from only a few trajec
ries. The information required for his theory is static and c
be obtained without any dynamical information via Mon
Carlo or random walk techniques.19 This would be the case
for any theory in which all dynamical information is derive
from transition state theory. If the assumptions underly
the connection between the imaginary mode density of st
and the diffusion constant are correct, this represents a
stantial contribution to our understanding of the process
diffusion in liquids.

C. Modifications to correct for anharmonicities

Vijayadamodar and Nitzan improved upon Keye
theory by limiting the imaginary INMs included in̂ru& to
those which havezero force.17 A zero-force instantaneou
normal mode~ZF-INM! is one for which u f au,uva

2sdu
whered is a small constant ands is the length scale used i
the Lennard Jones potential energy surface@Eq. ~18! below#.
d is chosen small enough so thatN0 /d is independent ofd
~hereN0 is the number of modes that match the zero-fo
criterion!. The prime goal of the Vijayadamodar and Nitza
paper was to eliminate the contribution of the imagina
INMs which are not unstable INMs. In other words, th
wish to include only the contributions from imaginary INM
that are near the top of a barrier.

Vijayadamodar and Nitzan have used two routes to
tain the hopping rate. The first is based on Keyes’ analy
but using the zero-force INMs instead of the full INM de
sity. Even though the barrier height distribution is quite d
ferent from Keyes’ work, the calculated self-diffusion co
stants are similar for the two theories. Their approach s
assumes that the barriers measured by the ZF-INMs are
same barriers to diffusion used in Zwanzig’s theory of se
diffusion.

Next, Vijayadamodar and Nitzan proposed a ‘‘naive
model which assumes that every unstable zero-force I
arises from a symmetric double-well potential whe
vbarrier

2 52vminima
2 . A rate for crossing the barrier connec

ing the two identical wells was calculated from transiti
J. Chem. Phys., Vol. 107, No
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state theory. Once again, the calculated rates for s
diffusion are essentially identical to those obtained by Key

Bembenek and Laird11,12 have suggested a method th
is very similar in character to the ideas in the Vijayadamo
and Nitzan paper. In their approach, the potential energ
calculated as the system is deformed along the projection
each instantaneous normal mode, and those modes w
have two minima in their projected potential energy surfa
are called ‘‘unstable’’ or double-well~DW! modes. They
suggest that the diffusion constant should be calculated u
only those modes which have double wells. They have a
classified the unstable or DW modes into ‘‘extended’’
‘‘localized’’ modes depending on the fraction of atoms th
participate in the projected motion along that mode. Th
measure of this fraction is the participation ratio,

pa[FN(
i 51

N

~ea
i
•ea

i !2G21

, ~15!

where ea is the normalized eigenvector corresponding
modea. An extended mode (a) is one in which the partici-
pation ratio (pa) is larger than a critical value. Bembene
and Laird have studiedpa as a function of the size of the
system and~for r* 51) were able to determine that the crit
cal participation ratio separating extended from local mo
was 0.4.12 At other densities, it is conceivable that the pa
ticipation ratio that separates extended from localized mo
would have a different value, but Bembenek and Laird u
the same cutoff (pa50.4) for different potential energy
functions, so we do not expect the cutoff to be apprecia
different at lower densities. Bembenek and Laird conclu
that at temperatures below the glass transition (Tg), only the
localized modes contribute to the distribution of unstable
DW modes, and that in the super-cooled liquids, theex-
tendedmodes are the primary contribution to diffusive m
tion.

The distribution of DW modes is asupersetof the imagi-
nary frequency ZF-INMs proposed by Vijayadamodar a
Nitzan, and either of these three distributions~full-INM, ZF-
INM, or DW-INM ! can be used for̂ ru(v)& in Keyes’
theory. The imaginary frequency zero-force modes enfo
proximity to a barrier more strictly than the DW mode
~since they require the current configuration to be on top
the saddle point along that mode!, so one would expect them
to be more useful at removing the non-barrier anharmon
ties. The zero-force INMs have the added advantage of f
ing out of the INM computation with a trivial amount o
additional computational work.

D. Other INM approaches to diffusion

Adams and Stratt13,14 follow a somewhat more tradi
tional approach to calculating the self-diffusion consta
based on short time information. Their method is based
calculating thenth-order moments of the velocity autocorre
lation function~up ton54) from thestableINM frequencies

C~ t !512At21Bt41•••. ~16!
. 12, 22 September 1997
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4621Gezelter, Rabani, and Berne: Barriers to self-diffusion
The full time dependence of the velocity autocorrelati
function is then estimated using an interpolation introduc
by Isbisteret al.20 and recently used by Egorovet al. for
computing vibrational relaxation times.21 This interpolation
allows for analytic integration ofC(t) in the common ex-
pression for the diffusion constant,22,23 and is a variant of
procedures outlined almost three decades ago by Berne
Harp.24

In section II of this paper, we present results of simu
tions done near the melting temperatures of systems of
Lennard-Jones particles at a number of different densit
We have calculated the diffusion constants using Key
theory as well as with the Vijayadamodar and Nitzan mo
fications to the theory and compared them with the diffus
constants calculated via the Einstein relation25

D5 lim
t→`

1

6t
^ur i~ t !2r i~0!u2&, ~17!

wherer i(t) is the position of particlei at time t. In section
III we report our investigation of the origin of the imagina
frequency instantaneous normal modes in solids and liq
composed of Lennard-Jones particles. Section IV conta
our conclusions.

II. DIFFUSION CONSTANTS OF LENNARD-JONES
LIQUIDS AND SOLIDS

We performed molecular dynamics simulations on s
tems of 108 particles interacting via the Lennard-Jones
tential

FIG. 1. Plots of the temperature dependence of the translational orde
rameter and the diffusion constant at 2 different densities. The left and
sides of the plot are for reduced densities (r* 5rs3) of 0.85 and 0.94,
respectively. The top panels show the translational order parameter c
lated for the raw trajectories~solid lines! and for quenched trajectories~dot-
ted lines!. In the bottom two panels, the closed circles (d) are the diffusion
constants calculated via the Einstein relation@Eq. ~17!#, the diamonds (L)
are obtained using Keyes’ theory, and the crosses (1) are calculated with
the modifications in Ref. 17. The open circles (s) are results from simula-
tions done on super-cooled liquids.
J. Chem. Phys., Vol. 107, No
d

nd

-
08
s.
s’
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n

s
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o-

V~r !54eF S s

r D 12

2S s

r D 6G2Vcut , ~18!

with parameters chosen to approximate the interactions
tween argon atoms (e50.238122 kcal/mol, s53.405
Å!.26,27 Vcut is the standard Lennard-Jones potential eva
ated at the cutoff radius (r cut510 Å! outside of which the
potential energy is set to 0. The solid simulations we
started from the face-centered cubic~fcc! lattice configura-
tion with a total kinetic energy that was twice the targ
temperature of the simulation. The liquid simulations we
also started in the fcc configuration, but with a kinetic ener
that yielded an equilibrated temperature approximately tw
the melting temperature. After a 50 ps period of equilib
tion, the velocities were scaled repeatedly until the traject
was within 10 K of the target temperature. Another 50
period of equilibration followed the last velocity scaling, an
200 ps data collection runs began at the end of the equili
tion. Diffusion constants were calculated via the Einstein
lation during a longer~500 ps! run.

During the trajectory calculations, we accumulated t
instantaneous normal mode frequencies every 1.2 ps
used them to calculate diffusion constants using Key
theory and the zero-force extension to his work.

Diffusion constants for the two INM-based theories ha
been plotted along with diffusion constants calculated via
Einstein relation@Eq. ~17!# in the bottom panels of figure 1
In both INM-based theories we have adjusted the free par
eter to match the computed self-diffusion constant at
higher density. The diffusion constants calculated via
Einstein relation are essentially zero for temperatures be
the melting point. At temperatures just above the melt
temperature, both INM-based theories do quite well at p
dicting the diffusion constant in the high density fluid, b
neither of the INM-based theories predicts the sudden d
in the diffusion constant below the melting temperature
either of the two densities that we studied. Note that the d
presented in figure 1 are obtained from constant energy
jectories, so the largest uncertainties are along the temp
ture axis. The data points each have a standard error of
in reduced temperature units along this axis.

Paralleling the trajectory calculations, we also acquir
data for ‘‘quenched’’ trajectories. Every 10 fs, we followe
the steepest descent path from the current configuration
the real trajectory to the nearest local minimum. This te
nique was first explored by Stillinger and Weber,2–5 and led
to Zwanzig’s basin-hopping model.1 We tracked the
quenched configurations in order to learn more about
basins that are visited by liquids and solids at similar te
peratures.

In order to ascertain whether a given trajectory was
the liquid or solid phase, we computed the translational or
parameter,

a-
ht

u-
. 12, 22 September 1997
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z~k!5K F S 1

N(
i 51

N

cos~k•r i !D 2

1S 1

N(
i 51

N

sin~k•r i !D 2G
1
2L ,

~19!

wherek is a reciprocal lattice vector of the initial fcc con
figuration. In our case,k5(2p/A)(21,1,21), whereA is
the size of a unit-cell of the original fcc lattice. We averag
the translational order parameter over a sample
statistically-independent configurations from both the r
trajectory and the quenched configurations. The calcula
translational order parameters,z and zq , are shown in the
top panels of figure 1. At a reduced densityr* 50.85, the
melting temperatureT* '0.69 and atr* 50.94, the melting
temperatureT* '1.2.

Particularly interesting is the fact that the quenched c
figurations of the solids all display a translational order p
rameter (zq) of near unit value. This implies that from an
configuration along the trajectories for a solid, the near
local minimum is the defect-free original fcc lattice config
ration. The order parameters for the liquids do not show
appreciable difference when comparing the regular
quenched trajectories.

The discrepancies between the simulated self-diffus
constant and those calculated with the INM theories in
solids led us to wonder whether primary quantities used
both INM theories~the INM density of states,̂r(v)&, and
the zero-force INM density of states,^r0(v)&) change in any
noticeable way as the temperature traverses the me
point. The densities of states for representative solids
liquids are plotted in figure 2. At identical densities, and
temperatures separated by only a few degrees, ne
^r(v)& or ^r0(v)& display any obvious difference tha
would enable one to predict the phase from the spectrum

The INM density of states,̂r(v)&, is used to compute
the derived quantitiesf u and a(T) in Keyes’ theory. In the
upper panel of figure 3 we have plotted the fraction of u
stable modesf u at several temperatures near the solid-liqu
phase transition. The fraction of unstable modes posses
small discontinuity near the phase transition temperat
The discontinuity is also present in the multiplicative prefa
tor a(T) @Eq. ~12!# shown in the bottom panel of figure 3
Both a(T) and f u are the dominant parameters in Keye
theory of diffusion. Therefore, one expects to find a disc
tinuity in the self-diffusion constant when going from th
liquid to the solid, yet this discontinuity is much smaller
the predicted diffusion constants than it is in the tempera
dependence of the real diffusion constant.

Of particular interest in figures 2 and 3 is the presence
the imaginary frequency INMs~and imaginary frequency
zero-force INMs! in the solids. The quenched trajectories i
the solids all lead to the fcc structure and the diffusion c
stants are essentially zero because there are no defects
solids, so it is clear that no diffusive barriers are bei
crossed. Moreover, the projection of the full potential ene
surface along some of the imaginary INMs has a double-w
structure, yet quenching the system from both sides of
barrier results in the same defect-free fcc configuration. T
J. Chem. Phys., Vol. 107, No
f
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leads us to question whether imaginary frequencies obse
in solids ~or liquids! are really giving us information abou
the barriers to diffusion.

We have computed the imaginary frequency INM de
sity of states for a solid and super-cooled liquid at identi
temperatures and densities. The densities of states for t
systems are shown in the upper panel of figure 4 along w
a plot of the differences between the two systems. Note
the solid exhibits modes that are closer to zero while
super-cooled liquid exhibits modes at slightly higher fr
quencies. We have also plotted the densities of states fo
imaginary-frequency double-well~DW!, extended DW, lo-
calized DW, and zero-force INMs in the lower panels of t
same figure. In all five of these distributions, we observe t
the solid exhibits imaginary frequency modes, yet we kn
~from the quenches to the fcc configuration! that no barriers
to diffusion are being crossed in the solid. Keyes6 has sug-
gested that in order to remove the non-barrier INMs fro
consideration in their theories, one should set a cutoff f
quency which separates the high-frequency barrier cros

FIG. 2. The instantaneous normal mode density of states^r(v)& ~plotted
with the imaginary frequency branch on the negativev axis! for a series of
liquids and solids at the same density and at similar temperatures. The
side of the figure containŝr(v)& for a solid just below the melting tem-
perature, while the right side of the figure shows^r(v)& for a liquid at the
same density. The top, middle, and bottom rows are for reduced dens
(r* 5rs3) of 0.85, 0.94, and 1.0, respectively. The upper line on each pa
is the full INM density of states, while the lower line shows the density
states for the zero-force INMs.
. 12, 22 September 1997
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4623Gezelter, Rabani, and Berne: Barriers to self-diffusion
modes from the low-frequency modes that are due to anh
monicities. The densities of states shown in figure 4 would
first glance seem to confirm that the higher frequency mo
are indeed more likely to be found in super-cooled liqui
that are known to exhibit diffusive barrier crossing. Wheth
or not a frequency cutoff is really what separates diffusi
barrier crossing motion from non-diffusive motion is sti
open for discussion, however. We will return to this point
section III.

To summarize the results of our simulations, we ha
seen that diffusion constants computed via the Einstein re
tion from very long trajectories show a substantial jum
when the solid melts. We have also seen that theories
predict barriers to diffusion from the fraction of unstab
modes,f u , although they obtain a discontinuity at the me
ing temperature, do not reproduce a diffusion constant in
solid that is many orders of magnitude smaller than in t
liquid. Using only the zero-force instantaneous norm
modes as suggested in Ref. 17, the discontinuity is still mu
smaller than that calculated via the Einstein relation. It
apparent, then that the imaginary frequencies are not an
curate measure of the barriers to diffusion. What then giv
rise to the imaginary frequency INMs in the solids? An a

FIG. 3. The fraction of unstable normal modes shown in the upper panel
the multiplicative prefactora(T) @Eq. ~11!# shown in the bottom panel for
two densities plotted versus temperature. The full circles (d) are calculated
at r* 50.85 and open diamonds (L) are calculated atr* 50.94. The
dashed and dotted lines indicate the phase transition atT* 50.69, r* 50.85
andT* 51.20,r* 50.94, respectively. Notice the discontinuities at the tra
sition temperatures.
J. Chem. Phys., Vol. 107, No
r-
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swer to this question might point to possible methods
extracting the relevant barriers for diffusion.

III. THE ORIGIN OF IMAGINARY FREQUENCIES IN
LENNARD-JONES SYSTEMS

The plots of ^r(v)& for the perfect solids in figure 2
show a surprising number of instantaneous normal mo
which have imaginary frequencies. At some densities, i
impossible to tell liquids from solids near the melting poi
simply by looking at̂ r(v)&, even though the solid is in an
fcc configuration with a translational order parameter of 0
~due to thermal fluctuations of the atomic positions aw
from their fcc lattice positions! and the liquid has an orde

nd

FIG. 4. Five related measures of the number of unstable modes at frequ
v for two Lennard-Jones systems at the same temperature and de
(r* 50.85, T* 50.6). In each of the five panels, the solid line is for th
solid, while the dashed line is for the super-cooled liquid at the same t
perature. The difference between the two densities of states is shown
dotted line. The distributions displayed are the densities of states fo
INMs ~top panel!, for the imaginary frequencydouble-well~DW! INMs ~cf.
Ref. 12!. The DW modes have been partitioned into localized and exten
DW modes based on a participation ratio@Eq. ~15!# cutoff of 0.4. The lower
panel shows density of states for the imaginaryzero-forceINMs ~cf. Ref.
17!.
. 12, 22 September 1997
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4624 Gezelter, Rabani, and Berne: Barriers to self-diffusion
parameter approaching zero. LaViolette and Stillinger h
also observed that there are imaginary frequency mode
solids that are at temperatures as low as one-fourth the m
ing temperature.28

The bulk of the so-called unstable INMs present in l
uids survive into the solid phase, and we have seen from
evidence presented in section II that these imaginary
quencies do not correspond to diffusive barrier crossing.
would like to understand which motions lead to these ima
nary frequencies with the aim of modeling diffusion usi
only those modes which really do cross barriers to diffusi

We start our analysis by looking at the ‘‘quenched’’ tr
jectories first explored by Stillinger and Weber.2–5 For a long
trajectory, the configurations after every 10 fs were quenc
to the nearest local minimum by steepest descent. If the
rier crossings really do lead to diffusion, then once a traj
tory has crossed a barrier into another basin, the quenc
configuration should differ from the original quenched co
figuration. One useful measure of the displacement in c
figuration space is

dq2~ t !5(
i 51

N

~r i
q~ t !2r i

q~0!!2, ~20!

wherer i
q(t) is the position of particlei in the configuration

obtained byquenchingthe configuration at timet. Stillinger
and Weber have also tried to obtain an estimate of the h
ping time,th , for each basin by observing the time it tak
for dq(t) to experience a jump.3

In the crystalline solids, despite the presence of ze
force imaginary INMs,dq is always found to be zero. Thi
means that in the solid, the configurationsalwaysquench to
the minimum energy fcc configuration even though the t
jectory can be found at the tops of barriers quite frequen
This is an apparent contradiction. How can a trajectory t
crosses barriers not be diffusing into an adjacent minim
on the potential energy surface?

The answer to this riddle can be found by looking at t
instantaneous normal modes of a colinear three atom sys
The potential energy contours for such a system are show
figure 5. For configurations withr 125r 23.;4.4 Å, the in-
stantaneous normal modes are the symmetric stretch~vector
Qa in figure 5! and the anti-symmetric stretch~vector Qb).
At those configurations, at least one of the normal mo
frequencies~corresponding to motion along theQb direction!
is imaginary, and the system is experiencingno forcealong
that direction. Quenching the configuration on either side
the barrier leads back to the same minimum energy struc
even though the trajectory has crossed a barrier!

In the configuration used to evaluate the INMs in figu
5, both instantaneous normal modes have imaginary frequ
cies. The symmetric stretch mode,Qa , does have the equiva
lent to a barrier to diffusion~at infinite separation! with a
barrier height of 2e. If the INMs were evaluated at a differ
ent point along this mode (r 125r 23), the frequency would
change continuously from a positive frequency at smallr to
an imaginary frequency, and eventually to 0 at infinite se
ration. This means that the frequency alongQa is uncorre-
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lated from the real barrier height in that direction.Qa is not
a zero-force mode, however, so while it is used in predict
the diffusion constants in Keyes’ theory, it would not be us
in the zero-force extension.

Quenches from each of the two minima on the project
of the anti-symmetric stretch (Qb) both lead back to the
same minimum or basin, so the motion alongQb is clearly
not diffusive. That is, there will be no long-time separati
of the atoms from their initial positions at these energies.Qb

is a zero-force mode, however, and would thus be use
predict diffusion in both versions of the theory. It is this kin
of motion that we think is responsible for the confusing si
ation in the solids. This model system shows that there
be imaginary frequency INMs~even zero-force INMs! which
do not cross diffusive barriers.

It would be reasonable to argue that these kinds of m
tion ~imaginary modes that quench to a single minimu!
don’t really exist in a system with many more degrees
freedom since they require a relatively high potential ene
in order to be observed. As evidence against this argum
we have plotted contours of representative~two-
dimensional! potential energy surfaces that are felt by ind
vidual atoms from our simulations when all other atoms ha
been frozen in place. These contours are shown in figur
In the potential energy surfaces for the solid, super-coo
liquid, and for one of the liquid configurations, it is easy

FIG. 5. A contour plot of the potential energy surface for three colin
Lennard-Jones argon atoms. (r i j is the distance between atomsi and j ). The
instantaneous normal modes (Qa andQb) have been evaluated at the poin
r 125r 2354.75 Å. Projections of the potential energy along these modes
shown in the upper two panels. Note that quenches from the minima on
Qb projection will both lead to the same minimum on the surface.
. 12, 22 September 1997
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4625Gezelter, Rabani, and Berne: Barriers to self-diffusion
see that there are regions with imaginary frequency that
all quench to the same minimum on the potential surface.
each of these surfaces, we have used a dot to indica
configuration which has an imaginaryzero-forcemode. In
the liquid, we were also able to find surfaces where confi
rations on either side of a zero-force mode~on this reduced
surface! could quench to different minima. We were not ab
to find any of these surfaces in the solid configurations. A
evident in figure 6 is the rather low energy gap between
locations of the zero-force modes~indicated with dots! and
the local minima. This implies that for systems with ma
degrees of freedom the motions described in figure 5
even more accessible. Moreover, when all the atoms
moving, this energy gap can even decrease.

The question remains which of the imaginary frequen
INMs in the liquids describe saddles that connect twodiffer-
ent basins with respect to diffusion. In order to answer t
question we have classified the imaginary ZF-INMs acco
ing to the fate of the steepest descent path. If the quen
from both sides of the barrier along a given imaginary f
quency ZF-INM result in the same configuration, then th
mode is said to exhibit the ‘‘false-barrier phenomenon.’’
the two quenched configurations differ, that imaginary f
quency ZF-INM is somewhere near a ‘‘real’’ barrier. Figu
7 shows the full imaginary frequency ZF-INM density
states and also the fraction of ZF-INMs which exhibit t

FIG. 6. Representative contour plots of the local potential energy sur
felt by single atoms when all other atoms have been frozen. Panels~a! and
~c! were in a super-cooled liquid and solid, respectively~both atT* 50.6,
r* 50.85). Panels~b! and~d! were in liquids~both atT* 50.81,r* 50.85).
The solid dots on the surfaces illustrate points on the surface with at
one zero-force imaginary mode. In panels~a!, ~c!, and~d!, quenching from
either side of the dot leads to the same minimum. In panel~b!, the system
can quench to two different local minima, but we were only able to obse
configurations like this in the liquid. The contours are 0.2 kcal/mol apa
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false barrier phenomenon. The simulations were done fo
super-cooled liquid at a reduced densityr* 51.0, a density
for which the Zwanzig model is thought to be correct.~In
lower density liquids, the Zwanzig picture of basin hoppi
begins to break down, which makes this kind of analy
meaningless.! The most unexpected result is that almost
the saddles predicted from the imaginary ZF-INMs
T* 50.89 do not connect different basins. In the cold
super-cooled liquid, almost all of the barriers are false, j
as they were in the solids at lower density.

At a somewhat higher temperature, there are still a c
siderable number of false barriers. Also evident in figure 7
the wide frequency range over which the false barriers ar
evidence. There is no cutoff frequency~as suggested by
Keyes6! which would allow one to easily separate the fal
barriers from those imaginary frequency INMs which a
close to real barriers.

Straubet al. have suggested that the cutoff should be
the height of the barrier rather than thefrequency.16 This
suggestion differs from the previous one only when the b
rier heights are not correlated with the frequencies. We
not see any reason to suspect that the false barrier prob

ce

st

e

FIG. 7. The density of states for all of the imaginary frequency ZF-INM
~dotted line! and also for those which quench to the same basin from b
sides of the barrier along that INM~solid line! for super-cooled liquid argon
at reduced densityr* 51.0. At the lower temperature, nearly all steepe
descent paths starting on either side of the barrier along the imaginary
INMs lead to the same basin. This is not the case for the higher tempera
where a large fraction of the imaginary ZF-INMs do quench to sepa
basins. As expected, the density of ZF-INMs is shifted to higher imagin
frequencies at higher temperatures.
. 12, 22 September 1997
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4626 Gezelter, Rabani, and Berne: Barriers to self-diffusion
would not persist into the higher energy regime.~The prob-
lem exists at a wide range of barrier heights in figure 5,
example.! Most importantly, this suggestion seems to arg
against the main point of the original INM theories —
barrier heights are uncorrelated with the local frequency
the top of the barrier, then a theory based on a local exp
sion of the surface can give no meaningful information ab
transition state theory rates.

The disappearance of the INMs which are near true b
rier regions with decreasing temperature might explain
plateau regime observed in the multiplicative prefactora(T),
seen in figure 3 for lower densities. Keyes6 has also observed
this plateau regime at reduced densityr* 51.0. We believe
that this plateau regime is indicative of super-cooled liqu
in which most~if not all! of the imaginary frequency INMs
exhibit the false barrier phenomenon.

A complete picture of the density of states of imagina
frequency INMs in each of the distributions is shown in fi
ure 8. These modes were calculated from 500 atom sim
tions done atr* 51.0,T* 51.0. Each mode was examined
determine if it was a double-well~DW! mode, and DW
modes were segregated into ‘‘local’’ and ‘‘extended’’ DW
modes using a participation ratio@Eq. ~15!# cutoff of 0.4,
which is known to be the correct cutoff for this density a
number of particles.12 Additionally, modes that met the zero
force criterion were quenched on either side of the barrie
determine if that mode did indeed lead to a different lo
minimum on the potential energy surface.~To save CPU

FIG. 8. A complete analysis of the instantaneous normal modes~INMs! for
solid and super-cooled liquid argon~both atr* 51.0, T* 51.0). The upper
panels show the densities of states for all of the imaginary frequency IN
In the middle panels, the imaginary frequency double-well~DW-INM ! den-
sities are shown~solid lines! and are segregated into ‘‘local’’~dashed lines!
and ‘‘extended’’~dotted lines! modes. The lower panels show the imagina
frequency zero-force~ZF-INM! densities ~solid lines!. The densities of
states for thefalse-barrierzero-force INMs are shown with a dotted line i
the bottom panel. Note thatall of the modes in the solid are false-barri
modes.
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time, quenching was done for modes in the 108 particle s
tems.! Those modes that lead to the same local minim
were counted as false barrier modes.

We can see from the distribution of false barrier mod
~in both the super-cooled liquid and solid!, that none of the
distributions proposed to date will remove all of the fal
barrier modes from the solid, and that many of the fa
barrier modes persist into the super-cooled liquid. Bembe
and Laird have observed that the extended DW modes
appear at the glass transition temperature,12 and Sciortino
and Tartaglia have recently observed thatall of the DW
modes disappear atTg in super-cooled water,29 but we do not
observe a similar phenomenon at the melting transition.

In summary, we believe that the imaginary frequen
INMs observed in the solid are simply a measure of
anharmonicities on the potential energy surface and do
correlate with the barrier heights of a diffusive process. T
fact that a simple three atom system can experience
imaginary frequency zero-force INM while still quenching
a single minimum argues strongly that this kind of motion
the source of these modes on the potential energy surfac
a much larger system of Lennard-Jones particles. In the
ids, we have observed exactly this behavior~imaginary fre-
quency zero-force INMs which quench to a single min
mum!. Liquids traverse the same potential energy surfa
and while we have not proven that this kind of motion
responsible for the imaginary frequency INMs in the liqui
at all densities, it is clearly true for super-cooled liquid arg
at r* 51.0.

We have seen that individual atoms can also experie
configurations on the local potential energy surface that
hibit the same kind of behavior~imaginary frequency zero
force INMs which quench to a single minimum!. These were
observed in the solids, as well as in the super-cooled
regular liquids. Since these modes are used to predict ba
crossing rates in both versions of the INM theory, we fe
that in their current form, diffusion constants calculated v
these theories have only accidental agreement with the ac
diffusion constants in the liquids.

IV. CONCLUSION

We believe that the evidence presented above arg
against the use of local information on the potential ene
surface~the INM frequencies! to predict dynamical proper
ties like the diffusion constant. Our arguments against
use of the INM frequencies for this purpose can be summ
rized as follows:

~1! The diffusion constants predicted from INM and zer
force INM densities of states for the solids are incorre
Although Keyes specifically warns against using the
for solids,6 there is noa priori way to identify the phase
of matter from the INM density of states. This certain
limits the predictive power of the theory.

~2! It is possible that the wells on either side of imagina
zero-force INMs can quench to the same local minimu
on the surface. This is certainly true for model syste
like the colinear three atom system in figure 5 and m

s.
. 12, 22 September 1997
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4627Gezelter, Rabani, and Berne: Barriers to self-diffusion
be generally true of the full potential energy surface fo
larger system of Lennard-Jones particles. The solids
served in section II visit low-energy regions of the p
tential energy surface, and quenches from both side
imaginary frequency zero-force INMs lead to the f
structure. High-density super-cooled liquids also disp
many modes with false barriers. Although highe
temperature liquids can visit a larger fraction of the p
tential energy surface, the surface itself is now known
have regions for which the imaginary frequency INM
are not accurate predictors of the barriers to diffusion

~3! Even though the solids we studied exhibited imagin
zero-force INM frequencies, they always quenched
the fcc configuration. Even the modes for a single at
in the solid~cf. figure 6! never displayed another ene
getically accessible local minimum. We were able to fi
atoms with two available local minima in the liquid
however.

~4! In some model systems, the imaginary INM frequen
along the modeswith barriers to diffusion~e.g., Qa in
figure 5! are found to be uncorrelated with the barri
height.

~5! The differences betweenf u anda(T) in the liquids and
solids are slight~cf. figure 3! and cannot account for
many orders-of-magnitude jump in the diffusion co
stant.

We conclude~with some disappointment! that the INM
models for the diffusion constant presented so far rest on
untenable assumption that the imaginary frequency insta
neous normal modes are indicators of barrier crossings o
same typethat lead to diffusive motion. It may be possible
use the kind of approach suggested by Keyes if a metho
developed which is able to discriminate between the mo
which really are crossing the barriers to diffusion from tho
which are not. The methods that have already been sugge
for this purpose~frequency cutoffs or using only the double
well, extended double-well, or zero-force INMs! have all
been shown to admit modes which have false barriers in
high-density super-cooled liquids and solids. We have s
gested a way to eliminate modes that have false barrier
following the steepest descent path from either side of
imaginary frequency INM to the nearest local minimum
However, this approach is limited to high-density sup
cooled liquids and solids and does not guarantee that a
the imaginary modes which remain are indeed crossing
riers to diffusion.
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Finally, we note that our investigations have been li
ited to atomic systems, and that the situation may be m
complex for molecular liquids. Given the results presented
this paper, it is important to establish for molecular soli
whether or not imaginary frequency instantaneous nor
modes are simply indicators of false barriers, anharmon
ties, and surface convexities as they appear to be in
Lennard-Jones solids.
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