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The imaginary-time discretized path integral for systems interacting through Coulomb potentials
and/or bounded by hard walls behaves pathologically. In this paper we give an analysis of the
pathologies. A new method is used to calculate the path integral for the Coulomb system within the
primitive algorithm. This is done by constructing an effective potential that implicitly depends on
Trotter numberP. The procedure makes possible the treatment of Coulombic potentials by means
of Monte Carlo at surprisingly low Trotter numbers and without the need of computing three-body
potentials, necessary when high-order approximants for the density matrix are employed. ©1997
American Institute of Physics.@S0021-9606~97!50324-2#
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I. INTRODUCTION

Path-integral Monte Carlo~PIMC! techniques have bee
used to treat multi-particle systems. Using a discretized v
sion of the Feynman path integral for the canonical den
matrix, r(b), the canonical partition function for a
N-particle quantum system can be shown to be isomorphi
the partition function,ZP(b), for anN3P particle classical
system withP being the number of time slices in the di
cretization, sometimes called the Trotter number. Stand
Monte Carlo techniques can then be applied to study
isomorphic classical system.ZP(b) obeys

1

Z~b!5ZP~b!1O S b2

P2 ^@Tkin ,V#& D , ~1!

with @Tkin ,V# the commutator of kinetic and potential ener
and thusZP(b) converges to the quantum limit withP22.

There are, however, pathological systems for which
thermal averagê@Tkin ,V#& is not defined, making standar
techniques to extrapolate from finiteP data to the quantum
limit unemployable. It is convenient to further distinguis
between systems which still yield the right quantum limit f
largeP, e.g., withP2n and 0,n,2, and systems where th
quantum limit can not be obtained at all by the method o
lined above, usually being referred to as the primitive alg
rithm. We call these systems ‘‘weakly’’ and ‘‘strongly’
pathological for the primitive path-integral Monte Car
scheme, respectively.

Examples of weakly pathological systems are syste
interacting through hard-sphere interactions or particles
rounded by hard walls. The treatment of those models in
framework of PIMC simulation was originally addressed
Barker2 for particles in a~cubic! box and by Jacucci and
Omerti3 for particles in a spherical cavity. We provide a bri
summary here to show how observables such as interna
ergy and~thermal! probability density scalequantitativelyto
the quantum limit for both the primitive algorithm and th
so-called image approximation.

Of greater importance is the treatment of the stron
pathological attractive Coulomb potential. It is well know
that the path generated by PIMC simulations collapses
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r50 if the primitive algorithm is employed.4 The collapse
into r50 can be circumvented if high-order approximan5

for r(b) are employed. Li and Broughton were the first
apply such a high-order approximant, the Takahashi–Im
approximant,6 to the Coulomb potential.7 They report not
completely satisfactory results. At temperaturesT53150 K
and Trotter numbers as high asP5800 the agreement in th
radial distribution function of the~1s! electron in hydrogen
between simulation and exact theory is still poor. Ev
though for well-behaved potentials the systematic error
Z(b) vanishes proportionally toO (P24) in the Takahashi–
Imada algorithm,6 Li and Broughton estimate that the erro
cannot decrease faster thanO (P21/2). This arises from the
fact that in the Takahashi–Imada algorithm an effective
tential is constructed that is repulsive at short distancesr and
that becomes proportional tor24 for both attractive and re-
pulsive Coulomb potentials. Consequently the probabi
density or the distribution functiong(r )/r 2 at r50 will al-
ways be zero, independent ofP. Hence the Coulomb poten
tial is still weakly pathological in terms of high-order ap
proximant PIMC simulation and if we take limr→0g(r )/r

2 as
the relevant observable, it even remains strongly patholo
cal.

Despite the title ‘‘Path-integral simulation of positro
nium in a hard sphere,’’ Ref. 8 is not based on the stand
path-integral algorithm. AnS partial wave matrix-squaring
method has been used in order to avoid the collapse
r50. Such an approach, however, is only suitable for lo
dimensional systems and highly symmetric boundary con
tions such as spherical cavities. Hence this approach doe
have the advantages of the standard PIMC scheme for w
the computational effort increases linearly with particle nu
ber and for which an increase in the complexity of the pro
lem does not increase the computational effort unless
system slows down due to frustration. Similarly, the PIM
simulation of the hydrogen plasma,9 where the high-
temperature density matrix has been obtained by a p
product approximation, does not have all the advantages
primitive algorithmusuallyhas.

The basic idea invoked in this paper is to make Coulo
5711/5/$10.00 © 1997 American Institute of Physics
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572 M. H. Muser and B. J. Berne: Path-integral Monte Carlo
bic potentials accessible to PIMC by simulating an effect
potentialVeff(r ,a) instead of the Coulomb potentialVC(r )
itself, whereVeff(r ,a) does not have a singularity but tend
to VC(r ) as the ‘‘damping radius’’a→0. Then the partition
function10 can be obtained by

Z~b!5 lim
a→0

lim
P→`

Tr@e2bTkin /Pe2bVeff~a,r !/P#P ~2!

Þ lim
P→`

lim
a→0

Tr@e2bTkin /Pe2bVeff~a,r !/P#P. ~3!

The effective potential should have the following two pro
erties in addition:~i! for large r it should converge at leas
exponentially fast toVC. ~ii ! Ewald summations for periodi
cally repeated systems should still be possible. The follow
effective potential shows these features:

Veff~r ,a!52
1

4p«0

e2

r
~12e2r /a!. ~4!

It is well-behaved, bounded from below and from abo
Hence^@Tkin ,Veff#& exists fora.0 andVeff is not pathologi-
cal in terms of the primitive algorithm. It is of course des
able to leta→0 simultaneously asP goes to infinity, but it
has to be done such that Eq.~2! holds. In this paper, we will
show thata } P22/3 is the optimal choice for the primitive
algorithm. This approach for treating Coulmbic potentia
will not only be useful for PIMC simulation but also fo
diagonalization techniques of high-temperature density
trices.

The effective Coulomb potential method, presented
this paper, does not treat the sign problem,11,12which arises
from the fermionic character of the electrons. This is a d
ferent topic that must be solved before this approach will
fully effective. However, as long as exchange can be
glected, e.g., in a hot electronic plasma, or as long as th
are only two indistinguishable fermions, e.g., dissociation
an H2-molecule in solution, the above approach makes p
sible the efficient application of PIMC to these problems.

II. HARD WALLS

A. Theory

In this section we show why the particle-in-a-box pro
lem is weakly pathological and moreover how the use of
image approximation of Barker removes the weak patholo
Usually the discretized version of a~real-time! path-integral
yields reasonable results if for ‘‘typical’’ paths the inequa
ity,

uV~xt!2V~xt11!u!Um~xt2xt11!
2

2Dt2 U, ~5!

holds. For imaginary-time paths, on which PIMC is based
similar condition must be satisfied by the replacem
t→2 ib\. Clearly this condition can not be met when in
nitely high walls are present as formally expressed in
following Hamiltonian:
J. Chem. Phys., Vol. 10
e

g

.

a-

n

-
e
-
re
f
s-

e
y.

a
t

e

H5
p2

2m
1 lim

V0→`

V0QS d22UxU D , ~6!

whered is the length of the box. The condition, Eq.~5!, can
alternatively be formulated by

u^c tu@Tkin ,V#uc t&u!
b2

P2 , ~7!

with c t the thermal wavefunction,c t(x)5(nexp@2bH/
2#un&. This expression is easy to calculate analytically at z
temperatures for finiteV0

lim
T→0

^@Tkin ,V#u&52
\2

m
ReE dxS ]

]x
c0* D S ]

]x
VDc0

~8!

52
p\3AV0

a3A32m3
1O ~V0

0!, ~9!

since the groundstatec0 corresponds atT50 to the thermal
wavefunction. It is an easy matter to see that the singula
proportional toAV0 in Eq. ~8!, also holds if the bracket on
the right-hand side of Eq.~8! is evaluated with any arbitrary
~bounded! eigenfunction. Hence at finite temperatures o
obtains

^@Tkin ,V#&}AV0. ~10!

This means that the partition function13 and hence most ob
servables can not be expressed as an analytic functio
P2 in a path-integral approach. A simple argument, howev
shows that the partition function approaches the corr
quantum limit asP21/2. For infiniteP the partition function
is an analytic function of only one parameter, namelybE1.
For finiteP an extra parameter comes into play, the de B
glie wavelength l(b/P) at the reciprocal temperatur
T̃215b/PkB . Hence the partition function depends o
bE1 and l(b/P)/d. This dependence is~for obvious rea-
sons! again analytic and hence the first correction term to
quantum-limit goes asl(b/P)/d; that is, asP21/2.

Since the eigenfunctionscn of the ‘‘particle-in-a-box’’
problem are well known theexact free-particle density ma-
trix ~or propagator! can easily be calculated by2

rS x,x8;bPD5(
n

cn~x!cn~x8!e2bEn /P, ~11!

En5\2p2n2/2md2 being the eigenenergies. With the help
a Poisson formula this sum can be reexpressed as

rS x,x8;bPD5
1

l~b/P! (
n52`

`

~21!nuS d22uxu D uS d22ux8u D
3expF2

mP

2b\2 $nd1x1~21!nx8%2G , ~12!
7, No. 2, 8 July 1997
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573M. H. Muser and B. J. Berne: Path-integral Monte Carlo
wherel(b/P) is the thermal de Broglie wavelength at tem
peratureT̃5P/bkB .

In a simulation, e.g., of two or more interacting particl
in a box, the free-particle propagator in the form of Eq.~12!
can only be evaluated for finiteunu<nmax. This is of course
an approximation and it is convenient to call it an ima
approximation of degreenmax. The image approximation o
degree zero leads to the primitive algorithm, of course.

B. Simulations

Although there is a variety of work using PIMC in con
junction with hard walls, a quantitative discussion of ho
fast the quantum limit is reached has yet to be given.
want to fill this gap by discussing three models:~i! Free
particle in a box and primitive algorithm.~ii ! Free particle in
a box with image approximation of degree two.~iii ! Well-
behaved potentials in a box and image approximation of
gree two. We note in passing that for odd values ofnmax
negative probabilities may occur, invoking the so-called s
problem and tedious averaging of observables. It is there
convenient only to work with an even numbernmax. Al-
though we treat only simple examples we see no obvi
reason to call in question the generality of these results
long as boundary conditions and potentials are well beha

All computations were done in a three-dimensional c
bic box with boxlengthd at the dimensionless temperatu
T51. We are thus dealing with the three-dimensional g
eralization of model Eq.~6!. The quantity of interest is the
internal energy or, in this case, the expectation value of
kinetic energy. The exact value of this quantity~in the quan-
tum limit! can easily be calculated.

In Fig. 1, the following behavior is observed: In th
primitive algorithm the error vanishes only proportionally
P21/2. At temperatureT51, the scaling behavior sets in a
Trotter numbers as small asP51 for the ‘‘large’’ box,
d520 ~dimensionless units,m51, \51). However, for the

FIG. 1. Deviation of internal energyU calculated with finiteP from exact
results for different boxlengthsd and different numbers of periodic image
nmax as a function of Trotter number; temperatureT51. Solid lines show
P21/2, dashed lineP28.
J. Chem. Phys., Vol. 10
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‘‘small’’ box, d52, one has to go to Trotter numbers as hi
as P5100 before the error showŝUexact(b)2UP(b)& }
P21/2. If, however, images are included, e.g.,nmax52, the
convergence goes} P28 as can be seen in Fig. 1, too.

For particles moving in a hard-wall box and interactin
with each other through a continuous potential or with
continuous external potential the systematic quantu
discretization error vanishes again proportional toP22 as
long as periodic images are taken into account. This is
cause all the arguments of the derivation1 of Eq. ~1! hold and
terms that vanish faster than withP22 do not need to be
taken into account in aP22–extrapolation.

It is important to note that taking into account highe
order images not only invokes results closer to the quan
limit but that in addition thescaling behaviorsets in at
smallerP than if only low-order images are taken into a
count. This is the main merit of the use of periodic image

The results presented in this section are presumably
only of interest for the system investigated here but also
problems such as quantum-interactions of hard spheres
one-dimensional rotators, where boundary conditions rela
to the ones discussed in this paper have to be respected
use of images and knowing the convergence of the fr
particle kernel with respect to Trotter number might also
important when fixed-node approximations are appli
which might be useful to treat fermions within the PIM
scheme.14

III. COULOMB POTENTIAL

A. Theory

As in the previous section, we first discuss the comm
tator defined in Eq.~8! for the Coulomb potential. To do so
however, we replace the Coulomb potential by the effect
potential introduced in Eq.~4! and we assume that the dam
ing radiusa is small in comparison to the Bohr radiusa0, or
in atomic unitsa!1. In this case it is possible to appl
first-order perturbation theory and to obtain

^c0u@Tkin ,Veff#uc0&52
e2\2

2p«0ama0
2 1O ~a0!. ~13!

Hence in the Coulombic limit,a→0, ^@Tkin ,Veff#& is not
defined. It is an easy matter to see that the singularity p
portional to a21 is not more severe if the bracket on th
left-hand side of Eq.~13! is formed by any bounded eigen
state. Thus to leading order at finite temperatures,

^@Tkin ,Veff#&}a
21. ~14!

This is an important result in order to estimate the lead
difference between the partition function of the bare Co
lomb problem in the quantum limit and the ‘‘effective
problem for finiteP.

In addition to the Trotter extrapolation,P→`, one has
also to carry out a potential extrapolationa→0, see Eq.~4!.
Since in first order perturbation theory^Veff2VC&}a2 the
leading error in the partition function is

ZC~b!5Zeff~b!1O ~a2!, ~15!
7, No. 2, 8 July 1997
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574 M. H. Muser and B. J. Berne: Path-integral Monte Carlo
which can be shown by a cumulant expansion of the pa
tion function. In Eq.~15!, ZC(b) denotes the partition func
tion for the Coulomb potential andZeff(b) the one for the
effective potential. With Eqs.~1!, ~14!, ~15! we obtain for
ZC(b),

ZC~b!5ZP,eff~b!1O ~a2!1O S 1a P22D . ~16!

This suggests thata be made proportional to a power ofP.
The fastest convergence rate to the quantum and Coul
potential limit in the primitive algorithm is obtained by tak
ing

a}P22/3, ~17!

so that

ZC~b!5ZP,eff~b!1O ~P24/3!. ~18!

Equation~17! together with Eq.~18! not only provides an
efficient choice of the damping radiusa but also shows how
to scale the Monte Carlo data at finiteP ~and hence simul-
taneouslya) to the Coulomb and the quantum limit. No
that this P24/3–convergence is even faster than t
P21/2–convergence obtained if high-order approximants
employed without introducing an effective potential. In t
next subsection we show that for suitable prefactors in
~17! the convergence sets in at even much lower Tro
numbers than for the ‘‘straight forward’’ Takahashi Ima
algorithm. Of course, a method which combines the Ta
hashi Imada algorithm, where for well-behaved potenti
Z(b)5ZP(b)1O (P24), with the damped Coulomb poten
tial method should give even faster convergence t
P24/3. However, effectively three-body potentials15 will then
have to be calculated and we do not yet know the prefa
that must replace the term 1/a on the right-hand side of Eq
~18!.

B. Simulations

In this subsection we report simulation results based
the above interpolation scheme. Because the partition fu
tion for the Coulomb potential diverges, a cutoff in pha
space or hard walls have to be introduced. For reason
simplicity we chose a cubic box with boxlengthd520 ~in
atomic units!. The positive charge is fixed in the center of t
cubic box. We chose the temperature to beT50.02 in atomic
units so that the system will be groundstate dominated.
member that the eigenenergies for the bare hydrogen p
lem in atomic units areEn520.5/n2, n51,2, . . . , and the
Bohr radius isa051.

The radial distribution functiong(r ), defined by

g~r !5
1

Z~b!
E d3r 8^r 8ud~r2r 8!e2bHur 8&, ~19!

for various Trotter numbers is plotted in Fig. 2. In additio
we show the~1s!-radial distribution function, which corre
sponds to the exact solution forT50 andd5`. The agree-
ment between simulation and experiment becomes exce
for Trotter numbersP.160. See for comparison Fig. 7 i
J. Chem. Phys., Vol. 10
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Ref. 7 ~Takahashi Imada algorithm with bare Coulomb p
tential!, where theP5800 compares to ourP580 curve.

In Fig. 3 the scaling withP24/3 of the internal energy is
demonstrated. Two series of simulations are carried
where the prefactor in Eq.~17! is chosen differently. As pre-
dicted by Eq.~18! the quantum-discretization error vanish
proportionally toP24/3. The values, where the scaling beha
ior starts, namelyP'80 for temperatures as low a
T50.02, are surprisingly small. The~groundstate dominated!
energyE520.487 is larger than the real groundstate
E1520.5 because of the hard-wall boundary condition. F
the present choice of temperature and boundary condit
the deviation is invoked by the kinetic energy term, since
‘‘box-restricted’’ groundstate is more localized than in th
d5` case. If we took a much larger simulation box than
the present example~without changing the temperature! a

FIG. 2. Radial distribution functiong(r ) of the hydrogen atom in a cubic
box at T50.02 for various Trotter numbersP and damping radii
a5(TP)22/3. The solid line corresponds to the~1s! state.

FIG. 3. Internal energyU of the hydrogen atom in a cubic box as a functio
of Trotter numberP at temperatureT50.02 for different prefactors for the
damping radiusa; see Eq.~17!. Lines are drawn to guide the eye.
7, No. 2, 8 July 1997
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575M. H. Muser and B. J. Berne: Path-integral Monte Carlo
deviation from E1 would be obtained due to finite
temperature dissociation.

In passing we want to note that it would have been
easy matter to include the motion from the proton out of
center of the box. However, this procedure does not incl
new principles and makes the comparison to exact res
more difficult.

IV. CONCLUSIONS

In this paper we deal with two problems that are path
logical for the primitive path-integral Monte Carlo~PIMC!
formalism, hard walls and the Coulomb potential. A simp
strategy for circumventing the strong pathology of the Co
lomb potential is suggested. It is shown that this starte
works so well that we expect it to be useful for simulati
many problems hitherto not accessible to path-integral si
lations.
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