Circumventing the pathological behavior of path-integral Monte Carlo
for systems with Coulomb potentials

M. H. Muser and B. J. Berne
Department of Chemistry, Columbia University, New York, New York 10027

(Received 29 January 1997; accepted 18 March 1997

The imaginary-time discretized path integral for systems interacting through Coulomb potentials
and/or bounded by hard walls behaves pathologically. In this paper we give an analysis of the
pathologies. A new method is used to calculate the path integral for the Coulomb system within the
primitive algorithm. This is done by constructing an effective potential that implicitly depends on
Trotter numberP. The procedure makes possible the treatment of Coulombic potentials by means
of Monte Carlo at surprisingly low Trotter numbers and without the need of computing three-body
potentials, necessary when high-order approximants for the density matrix are employ&8970©
American Institute of Physic§S0021-96067)50324-7

I. INTRODUCTION r=0 if the primitive algorithm is employeti.The collapse

. . into r=0 can be circumvented if high-order approximants
Path-integral Monte Carl@PIMC) techniques have been for p(B) are employed. Li and Broughton were the first to

used to treat multi-particle systems. Using a discretized ver- . . -
sion of the Feynman path integral for the canonical densit)?’leply such a high-order approximant, the Takahashi—Imada

matrix, p(8). the canonical partition function for an approximanf to the Coulomb potentidl. They report not

N-particle quantum system can be shown to be isomorphic t(():ompletely satisfactory results. At temperatuiies 3150 K

the partition functionZp(3), for anNX P particle classical and Trotter numbers as high Bs=800 the agreement in the

system withP being the number of time slices in the dis- radial distribution function of théls) electron in hydrogen

cretization, sometimes called the Trotter number. Standar etween simulation and exact.theory is still poor. Eveln
ough for well-behaved potentials the systematic error in

Monte Carlo techniques can then be applied to study th s ) I ,
Z(B) vanishes proportionally ta?(P~%) in the Takahashi—

isomorphic classical systerd obeys
P yz »(A) y Imada algorithn®, Li and Broughton estimate that the error
(B ) cannot decrease faster thar(P~*?). This arises from the
= +O| = i . . . .
Z(B)=2p(P) /( P2<[T"'“’V]> ' @ fact that in the Takahashi—Imada algorithm an effective po-
with [T, V] the commutator of kinetic and potential energy tential is constructed t_hat is ripulswe at short d_|stam(m$d
that becomes proportional to “ for both attractive and re-

and thusZp(8) converges to the quantum limit with~2. . ) .
There are, however, pathological systems for which theoulswe Coulomb potentials. Consequently the probability

thermal averagé[ Ty;,,V]) is not defined, making standard density or the Qistribution functiog(r)/r® atr=0 will al-
techniques to extrapolate from finife data to the quantum Ways be zero, independent Bt Hence the Coulomb poten-
limit unemployable. It is convenient to further distinguish tial i still weakly pathological in terms of hlgh-ord;ar ap-
between systems which still yield the right quantum limit for Proximant PIMC simulation and if we take limog(r)/r=as
largeP, e.g., withP~* and 0< »<2, and systems where the the relevant observable, it even remains strongly pathologi-
quantum limit can not be obtained at all by the method out£2l- _ . _ _ _ _

lined above, usually being referred to as the primitive algo- ~ Despite the title “Path-integral simulation of positro-
rithm. We call these systems “weakly” and “strongly” Nium in a hard sphere,” Ref. 8 is not based on the standard

pathological for the primitive path-integral Monte Carlo Path-integral algorithm. Ar§ partial wave matrix-squaring
scheme, respectively. method has been used in order to avoid the collapse into
Examples of weakly pathological systems are systemé=0. Such an approach, however, is only suitable for low-
interacting through hard-sphere interactions or particles sudimensional systems and highly symmetric boundary condi-
rounded by hard walls. The treatment of those models in théions such as spherical cavities. Hence this approach does not
framework of PIMC simulation was originally addressed by have the advantages of the standard PIMC scheme for which
Barker for particles in a(cubic box and by Jacucci and the computational effort increases linearly with particle num-
Omertt for particles in a spherical cavity. We provide a brief ber and for which an increase in the complexity of the prob-
summary here to show how observables such as internal elem does not increase the computational effort unless the
ergy and(therma) probability density scalguantitativelyto ~ system slows down due to frustration. Similarly, the PIMC
the quantum limit for both the primitive algorithm and the simulation of the hydrogen plasmawhere the high-
so-called image approximation. temperature density matrix has been obtained by a pair-
Of greater importance is the treatment of the stronglyproduct approximation, does not have all the advantages the
pathological attractive Coulomb potential. It is well known primitive algorithmusually has.
that the path generated by PIMC simulations collapses into  The basic idea invoked in this paper is to make Coulom-
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bic potentials accessible to PIMC by simulating an effective 2 _ d
potential V«(r,a) instead of the Coulomb potenti®i(r) H=5,* lim Vo(z— X
itself, whereV(r,a) does not have a singularity but tends Vo=

to V(r) as the “damping radius’a—0. Then the partition
function'® can be obtained by

) , (6)

whered is the length of the box. The condition, E&), can
alternatively be formulated by

Z(ﬁ): lim lim Tr[eiﬁTkin/Pe*ﬁveﬁ(a,r)/P]p (2) IBz
—0P—
a (gl [Tiin V0| < 5, @
# lim lim Tr[e*BTkin/Pefﬁveﬁ(a,r)/p]p_ 3
P—xa—0 with ¢, the thermal wavefunctiong(x)==.exd—pBH/

The effective potential should have the following two prop- 2]|r). This exp][es?io_n is easy to calculate analytically at zero
erties in addition{(i) for larger it should converge at least 'EMPeratures for finité/,

exponentially fast t&/¢. (i) Ewald summations for periodi- 52 3 P
cally repeated systems should still be possible. The following  |im ([ T,,V]|)=— _%ef dx(—z/;é ) (—V) Yo
effective potential shows these features: T-0 m IX IX
1 é€?
—_ _ (1 _atla (8)
Ver(r,a) == z—— (1=, 4
3

It is well-behaved, bounded from below and from above. - M—\/V—O+@(V8), 9
Hence([ T, Vei]) exists fora>0 andV is not pathologi- a%\/32m3

cal in terms of the primitive algorithm. It is of course desir-
able to leta—0 simultaneously a® goes to infinity, but it ~ Since the groundstatg, corresponds af =0 to the thermal
has to be done such that Eg) holds. In this paper, we will wavefunction. It is an easy matter to see that the singularity,
show thata = P~2% s the optimal choice for the primitive Proportional to\Vy in Eq. (8), also holds if the bracket on
algorithm. This approach for treating Coulmbic potentialsthe right-hand side of Ed8) is evaluated with any arbitrary
will not only be useful for PIMC simulation but also for (bounded eigenfunction. Hence at finite temperatures one
diagonalization techniques of high-temperature density maobtains
trices.

The effective Coulomb potential method, presented in ([ Tiin:V1)*\Vo. (10

this paper, does not treat the sign probfér? which arises _ . e
from the fermionic character of the electrons. This is a dif-' IS Means that the partition functiorand hence most ob-

; eservables can not be expressed as an analytic function of

2 . . .
fully effective. However, as long as exchange can be nef” I a path-integral approach. A simple argument, however,

glected, e.g., in a hot electronic plasma, or as long as therﬂqows that the partition function approaches the correct
P : ’ camint uantum limit asP~ Y2, For infinite P the partition function
are only two indistinguishable fermions, e.g., dissociation ofd ic i £ onl
an H,-molecule in solution, the above approach makes pos'—s’ arfl_ ana ytic function of only one pargmetelr, nar:nﬁlirl.
sible the efficient application of PIMC to these problems. qu inite P an extra parameter comes into play, the de Bro-
glie wavelength A\(B/P) at the reciprocal temperature
T 1=pB/Pks. Hence the partition function depends on
BE; and \(B/P)/d. This dependence ifor obvious rea-
Il. HARD WALLS song again analytic and hence the first correction term to the
A. Theory quantum-limit goes ax (B/P)/d; that is, asP %2,
Since the eigenfunctiong,, of the “particle-in-a-box”

In this section we show why the particle-in-a-box prob- ;o1 1am are well known thexactfree-particle density ma-
lem is weakly pathological and moreover how the use of thqrix (or propagatorcan easily be calculated by
image approximation of Barker removes the weak pathology.

Usually the discretized version of(eeal-time path-integral 8
yields reasonable results if for “typical” paths the inequal- p(X,X';B =D hn(X) (X' )& FETP, (12)
ity, n

E,=%27?n?/2md? being the eigenenergies. With the help of

m(Xt_Xt+1)2 . .
, (5) a Poisson formula this sum can be reexpressed as

V(X)) = V(X1 1)< A2

holds. For imaginary-time paths, on which PIMC is based, a
similar condition must be satisfied by the replacement’
t— —ipB#. Clearly this condition can not be met when infi-
nitely high walls are present as formally expressed in the
following Hamiltonian:

1 - d d
X,X';§)=WV2_oo (—1)V9(§_|X|)9(§_|X'|

. (12

mP d 1)x’ 2
X eX| W{V +X+( )X}
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FIG. 1. Deviation of internal energy calculated with finiteP from exact
results for different boxlengthd and different numbers of periodic images
Vmax @S @ function of Trotter number; temperatdre 1. Solid lines show
P12 dashed lineP 8.

where\(B/P) is the thermal de Broglie wavelength at tem-
peratureT=P/BKg.
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“small” box, d=2, one has to go to Trotter numbers as high
as P=100 before the error showdU e, B) —Up(B))
P12 If, however, images are included, e.g =2, the
convergence goes P8 as can be seen in Fig. 1, too.

For particles moving in a hard-wall box and interacting
with each other through a continuous potential or with a
continuous external potential the systematic quantum-
discretization error vanishes again proportionalPo? as
long as periodic images are taken into account. This is be-
cause all the arguments of the derivafiofi Eq. (1) hold and
terms that vanish faster than wifd~2 do not need to be
taken into account in ® ?—extrapolation.

It is important to note that taking into account higher-
order images not only invokes results closer to the quantum
limit but that in addition thescaling behaviorsets in at
smaller P than if only low-order images are taken into ac-
count. This is the main merit of the use of periodic images.

The results presented in this section are presumably not
only of interest for the system investigated here but also for
problems such as quantum-interactions of hard spheres and
one-dimensional rotators, where boundary conditions related
to the ones discussed in this paper have to be respected. The
use of images and knowing the convergence of the free-
particle kernel with respect to Trotter number might also be

In a simulation, e.g., of two or more interacting particlesjnportant when fixed-node approximations are applied,

in a box, the free-particle propagator in the form of EfR)
can only be evaluated for finite’|< v, This is of course

an approximation and it is convenient to call it an image

approximation of degree .. The image approximation of
degree zero leads to the primitive algorithm, of course.

B. Simulations

Although there is a variety of work using PIMC in con-

which might be useful to treat fermions within the PIMC
schemé?

Ill. COULOMB POTENTIAL
A. Theory

As in the previous section, we first discuss the commu-
tator defined in Eq(8) for the Coulomb potential. To do so,

junction with hard walls, a quantitative discussion of how however, we replace the Coulomb potential by the effective

fast the quantum limit is reached has yet to be given. W
want to fill this gap by discussing three models: Free
particle in a box and primitive algorithnfii) Free particle in
a box with image approximation of degree tw@i) Well-

behaved potentials in a box and image approximation of de-

gree two. We note in passing that for odd valuesvgf,

negative probabilities may occur, invoking the so-called sign

epotential introduced in Eq4) and we assume that the damp-

ing radiusa is small in comparison to the Bohr radiag, or
in atomic unitsa<<1. In this case it is possible to apply
first-order perturbation theory and to obtain

2h2

e
(ol Tuin Vet o) = — me(’f(aO). (13

problem and tedious averaging of observables. It is therefore

convenient only to work with an even numbey,,,. Al-

though we treat only simple examples we see no obviougef'ned' It is

reason to call in question the generality of these results,

bic box with boxlengthd at the dimensionless temperature

T=1. We are thus dealing with the three-dimensional gen

eralization of model Eq(6). The quantity of interest is the

internal energy or, in this case, the expectation value of th

kinetic energy. The exact value of this quantiity the quan-
tum limit) can easily be calculated.

In Fig. 1, the following behavior is observed: In the
primitive algorithm the error vanishes only proportionally to
P12 At temperatureT =1, the scaling behavior sets in at
Trotter numbers as small aB=1 for the “large” box,
d=20 (dimensionless unitsn=1, #=1). However, for the

Hence in the Coulombic limita—0, ([ Ty,,Ver]) is not
an easy matter to see that the singularity pro-
~1 is not more severe if the bracket on the

ﬁortional toa
long as boundary conditions and potentials are well behave _ft-hand side of Eq(13) is formed by any bounded eigen-

All computations were done in a three-dimensional cu-

state. Thus to leading order at finite temperatures,
([Tuin,Verl)oca™™. (14

This is an important result in order to estimate the leading
ifference between the partition function of the bare Cou-
omb problem in the quantum limit and the “effective”
problem for finiteP.

In addition to the Trotter extrapolatiof,— <, one has
also to carry out a potential extrapolatian-0, see Eq(4).
Since in first order perturbation theo(Ws— Vc)<a? the
leading error in the partition function is

Zo(B)=Ze( B) + (@),

(15
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which can be shown by a cumulant expansion of the parti- 0.6 —— ——
tion function. In Eq.(15), Zc(B) denotes the partition func-

tion for the Coulomb potential and.(8) the one for the 05
effective potential. With Eqs(1), (14), (15 we obtain for

Zc(B),

1 —
Zc(ﬁ)=2p,eff(,8)+("/‘(a2)+ﬂ‘<5P2 : (16) Z 03
This suggests tha be made proportional to a power Bf z

The fastest convergence rate to the quantum and Coulomk “ 0.2
potential limit in the primitive algorithm is obtained by tak-

ing 0.1
axp~?? (17) |

so that 0.0
ZA(B)=Zp e B)+(P~43). (18

Equation(17) together with Eq.(18) not only provides an FIG. 2. Radial distribution functiog(r) of the hydrogen atom in a cubic

efficient choice of the damping radiasbut also shows how box at ]’;30.02 for_ vgrious Trotter number$ and damping radii

to scale the Monte Carlo data at finie (and hence simul- 2~ (TP)~™" The solid line corresponds to tligs) state.

taneouslya) to the Coulomb and the quantum limit. Note

that this P~*3—convergence is even faster than the

P~2_convergence obtained if high-order approximants ardRef. 7 (Takahashi Imada algorithm with bare Coulomb po-

employed without introducing an effective potential. In thetentia), where theP=800 compares to ouP=80 curve.

next subsection we show that for suitable prefactors in Eq.  In Fig. 3 the scaling witiP~*? of the internal energy is

(17) the convergence sets in at even much lower Trottefemonstrated. Two series of simulations are carried out,

numbers than for the “straight forward” Takahashi ImadaWhere the prefactor in Eq17) is chosen differently. As pre-

algorithm. Of course, a method which combines the Takadicted by Eq.(18) the quantum-discretization error vanishes

hashi Imada algorithm, where for well-behaved potentialgroportionally toP~* The values, where the scaling behav-

Z(B)=Zp(B)+(P~*), with the damped Coulomb poten- ior starts, namelyP~80 for temperatures as low as

tial method should give even faster convergence thard =0.02, are surprisingly small. THgroundstate dominatgd

P~%3, However, effectively three-body potentifisvill then ~ energy E=—0.487 is larger than the real groundstate of

have to be calculated and we do not yet know the prefacto1= — 0.5 because of the hard-wall boundary condition. For

that must replace the termalbn the right-hand side of Eq. the present choice of temperature and boundary conditions

(18). the deviation is invoked by the kinetic energy term, since the
“box-restricted” groundstate is more localized than in the
d=o case. If we took a much larger simulation box than in

B. Simulations the present exampléwithout changing the temperatira

In this subsection we report simulation results based on
the above interpolation scheme. Because the partition func-
tion for the Coulomb potential diverges, a cutoff in phase ‘ ' ‘ '
space or hard walls have to be introduced. For reasons of
simplicity we chose a cubic box with boxlength= 20 (in
atomic unit3. The positive charge is fixed in the center of the
cubic box. We chose the temperature tollze0.02 in atomic
units so that the system will be groundstate dominated. Re-&

member that the eigenenergies for the bare hydrogen prob<

lem in atomic units ar&€,=—0.5/n%, n=1,2,..., and the &
Bohr radius isag=1. >

The radial distribution functiomg(r), defined by

il
r)= d3r'(r'|8(r—r"ye Ar"y, 19

9= 7755 | dr'(rlar—re M) (19 , ,
for various Trotter numbers is plotted in Fig. 2. In addition _1'8e+oo 1el03 29l03 3e-03
we show the(ls)-radial distribution function, which corre- p

sponds to the e),(aCt sqlutlon for=0 andd:m' The agree- FIG. 3. Internal energy of the hydrogen atom in a cubic box as a function
ment between simulation and experiment bgcomeg eXC?”em Trotter numberP at temperaturd =0.02 for different prefactors for the
for Trotter numbersP>160. See for comparison Fig. 7 in damping radius; see Eq(17). Lines are drawn to guide the eye.
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